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Object detection and automatic measurements with a

data-driven algorithm for marked point process optimization

Claire Coiffard ⇤, Ségolen Geffray †

Université de Strasbourg, IRMA, UMR 7501

Abstract

This paper deals with object detection and automatic measurements from optical microscopy
and scanning electron microscopy (SEM) 2-dimensional images. More specifically, we consider
the problem of detecting and measuring circular cells and rectilinear thick fibers. We adopt
the spatial point process viewpoint and follow the maximum a posteriori (MAP) principle to
obtain an optimal object configuration. We design a novel data-driven version of the data term
in the MAP criterion in the fiber case, of the reference spatial marked point process and of
the Markov Chain Monte-Carlo (MCMC) sampler, both in the cell case and in the fiber case.
To this purpose, information from the image under consideration is incorporated by means of
either the Radon transform or the circular Hough transform. We apply the proposed method to
a real cell optical microscopy image and to a real fiber SEM image. Our results show that the
proposed algorithm is fast, reliable and stable. We also produce the required characterization
of the object morphology.

Keywords: Spatial marked point processes, maximum a posteriori, reversible jump Markov
Chain Monte-Carlo, Simulated annealing, Radon transform, circular Hough transform.

1 Introduction

Images are a major source of information when dealing with microscopic objects. For example,
think of cells or of polymeric fibers which are roughly of the order of the micrometer. In polymer en-
gineering, systematic measurements are made repeatedly from polymer scanning electron microscopy
(SEM) images, as outlined in [1], [14] or [18], for morphology evaluation purposes. In cell biology, the
authors of [23] developed an automated low-level method of cell detection and counting from optical
microscopic images. With these two examples in mind, a crucial goal for biomaterial engineering
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consists of automatically detecting such objects in a given image and of being able to character-
ize their location and morphology. Object detection from image data can be done using different
techniques. Low-level image analysis methods present the major drawback of being sensitive to local
image imperfections such as noise, poor illumination, blur... Moreover, once the detection is obtained
with such a low-level image analysis method, it may be tedious to deduce object measurements. As
a consequence, we turn to high-level methods in which an image I is considered as an imperfect
(noisy, blurred, non-uniformly illuminated,...) observation of a random process X in an observation
window X . When the objects of interest can be modelled as simple parametric shape such as circles,
squares, triangles, thick straight lines, then a suitable class of random processes for that modelling
purpose is the class of spatial marked point processes. We refer the reader to the books by Møller and
Waagepetersen [16] or by Van Lieshout (2000) for a detailed presentation of spatial point processes,
their sampling and practical applications. Object detection and counting can be made by fitting a
marked point process to the image as largely demonstrated in the literature. We recommend the
book by Descombes et al [5] and the numerous references therein for applications of spatial point
processes to practical image analysis situations.

This paper is concerned with providing an accurate, reliable and robust determination of cell and
fiber location and morphology from microscopy images within a reasonable computation time and
complexity. Specifically, we aim at detecting cell and fiber objects from microscopy images and at
estimating the cell number and the cell radius distribution on the one hand, and the fiber width and
orientation distributions on the other hand. We model cells as circles and fibers as thick straight lines
within the framework of an appropriate spatial marked point process. We adapt the marked point
process method presented in [5] for its ability to provide straightforward automatic measurements
once the object detection is done. Two kinds of inferential approaches may be distinguished when
fitting a spatial marked point process to a given image, the Bayesian approach on the one hand,
and the so-called detector approach according to [5] on the other hand. The Bayesian approach
has been used successfully in a number of practical situations and recently in Konomi et al. [10].
However, the Bayesian method requires to specify a likelihood for the grey level intensity of pixels
within and outside the objects. This makes the Bayesian method very sensitive to local defects in
the image such as noise, blur or illumination gradient and also to the fact that grey level intensities
may vary from on object to another which is the case in practice (see Figure 1). For these reasons,
we adopt the detector approach as inferential method. Instead of specifying a likelihood for the
grey level intensity of pixels within and outside the objects, one only specifies a so-called data term
which accounts for the plausibility of a given object configuration with respect to the image at hand.
The detection then consists of finding the optimal object configuration which is done by maximizing
an objective function. Due to the intractability of the resulting non-convex optimization problem,
a simulated annealing algorithm (Kirkpatrick et al [9]) together with a Reversible Jump Markov
Chain Monte-Carlo (RJMCMC) sampler (Green [7]) are used. This method has demonstrated its
wide applicability. However, the algorithm convergence to equilibrium may be really slow and the
convergence may be somewhat difficult to diagnose. To speed up the algorithm, Brooks et al [4]
developed a general method for finding efficient proposals for RJMCMC algorithms. Their propos-
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als are constructed from Taylor expansions of acceptance probabilities with the drawback of being
computationally demanding. More specific data-driven versions for the RJMCMC algorithm have
already been considered in Tu and Zhu [20]. Their paper is segmentation oriented - and also Bayesian
oriented. Their method transposed to our cell and fiber detection context would use as proposal dis-
tribution a finite mixture of Gaussian distributions the components of which are centered at the local
modes of the Radon or Hough transform. Though interesting, their method increases the number of
unknown model parameters since numerous additional variance components without much concrete
interpretation have to be calibrated making the calibration step tedious.

We present a novel data-driven version of both the objective function in section 2 and of the
optimization algorithm in section 3. To this aim, information from the image is incorporated by
means of either the Radon or the circular Hough transform. We show in section 4 that our method,
though quite simple, leads to improved convergence properties of the algorithm while producing ac-
curate, reliable and robust results. Some technical elements proving the convergence of the proposed
algorithm to the target are postponed in the Appendix.

Figure 1: A Scanning Electron Microscopy image of polymer fibers and an optical microscopy image
of cells. Image courtesy by Guy Schlatter, ICPEES, University of Strasbourg, France.

.

2 Objective function to be optimized

Object detection is obtained by computing the optimal object configuration according to the
MAP criterion:

xm = argmax
x
m2Ξ P (I|XM = xm)P (XM = xm). (1)

The first term P (I|XM = xm) is the so-called data term and represents the probability of obtaining
image I under the spatial marked point process model specified for the spatial marked point process
denoted as XM and detailed below. The second term P (XM = xm) is the so-called a priori term and
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represents the probability of obtaining the object configuration xm as a realisation of the random
process XM . Notice that the target distribution of which we are looking for global maxima is the a
posteriori distribution hence the denomination of Maximum A Posteriori principle.

We first design the a priori term as a spatial marked point process used to model cells or fibers in
subsection 2.1. Then, in subsection 2.2, we design what is usually termed as the data term and which
may be interpreted as the conditional probability of observing a given image under the chosen spatial
marked point process model. We then derive the objective function according to the maximum a
posteriori principle. Our main preoccupation is to incorporate information from the image data to
make the algorithm efficient, robust and reliable.

2.1 A priori term

We first introduce some useful mathematical formalism. Let λLeb be the Lebesgue measure in
R

2 and let B be the associated Borel σ-algebra on R
2. We assume that the location space X is a

compact subset of R2 with positive measure. Let X be a spatial point process on X so that on can
think of X as a random countable subset of X . A point configuration x is an unordered sequence
of locations in X . Let us denote as n(x) the cardinality of x. When n(x) = n for some n in N

⇤,
then the configuration x may be written as x = {x1, ..., xn}. We set (X ,BX , λ

Leb
X ) to be the natural

restriction to X of (R2,B, λLeb). In practice, the location space X is given by the image boundaries
that is X = [0, xmax]⇥ [0, ymax].

We then assume that the mark space M is a compact subset with positive measure of Rd for
some d ≥ 1. The mark spaceM is supposed equipped with the corresponding σ-algebra FM and a
probability measure PM having density pM with respect to λLeb

M the restriction of Lebesgue measure
on R

d toM.

We introduce a marked point process on X ⇥M as

XM =
n
{XMi

i := (Xi,Mi)}i=1,...,n : {Xi}i=1,...,n 2 X,Mi 2M, i = 1, ..., n
o

meaning that a random mark Mi is attached to each random point Xi. A marked point is also termed
as an object.

The mark space M naturally depends on the objects geometry. Cells are modelled as circles
while fibers are modelled here as thick straight lines. In the cell case, the parametrization is straight-
forward. The object location is given by the circle center x = (u, v) in [0, xmax] ⇥ [0, ymax] and the
associated circle radius is given by r in [0, rmax]. In the fiber case, the object location is given by
(α, p, ε) in X as defined on figure 2, and the mark of the fiber is w in M = [wmin, wmax] which
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corresponds to the fiber width.

For n in N, let Ξn be the set of all unordered configurations

xm = (x,m) = {(x1,m1), ..., (xn,mn)}

consisting of nmarked points (xi,mi) in X⇥M with Ξ0 being the empty configuration. For simplicity,
we denote as n(x) the cardinality of a configuration xm since the number of marked points corresponds
to the number of unmarked points. The configuration space can be written as Ξ =

S1
n=0 Ξn and is

equipped with the σ-algebra FΞ defined by the mappings

ϕA,n : {xm1

1 , ..., xmn

n } !
nX

i=1

I(xmi

i 2 A)

that count the number of marked points in Borel sets A ✓ X ⇥M.

α, ε
p

w

• α 2 [0, π]

• p 2 [0, dmax(α)]

• ε 2 {−1, 1}

• w 2 [wmin, wmax]

Figure 2: Fiber parametrization

The Poisson process is a model for “no interaction” situations or of complete spatial randomness
since for any disjoint subsets A and B of X , the events {X 2 A} and {X 2 B} are independent. In
many applications, the reference Poisson process is the homogeneous Poisson process with indepen-
dent marks having uniform distribution. It turns out that it is possible to get information about the
likely localization and geometry of the objects in an image by using some image processing techniques
for example. It seems relevant to use this information within the reference process definition, as in
[2]. We follow the approach of Baddeley and Van Lieshout [3] and Van Lieshout [21] who first define
a reference measure denoted as here as πΛ that incorporates some features of the object distribution
but not their mutual interactions and then set the full model as Gibbs point process defined by a
Radon-Nikodym derivative with respect to πΛ. The point process taken as reference process hereafter
is the inhomogeneous marked Poisson process defined for A 2 FΞ by

πΛ(x
m) =

X

n2N

exp(−Λ(X ))

n!

Z

(X⇥M)n
I({(x1,m1), ..., (xn,mn)} 2 A)

nY

i=1

λ(xi)pM(mi)dλ
Leb
X (xi)dλ

Leb
M (mi) (2)

5



where the integral term for n = 0 reads as I(; 2 A), where Λ is the intensity measure, where

λ(·) = dΛ(·)

dλLeb
X

is the intensity function and where pM is the density of the distribution PM on M

with respect to λLeb
M . This says that the measure πΛ distributes the object locations independently

in X according to a Poisson distribution with intensity measure Λ(.) and that the corresponding
shapes are chosen in M independently according to the distribution PM . We design the intensity
measure Λ and the mark distribution PM so that they incorporate some knowledge from the image
data according to some deterministic image analysis methods. We set the intensity measure Λ to be
equal to the image circular Hough transform in the cell case and to the image Radon transform in
the fiber case.

In the cell case, we set the mark distribution PM to be equal to the radius distribution calibrated
from the image in the following way. We compute the image circular Hough transforms for radii
within a prespecified range [rmin, rmax]. We then extract the local maxima which correspond to
potential circles. We calibrate the radius distribution as the distribution of the radii associated with
the obtained potential circles.

We planned to calibrate the fiber width distribution in a similar way. However, in practice,
the number of fibers detected from our image by image analysis techniques is too small to derive a
corresponding width distribution in a reliable way. Consequently, we kept the fiber width distribution
as uniform within a prespecified range [wmin, wmax].

To emphasize the difference with the usual choice, we note that the unit rate homogeneous marked
Poisson process with uniformly distributed independent marks is usually chosen as reference process
which boils down to taking λ(.) ⌘ 1 and pM(.) = I(. 2M) in equation (2). Another justification for
our reference process choice will also appear in the next section.

Interactions between objects have to be taken into account in order to prevent from excessive
object superposition. Contrarily to Poisson processes, Gibbs point process allow the modelling of
dependence of spatial point patterns. They can be constructed by specifying a Radon-Nikodym
derivative with respect to πΛ. A repulsive pairwise interaction model which penalises overlap between
objects is appropriate for our applications. These processes have densities proportional to

p(xm) =
Y

x
mi
i 2xm

β(xmi

i )
Y

x
mi
i ,x

mj
j 2xm:x

mi
i 6=x

mj
j

ϕ(xmi

i , x
mj

j )

with β : X ! [0,1) and ϕ : X⇥X ! [0,1). If the interaction function ϕ satisfies ϕ  1, the process
is repulsive and if in addition

R
X⇥M

β(xm1

1 )λ(x1)λ
Leb
X (dx1)pM(m1)λ

Leb
M (dm1) < 1, then the process

is locally stable which implies that the process is well defined and satisfies the hereditary property
(that is p(xm) > 0 =) p(x0m

0

) > 0 , 8x0m
0

⇢ xm). The local stability condition will also be of use to
obtain the convergence properties of the Monte-Carlo dynamics in section 3. For both cell and fiber
images, we choose an area-interaction process. This choice is quite classical in the literature, see eg
Descombes (20011) and the references therein. This process corresponds to the choices β(.) ⌘ β for
a β > 0 and ϕ(xmi

i , x
mj

j ) = exp
(
−γpt

(
xmi

i , x
mj

j

))
with γp > 0 and with t

(
xmi

i , x
mj

j

)
representing the
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overlap degree between the two objects xmi

i and x
mj

j in the following way

t
(
xmi

i , x
mj

j

)
=

Area
(
xmi

i \ x
mj

j

)

min
(
Area (xmi

i ) ,Area
(
x
mj

j

)) .

The area interaction process then has the following unnormalized density with respect to πΛ:

hp(x
m) = βn(xm)e−γps(xm), (3)

where s(xm) =
P

i<j t
(
xmi

i , x
mj

j

)
stands for the overall overlap degree in the current object configu-

ration.

2.2 Data term determination

We now deal with the so-called data term. According to the detector approach, its expression is
given by

hd(x
m) = exp

0
@−γd

X

x
mi
i 2xm

vd(x
mi

i )

1
A (4)

where γd > 0 is a weight parameter and where vd : X ⇥M ! R is a so-called potential function
which quantifies the confidence one may have in the fact that xmi

i is an object actually present in
the image. With such a specification, the plausibility of a configuration is sort of quantified by the
addition of the plausibility of each object in the current configuration.
In Descombes et al (2011), the potential function in xmi

i is given by some statistical distance between
the gray levels of the pixels within the object xmi

i and of those in its neighbourhood. The statement
leading to this definition is threefold. Firstly gray levels are homogeneous inside an object, secondly
gray levels inside an object contrast with grey levels in the object neighbourhood. To assess the
distance between the grey levels inside and in the neighbourhood of the object, generally either the
Bhattacharaya distance is used (Perrin et al. [17]), or a test statistic such as Student’s test statistic
(Lacoste [12]) or Kolmogorov-Smirnov’s test statistic (Imberty and Descombes [8]). The potential
function then aims at penalizing objects for which the preceding distance is too small.

We consider here separately the fiber case and the cell case.
In the cell case, we adapt the potential function introduced in [11] for segment detection pur-

pose. Let us denote as xmi

i the circle in configuration xm under consideration and let bi(ρ) be its
neighbourhood defined as the outer pixels no distant than more than ρ pixels from the object bound-
ary. As explained above, a statistical distance between the grey levels inside object xmi

i and in its
neighbourhood is set as

db(x
mi

i , bi(ρ)) =
(cm0 − cmb)

2

4

q
bσ2
0 +

bσ2
b

−
1

2
log

0
@2

q
bσ2
0
bσ2
b

bσ2
0 +

bσ2
b

1
A

7



where bm0 and bmb are the means of the grey levels respectively inside the object xmi

i and in its

neighbourhood bi(ρ), where bσ2
0 and bσ2

b are the variances of the grey levels respectively inside the
object xmi

i and in its neighbourhood bi(ρ). The potential function is then defined as

vd(x
mi

i ) =

8
<
:
1−

⇣
dB(x

mi
i ,bi(ρ))

d0

⌘1/3

if dB(x
mi

i , bi(ρ)),

exp
⇣
−

dB(x
mi
i ,bi(ρ))−d0

d0

⌘
− 1 otherwise.

(5)

In the fiber case, we propose a new expression of the potential function which relies on the Radon
transform. Indeed, up to our knowledge, there does not exist any implementation of spatial marked
point process for thick straight lines detection. One possibility would consist of using a potential
function expression similar to (5) which turns out to have been used in the segment detection case
in [11]. A major drawback is the exploding computation time, since the thick straight lines have a
very large number of pixels. Moreover, the presence of intersecting fibers in the neighbourhood of
the fiber under consideration entails that the grey level intensity of the pixels in the neighbourhood
of the considered fiber are inhomogeneous which makes the use of (5) irrelevant. Let us denote as
xmi

i the object in configuration xm under consideration. Let RT (xi) be the value of the image Radon
transform at the point having location xi. We recall that the Radon transform is defined as the
integral of the image grey levels intensity over straight lines. Consequently, the larger RT (xi) is, the
more likely there is a line at location xi. To incorporate some additional information about the mark
mi and get a more precise potential, we design a second term that accounts for the fact that the
fibers are in light grey on a dark grey background. This term is defined as

k(xmi

i ) =
1

np(xi)
max (1,#{pixels of thick line xmi

i having grey level intensity < τ}) , (6)

where np(x
mi

i ) is the number of pixels in xmi

i and where the threshold τ needs to be calibrated. Then,
the potential vd(x

mi

i ) is obtained through a linear transform of

hi =
RT (xi)

k(xmi

i )

involving three additional parameters s, s0 and Vmax given by

vd(x
mi

i ) =

8
><
>:

Vmax if hi < s,

1− 2hi−s
s0−s

if s  hi  s0,

−1 otherwise.

(7)

As a conclusion to this section, we are in position to derive the objective function to be optimized.
The data term P (I = y|XM = xm) is taken proportional to the unnormalized density hd(x

m) being
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defined by equation (4). The prior term P (XM = xm) is taken proportional to the unnormalized den-
sity hp(x

m) being defined by equations (3) and (7). With these statements in mind, the optimization
problem in (1) may be rewritten as

xm = argmax
x
mh(xm), (8)

where h(xm) = hd(x
m)hp(x

m) is the objective function according to the MAP principle. The next
section explains how to find a configuration maximizing the unnormalized density h.

3 Optimization

The task corresponding to the non-convex optimization problem in (8) consists of locating a
global mode of h(.). For that purpose, we use the simulated annealing algorithm. The simulated
annealing (SA) algorithm produces a random sample from h(.) which is biased overwhelmingly in
favour of the most probable value xm. Specifically, the SA algorithm consists of repeatedly sam-
pling configurations under the process having unnormalised density h1/T (.) with T going to 0 as the
number of iterations grows. Each distribution proportional to h1/T (.) has its mode at xm, and as T
decreases the mode becomes more and more exaggerated. Consequently, if we generate a random
sample from each successive distribution, there is an increasing probability of producing the target
xm. We adopt the classical geometrical cooling scheme which boils down to considering a positive
sequence of temperatures (Tk)k2N with Tk = cT0 where T0 stands for the initial temperature and
where 0 < c < 1. Both T0 and c need to be calibrated. The simulated annealing algorithm is pre-
sented in algorithm 1. It involves a sampling step. Gibbs point processes are generally intractable
because of the unknown normalizing constant of the likelihood. Therefore the sampling step of the
SA algorithm motivates the use of a reversible jump Markov chain Monte-Carlo (RJMCMC) sampler
also termed as Metropolis-Hastings-Green sampler. The construction of this sampler was given by
Green (1995) as an extension of the Metropolis-Hastings algorithm to general state-space. We refer
the reader to the monographs by Robert and Casella (1999) for a detailed presentation of MCMC
methods.

Algorithm 1 Simulated annealing

1: Choose an initial temperature T = T0

2: while maximal number of iterations not reached do

3: Run the sampler with unnormalised density h(.)1/T

4: Change T  cT with c < 1

Consequently, the optimization problem (8) moves to building an algorithm that simulates a
Markov chain having as equilibrium distribution the measure π of our spatial marked point process
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defined as

π(A) =

Z

A

h(xm)πΛ(dx
m), A 2 FΞ

and the realizations of which are configurations of marked points of X ⇥M. We build the Markov
chain to be π-invariant, aperiodic and geometrically ergodic, as proved in the appendix.

The general Metropolis-Hastings framework simulates Markov chains induced by the transition
kernel

P (xm, A) =

Z

A

α(xm,x0m
0

)Q(xm, dx0m
0

), x 2 Ξ, A 2 FΞ, x /2 A

and

P (xm, {xm}) =

Z

x
0m0

6=x
m

(1− α(xm,x0m
0

))Q(xm, dx0m
0

)

where Q is the proposal kernel and α(., .) is the acceptance probability. Two types of transitions are
considered here. Adding a marked point to the current configuration is proposed with probability pb
and deleting a point from the current configuration is proposed with probability pd. When relevant,
the marked object ymy to be added to the current marked point configuration xm is chosen with
probability density qb(x, y)pM(my) with respect to λLeb

X ⌦ λLeb
M . This means that the location of the

new object and its mark are simulated independently. Note that the mark is simulated according
to the same distribution as that of the marks of the reference process. When relevant, the object in
location y to be deleted from current configuration location xm is chosen with probability qd(x, y).
We write for (x, B) in Ξ⇥FΞ

Q(xm, B) = pbQb(x
m, B) + pdQd(x

m, B).

The so-called “birth” kernel is

Qb(x
m, B) =

Z

X⇥M

I(xm [ {ymy} 2 B)qb(x, y)pM(my)dλ
Leb(y)dλLeb(my) (9)

Obviously, the new object ymy needs to be chosen apart from xm which happens here almost-surely.
The so-called “death” kernel is

Qd(x
m, B) =

X

ymy2xm

I(xm \ {ymy} 2 B)qd(x, y) (10)

Each proposal move is either accepted of rejected according to an acceptance step detailed later.
If the proposal is accepted, the chain goes to the new state given by the transition kernel. If the
proposal is rejected, the chain remains in its current state. Such a transition kernel may be written
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for A in FΞ as

P (xm, A) = pb

Z

X⇥M

qb(x, y)pM(my)α(x
m,xm [ {ymy})I(xm [ {ymy} 2 A)dλLeb

X (y)dλLeb
M (my)

+ pd
X

ymy2xm

qd(x, y)α(x
m,xm \ {ymy})I(xm \ {ymy} 2 A)

+ I(xm 2 A)
h
1− pb

Z

X⇥M

qb(x, y)pM(my)α(x
m,xm [ {ymy})dλLeb

X (y)dλLeb
M (my)

− pd
X

ymy2xm

qd(x, y)α(x
m,xm \ {ymy})

i

If the current configuration is the empty configuration, obviously the transition kernel cannot propose
to delete a marked point. In this case, the above transition kernel becomes

P (;, A) = pb

Z

X⇥M

qb(;, y)pM(my)α(;, {y
my})I({ymy} 2 A)dλLeb

X (y)dλLeb
M (my)

+ I(; 2 A)
h
1− pb

Z

X⇥M

qb(;, y)pM(my)α(;, {y
my})dλLeb

X (y)dλLeb
M

i

In the appendix, we determine the Green ratios associated with our choice of inhomogeneous marked
Poisson process as reference. These Green ratios are given by

rb(x
m, ymy) =

h(xm [ {ymy})pdqd(x [ {y}, y)λ(y)

h(xm)pbqb(x, y)

and

rd(z, y) =
h(z \ {y})pbqb(z \ {y}, y)

h(x)pdqd(z, y)λ(y)
.

Note both the scaling of qb by λ(.) and the absence of pM in these expressions. This comes from
the fact that the proposition kernel uses the mark distribution PM of the reference process as mark
proposition distribution.

An acceptance step then makes use of the Green ratios to determine in a stochastic manner
whether or not the proposal should be accepted or rejected in which case the chain remains in
its current state. The main steps of the Metropolis-Hastings-Green algorithm are summarized in
Algorithm 2.

The definition of pM has already been given in subsection 2.1. We now detail our choice of qd
and qb. The death is proposed uniformly among the current configuration, which is a classical choice.
This yields

qd(x, y) =
1

n(x)
.

The novelty of our algorithm lies in the birth proposal choice. In previous work (see eg Descombes
[5]), birth is proposed uniformly in X . But it would make more sense to favour birth where an object
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Algorithm 2 Metropolis Hastings Green

1: Let xm be the current configuration
2: Propose birth with probability pb and death with probability pd
3: if birth then

4: Propose y ⇠ qb(x, .)
5: Propose my ⇠ pM(.)
6: Compute Green ratio rb(x

m, ymy)
7: Accept ymy with probability α(xm,xm [ {ymy}) = min(1, rb(x

m, ymy)).
8: else

9: Propose y ⇠ qd(x, .)
10: Compute Green ratio rd(x

m, ymy)
11: Accept ymy with probability α(xm,xm \ {ymy}) = min(1, rd(x

m, ymy)).

is more likely to be. Since it is possible to get approximate information about the location of the
objects in the image by image processing techniques, it seems logical to use this information for that
purpose. In the cell case, we propose to use the distribution given by the normalized circular Hough
transform obtained after taking the local maxima over a prespecified range of radii. Doing this may
yield a distribution putting zero weight over quite large areas of the image domain, which may be
seen quite often in practice since cell images may be very poorly contrasted. In this case, we advocate
for rather using a finite mixture distribution having as two components the preceding normalized
circular Hough transform (with an important weight eg 0.8) and the uniform distribution in X (with
a minor weight eg 0.2) so that the normalized circular Hough transform dominates but the whole
space is explored anyway. An example of point sampling according to this proposal is displayed in
figure 3. In the fiber case, we use the normalized Radon transform. An example of point sampling
according to this proposal is displayed in figure 4.

Here appears another benefit of our choice of inhomogeneous marked Poisson process as reference.
Descombes et al. [5] mentioned the difficulty that proposing attractive configurations was not enough
to improve the convergence of the algorithm. This was due to the fact that attractive configuration
have small Green ratio and the proposition was therefore very likely to be rejected. We recall that in
Descombes et al. [5], the reference Poisson process is taken as homogeneous with constant intensity
equal to λ > 0. In this case, when death proposal is uniform in X and when birth proposal is
generated according to a distribution having density denoted as p(.) with respect to λLeb

X , the birth
Green ratio writes down as

rb(x
m, y) =

h(xm [ {ymy})

h(xm)

λ

(n(x) + 1)p(y)
.

The larger p(y) is, the more likely there is an object in the image at location y. But the larger p(y) is,
the smaller rb is. Though counter-intuitive at a first look, this entails that any reasonable proposition
is likely to be rejected. To emphasize the difference with our algorithm, we recall that our reference

12



(a) Original image (b) Its Hough transform

(c) A sampling example of 100000
points according to the proposed mix-
ture

Figure 3: A non-uniform sampling example in the cell case.

Poisson process is inhomogeneous and consider the case where its intensity function is proportional
to the birth distribution. We then get

rb(x, y) /
h(xm [ {ymy})

h(xm)

1

(n(x) + 1)

so that the intensity function compensates for the birth proposal density term and prevents the birth
Green ratio from becoming too small when the proposal is very likely according to p(.).

4 Results and discussion

In this section, we present the results obtained with the proposed methodology. In the cell case,
we compare these results with the results of the reference algorithm that uses uniform birth and
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(a) Original image (b) Its Radon transform

(c) A sampling example of 100000 points ac-
cording to the normalized Radon transform

Figure 4: A non-uniform sampling example in the fiber case.

death kernels together with a unit rate homogeneous Poisson process as reference process. In the
fiber case, we were unable to provide a similar comparison due to the lack of existing algorithm for
thick straight line objects. We analyse the results in terms of visual quality of object detection and
in terms of computation time and convergence to stability of our algorithm. We also provide the
required morphology characterisation. The results presented hereafter are obtained with a dual-core
laptop having 2.10 GHz CPU twice.

The parameters are calibrated by basic trial and error method since existing estimation methods
did not give satisfying results. The issue of estimating the model parameters is left for future research.
For simplicity, we take throughout pb = pd =

1
2
.

In the circle case, the parameters of the area interaction process are β = 1, γd = 30, γp = 50. The
initial configuration is the empty configuration. The parameters specific to the simulated annealing
part are T0 = 0.1 as initial temperature, c = 0.9999 as multiplicative factor in the geometric cooling
schedule and N = 50000 as prespecified iteration number. The circular Hough transform needed for
our sampling step was computed within the radius range [rmin, rmax] with rmin = 10 and rmax = 25

14



and then normalised to get a proper distribution. The location sampling distribution was then taken
as the finite mixture having as two components the normalised circular Hough transform and the
uniform distribution with respective weight 0.8 and 0.2. We ran the reference algorithm with the
uniform distribution on [rmin, rmax] as radius distribution with rmin = 10 and rmax = 25. The data
term parameters were taken as ρ = 15 and d0 = 40.

When implementing our method in the fiber case, the parameters of the area interaction process
are taken as β = 1, γd = 50 and γp = 1000. The initial configuration is the empty configuration. The
parameters specific to the simulated annealing part are T0 = 10 as initial temperature, c = 0.9999 as
multiplicative factor in the cooling schedule and N = 100000 as prespecified iteration number. The
fiber width was simulated uniformly on [wmin, wmax] with wmin = 15 and wmax = 30. The data term
parameters were taken as s = 1, s0 = 5000, Vmax = 1 and τ = 10.

The detected objects are represented on the original image on figure 5 in the cell case and on
figure 8 in the fiber case. A visual examination leads to the conclusion that our method provides a
valuable object detection.

The evolution of the number of detected cells is represented as a function of the number of
iterations in the cell case on figure 6 and in the fiber case on figure 9. Noticeably, in the cell case, our
algorithm converges quickly to equilibrium in a stable way which eases the convergence diagnosis.

For the cell image, our algorithm runs in 43 minutes for 50000 iterations while the reference
algorithm runs in 41 minutes with the same iteration number making the computation time similar.
For the fiber image, our algorithm runs in 18 minutes for 100000 iterations.

The required morphology characterisation is provided in figure 7 in the cell case and in figure
in the fiber case 10. Noticeably, in the cell case, our results illustrate the fact that the estimated
radius distribution shares a similar shape with the mark proposal distribution. This highlights the
importance of calibrating the proposal in a data-driven way when possible.

As a conclusion, our results illustrate the reliability and the efficiency of our data-driven technique
to guide the Markov chain search and get quickly the required morphology characterisation.

5 Appendix: some mathematical details

We present here some technical results to prove the convergence of the proposed algorithm along
the lines of [19].

More generally, we show the convergence of the proposed algorithm when the following conditions
are simultaneously fulfilled:

• the target distribution π is a locally stable process having density h(.) with respect to an
inhomogeneous Poisson process with intensity function λ(.),

• the birth and death probabilities satisfy 0 < pb, pd < 1 with 0 < pb + pd < 1,

15



(a) Detected cells using our method (b) Detected cells using the reference algorithm

Figure 5: Detected cells in the same SEM image

(a) Number of detected cells using our method (b) Number of detected cells using the reference al-
gorithm

Figure 6: Number of detected cells as a function of iteration number

•

un := sup
ymy2X⇥M,xm2Ξn

qd(x, y)λ(y)

qb(x \ {y}, y)
n!1
−! 0 , (11)
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(a) Distribution used to simulate cell radius using
our method

(b) Estimated distribution of cell radius using our
method

(c) Uniform distribution used to simulate cell radius
using the reference algorithm

(d) Estimated distribution of cell radius using the
reference algorithm

Figure 7: Histograms of cell radius distribution

and
qb(x \ {y}, y)

qd(x, y)

1

λ(y)
> 0, 8xm 2 Ξ, 8ymy 2 X ⇥M . (12)

First, the algorithm should reproduce a transition kernel P such that the target distribution π
is an invariant distribution of the chain. It turns out that the target distribution π is an invariant
distribution of the chain if the proposal kernel P and the acceptance probabilities α(., .) are chosen
so that the Markov chain is reversible with respect to π. The reversibility property is fulfilled when
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Figure 8: Detected fibers using our method

Figure 9: Number of detected fibers as a function of iteration number using our method

for any A,B 2 FΞ

πP (A,B) =

Z

A

Z

B

IA(x
m)IB(x

0m
0

)π(dxm)P (xm, dx0m
0

)

is symmetric when exchanging the sets A and B. We require that the proposal kernel and the
acceptance probabilities satisfy the stronger property of detailed balance condition which writes
down here as

pbh(x
m)qb(x, y)α(x

m,xm [ {ymy}) = pdh(x
m [ {ymy})qd(x [ {y}, y)α(x

m [ {ymy},xm)λ(y) (13)
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(a) Estimated distribution of fiber width using our
method

(b) Estimated distribution of fiber orientation using our
method

Figure 10: Histogram of fiber width and polar histogram of fiber orientation using our method

where λ(.) is the intensity function of the reference inhomogeneous Poisson process.
We first show that the detailed balance condition (13) implies the reversibility of the transition

kernel.
Since the proposal kernel Q only enables moves from Ξn to Ξn+1 and from Ξn+1 to Ξn and since

the acceptance step only allows in addition the possibility of no move, we only need to prove that
πP (An, Bn+1) = πP (Bn+1, An) for An ✓ Ξn and Bn+1 ✓ Ξn+1 for any n. On the one hand, the
definition of πP gives

πP (An, Bn+1) =

Z

(X⇥M)n
I(xm 2 An)P (xm, Bn+1)π(dx

m)

=

Z

x
m2An

Z

x
0m0

2Bn+1

α(xm,x0m
0

)pbQb(x, dx
0m

0

)π(dxm)

where π(dxm) = h(xm)πΛ(dx
m) and where Qb is given by (9). We get

πP (An, Bn+1) =

Z

(X⇥M)n+1

I(xm 2 An, x
m [ {ymy} 2 Bn+1)

⇥ α(xm,xm [ {ymy})pbqb(x, y)pM(my)h(x
m)λLeb

X (dy)λLeb
M (dmy)πΛ(dx

m)

Now, we substitute πΛ by its expression in (2). This gives

πP (An, Bn+1) =
exp(−Λ(X ))

n!

Z

(X⇥M)n+1

I(xm 2 An, x
m [ {ymy} 2 Bn+1)α(x

m,xm [ {ymy})

⇥ pbqb(x, y)pM(my)h(x
m)λLeb

X (dy)λLeb
M (dmy)

nY

i=1

λ(xi)pM(mi)λ
Leb
X (dxi)λ

Leb
M (dmi)
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On the other hand, we have

πP (Bn+1, An) =

Z

(X⇥M)n+1

I(zm 2 Bn+1)P (zm 2 An)π(dz
m)

=

Z

z
m2Bn+1

Z

z
0m0

2An

α(zm, z0
m0

)pdQd(z
m, dz0

m0

)π(dzm)

where π(dzm) = h(zm)πΛ(dz
m) and where Qd is given by (10). We get

πP (Bn+1, An) =

Z

(X⇥M)n+1

X

ymy2X⇥M

I(ymy 2 zm)I(zm 2 Bn+1, z
m \ {ymy} 2 An)

⇥ α(zm, zm \ {ymy})pdqd(z, y)h(z
m)πΛ(dz

m)

We reverse the order of the sum and the integral, all the terms being positive:

πP (Bn+1, An) =
X

ymy2X⇥M

Z

(X⇥M)n+1

I(ymy 2 zm)I(zm 2 Bn+1, z
m \ {ymy} 2 An)

⇥ α(zm, zm \ {ymy})pdqd(z, y)h(z
m)πΛ(dz

m)

Now, we substitute πΛ by its expression on (2). This gives

πP (Bn+1, An) =
exp(−Λ(X ))

(n+ 1)!

X

ymy2X⇥M

Z

(X⇥M)n+1

I(ymy 2 zm)I(zm 2 Bn+1, z
m \ {ymy} 2 An)

⇥ α(zm, zm \ {ymy})pdqd(z, y)h(z
m)

n+1Y

i=1

λ(zi)dλ
Leb
X (zi)pM(dmi)dλ

Leb
M (mi)

Letting xm = zm \ {ymy} in the integrals, we get

πP (Bn+1, An) =
exp(−Λ(X ))

(n+ 1)!

X

ymy2X⇥M

Z

(X⇥M)n+1

I(xm [ {ymy} 2 Bn+1,x
m 2 An)α(x

m [ {ymy},xm)

⇥ pdqd(x [ {y}, y)h(x
m [ {ymy})

nY

i=1

λ(xi)dλ
Leb
X (xi)pM(dmi)dλ

Leb
M (mi)λ(y)dλ

Leb
X (y)pM(dmy)dλ

Leb
M (my)

Only the terms for which the indicator I(xm [ {ymy} 2 Bn+1,x
m 2 An) is non zero are non-zeros.

There are (n+ 1) such terms in which case they are all equal to the same integral (since it does not
depend on the integration order). This entails

πP (Bn+1, An) =
exp(−Λ(X ))

n!

Z

(X⇥M)n+1

I(xm [ {ymy} 2 Bn+1,x
m 2 An)α(x

m [ {ymy},xm)

⇥ pdqd(x [ {y}, y)h(x
m [ {ymy})

nY

i=1

λ(xi)dλ
Leb
X (xi)pM(dmi)dλ

Leb
M (mi)λ(y)dλ

Leb
X (y)pM(dmy)dλ

Leb
M (my)
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The detailed balance condition in (13) gives the reversility which concludes this proof.

We determine the Green ratios for both the birth and death proposals according to the method
of Green [7]. To this aim, we define a symmetric measure ψ : FΞ ⇥ FΞ ! R

+ such that the Radon-
Nikodym derivative of πQ with respect to ψ exists. This derivative is denoted by D. The proof
runs along similar lines than the above one but the calculus are presented for the sake of clarity and
completeness. Let us recall that the measure πQ is defined for (A,B) in FΞ ⇥FΞ by

πQ(A,B) =

Z

x
m2A

Q(xm, B)π(dxm).

Since the proposal kernel Q only enables moves from Ξn to Ξn+1 and from Ξn+1 to Ξn, we only have
to study the derivability of πQ on sets (An, Bn+1) or (An+1, Bn) with An, Bn ✓ Ξn and An+1, Bn+1 ✓
Ξn+1 for any arbitrary n. On the first hand,

πQ(An, Bn+1) =

Z

(X⇥M)n
I(xm 2 An)Q(xm, Bn+1)π(dx

m)

=

Z

(X⇥M)n
I(xm 2 An)pbQb(x

m, Bn+1)π(dx
m)

with π(dxm) = h(xm)πΛ(dx
m) and where Qb is given by (9). We get

πQ(An, Bn+1) =

Z

(X⇥M)n+1

I(xm 2 An, x
m [ {ymy} 2 Bn+1)

pbqb(x, y)h(x
m)λLeb

X (dy)pM(my)λ
Leb
M (dmy)πΛ(dx

m)

We define a measure ψ+
n on Ξn ⇥ Ξn+1 by

ψ+
n (An, Bn+1) =

Z

(X⇥M)n+1

I(xm 2 An, x
m [ {ymy} 2 Bn+1)

λ(y)λLeb
X (dy)pM(my)λ

Leb
M (dmy)πΛ(dx

m)

With such a choice, the Radon-Nikodym derivative of πQ with respect to ψ+
n on Ξn ⇥ Ξn+1 is

Db(x
m,xm [ {ymy}) =

pbqb(x, y)h(x
m)

λ(y)

On the other hand,

πQ(An+1, Bn) =

Z

(X⇥M)n+1

I(zm 2 An+1)Q(zm, Bn)π(dz
m)

=

Z

(X⇥M)n+1

I(zm 2 An+1)pdQd(z
m, Bn)π(dz

m)
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with π(dzm) = h(zm)πΛ(dz
m) and where Qd is given by (10). We get

πQ(An+1, Bn) =

Z

(X⇥M)n+1

X

ymy2zm

I(zm 2 An+1, z
m \ {ymy} 2 Bn)pdqd(z, y)h(z

m)πΛ(dz
m)

We reverse the order of the sum and the integral, all the terms being positive:

πQ(An+1, Bn) =
X

ymy2X⇥M

Z

(X⇥M)n+1

I(zm 2 An+1, y
my 2 zm, zm\{ymy} 2 Bn)pdqd(z, y)h(z

m)πΛ(dz
m)

Letting xm = zm \ {ymy} in the integrals, we get

πQ(An+1, Bn) =
X

ymy2X⇥M

Z

(X⇥M)n+1

I(xm [ {ymy} 2 An+1, x
m 2 Bn)

pdqd(x [ {y}, y)h(x
m [ {ymy})λ(y)λLeb

X (dy)pM(my)λ
Leb
M (dmy)πΛ(dx

m)

since in view of (2), we have that πΛ(dz
m) = πΛ(dx

m)λ(y)λLeb
X (dy)pM(my)λ

Leb
M (dmy). Only the terms

for which the indicator I(xm [ {ymy} 2 An+1, x
m 2 Bn) is non zero are non-zeros. There are (n+1)

such terms in which case they are all equal to the same integral (since it does not depend on the
integration order). This entails

πQ(An+1, Bn) = (n+ 1)

Z

(X⇥M)n+1

I(xm [ {ymy} 2 An+1, x
m 2 Bn)

pdqd(x [ {y}, y)h(x
m [ {ymy})λ(y)λLeb

X (dy)pM(my)λ
Leb
M (dmy)πΛ(dx

m)

We define a measure ψ−
n on Ξn+1 ⇥ Ξn by

ψ−
n (An+1, Bn) = (n+ 1)

Z

(X⇥M)n+1

I(xm [ {ymy} 2 An+1, x
m 2 Bn)

λ(y)λLeb
X (dy)pM(my)λ

Leb
M (dmy)πΛ(dx

m)

The Radon-Nikodym derivative of πQ with respect to ψ−
n on Ξn+1 ⇥ Ξn is then defined by

Dd(x
m [ {ymy},xm) = pdqd(z, y)h(x

m [ {ymy})

We then define a measure ψ on Ξ⇥ Ξ as the measure concentrated on the set

1[

n=0

disjoint

((Ξn ⇥ Ξn+1) [disjoint (Ξn+1 ⇥ Ξn))
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which coincides with ψ+
n on Ξn ⇥ Ξn+1 and with ψ−

n on Ξn+1 ⇥ Ξn. It is straightforward to see that
this actually defines a measure on Ξ ⇥ Ξ. To prove the symmetry of ψ, we only have to prove that
ψ(An+1, Bn) = ψ(Bn, An+1) for An 2 Ξn and Bn+1 2 Ξn+1. This is immediate since

ψ(Bn, An+1) = ψ+
n (Bn, An+1)

=
exp(−Λ(X ))

n!

Z

(X⇥M)n+1

I(xm 2 Bn, , x
m [ {ymy} 2 An+1)λ(y)λ

Leb
X (dy)

⇥ pM(my)λ
Leb
M (dmy)

nY

i=1

λ(xi)λ
Leb
X (dxi)pM(mi)λ

Leb
M (dmi)

and

ψ(An+1, Bn) = ψ−
n (An+1, Bn)

=
(n+ 1) exp(−Λ(X ))

(n+ 1)!

Z

(X⇥M)n+1

I(xm [ {ymy} 2 An+1, x
m 2 Bn)

⇥ λ(y)λLeb
X (dy)pM(my)λ

Leb
M (dmy)

nY

i=1

λ(xi)λ
Leb
X (dxi)pM(mi)λ

Leb
M (dmi)

The derivative D exists and coincides with Db on Ξn ⇥ Ξn+1 and with Dd on Ξn+1 ⇥ Ξn. We then
deduce the following Green ratios:

rb(x
m, y) =

Dd(x
m [ {ymy},xm)

Db(xm,xm [ {ymy})
=

h(xm [ {ymy})

h(xm)

pd
pb

qd(x [ {y}, y)

qb(x, y)
λ(y)

and

rd(z
m, ymy) =

Dd(z
m \ {ymy}, zm)

Db(zm, zm \ {ymy})
=

h(zm \ {ymy})

h(zm)

pb
pd

qb(z \ {y}, y)

qd(z, y)

1

λ(y)

The acceptance probabilities are then defined in the birth case as

α(xm,xm [ {ymy}) = min(1, rb(x
m, ymy))

and in the death case as
α(zm, zm \ {ymy}) = min(1, rd(z

m, ymy)) . (14)

It is easy to check that

rb(x
m,xm [ {ymy}) =

1

rd(xm [ {ymy},xm)

so that the detailed balance condition in (13) is satisfied.

A potential problem is that the condition of reversibility alone implies the initial distribution
needs to be chosen according to the distribution of interest. This problem is solved if the chain is
irreducible, aperiodic and Harris recurrent.
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Irreducibility is a crucial property in the set-up of MCMC algorithms. Roughly speaking, a φ-
irreducible Markov chain is able to reach any set A which is large enough in the sense that φ(A) >
0. For any positive integer n, let P n be the n-step transition probability kernel which is defined
inductively for xm 2 Ξ and B 2 FΞ by

P n(xm, B) =

Z

Ξ

P (xm, dzm)P n−1(zm, B)

where P 0(xm, B) = δB(x
m) with δB being the Dirac measure concentrated at B.

We show that our chain satisfies the irreducibility property provided the conditions (12) and (11)
are fulfilled. To this aim, we exhibit a positive measure φ such that, for any set A in FΞ such that
φ(A) > 0, there exists a positive integer n0 such that P n0(xm, A) > 0 for any xm in Ξ. We choose as
positive measure the Dirac measure concentrated at ;, that is φ = δ{;}, so that the only set A in FΞ

having positive measure is {;}. The Markov property of the chain entails that, for any xm 2 Ξ, for
any positive integer n0 such that n0 ≥ n(x), we have

P n0(xm, {;}) ≥ P n(x)(xm, {;})P n0−n(x)(;, {;})

where

P (;, {;}) = 1− pb

Z

X⇥M

qp(;, y)pM(my)α(;, {y
my})dλLeb

X (y)dλLeb
M (my) ≥ 1− pb = pd

and where

P n(x)(x, {;}) ≥ p
n(x)
d

✓
min

z
m2Ξ,ymy2zm:n(z)n0

{α(zm, zm \ {ymy})}

◆n(x)

.

For zm in Ξ with n(z)  n0 and ymy 2 zm, the death acceptance probability is defined by (14). Since
the target distribution is a locally stable process, there exists a K > 0 such that for zm in Ξ and
ymy 2 zm,

h(zm \ {ymy})

h(zm)
≥

1

K
.

On the other hand, letting

∆(n0) = min
z
m2Ξ,ymy2zm:n(z)n0

⇢
qb(z \ {y}, y)

qd(z, y)

1

λ(y)

}
,

we deduce that for any xm in Ξ such that n(x)  n0, for any ymy in xm

α(xm,xm \ {ymy}) ≥ min

✓
1,

∆(n0)

K

pb
pd

◆

In view of (11), one may find a n0 large enough so that

∆(n0) <
1

K

pb
pd

.
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in which case for any xm in Ξ such that n(x)  n0, for any ymy in xm

α(xm,xm \ {ymy}) ≥
∆(n0)

K

pb
pd

.

We get that for any xm 2 Ξ, one may find a n0 large enough so that

P n0(xm, {;}) ≥ p
n(x)
d

✓
∆(n0)

K

pb
pd

◆n0

p
n0−n(x)
d =

✓
pb∆(n0)

K

◆n0

. (15)

In view of (12), this gives the φ-irreducibility of P .

The Harris recurrence is the property that guarantees the non-existence of sets of configurations
Ξ0 ⇢ Ξ such that π(Ξ0) = 1 and limn!1 supA2FΞ

|P n(xm, A) − π(A)| 6= 0 for each xm in Ξ0. Hence
the recurrence property guarantees the asymptotic convergence of a MCMC sampling algorithm
regardless of the initial conditions. According to the paper of Meyn and Tweedie [15], a sufficient
condition for Harris recurrence is the drift condition. The drift condition says that, if the transition
kernel P is φ-irreducible, if there is a small set C in FΞ and a function unbounded off small sets
V : Xi ! R

+ such that Z

Ξ

P (xm, dzm)V (zm)  V (xm), 8xm /2 C

then P is Harris recurrent. We recall that a set C in FΞ is small if there are a positive integer n0

and a non-zero measure ν such that

P n0(xm, B) ≥ ν(B), 8xm 2 C, 8B 2 FΞ

First, set a number A > 1 and then set a number 0 < ε < min
⇣
1, pd

pbA

⌘
. In view of (11), one may

find a Nε large enough so that for ny n ≥ Nε

pd
pb
Kun  ε (16)

Equation (15) shows that the set

C(ε) = {xm 2 Ξ : n(x)  Nε}

is small with the choice ν(.) = (pd∆(Nε)/K)Nεδ{;}(.). We also recall that a function V : Ξ! R
+ is

unbounded off small sets if the level sets

CV (α) = {x
m 2 Ξ : V (xm)  α}

are small for any α > 0. The choice V (xm) = An(x) entails as previously that the sets

CV (α) = {x
m 2 Ξ : n(x)  log

⇣α
A

⌘
}
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are small for any α > 0. It remains to get the negativity of the drift. Applying the transition kernel
P to the function V leads to
Z

Ξ

V (zm)P (xm, dzm) = pbA
n(x)(A− 1)

Z

X⇥M

qb(x, y)α(x
m,xm [ {ymy})pM(my)dλ

Leb
X (y)dλLeb

M (my)

+ pdA
n(x)

✓
1

A
− 1

◆ X

ymy2xm

qd(x, y)α(x
m,xm \ {ymy}) + An(x)

In view of (16), we deduce for xm /2 C(ε) that

α(xm,xm [ {ymy})  ε

and that
α(xm,xm \ {ymy}) = 1 .

This gives for xm /2 C(ε)

Z

Ξ

V (zm)P (xm, dzm) 

✓
pb(A− 1)ε+ pd

✓
1

A
− 1

◆
+ 1

◆
V (xm) (17)

 V (xm) .

So far, we know that the Harris recurrent chain should reach the equilibrium asymptotically but
we do not know when this will happen. One way of solving this problem is to build an ergodic chain
(that is Harris recurrent and aperiodic). In this case, there is no need to wait infinitely until the
equilibrium. The property of aperiodicity is immediate since the self-transition probabilities

P (xm, {xm}) = 1− pb

Z

X⇥M

qp(x, y)pM(my)α(x
m,xm [ {ymy})dλLeb

X (y)dλLeb
M (my)

− pd
X

ymy2xm

qd(x, y)α(x
m,xm \ {ymy})

are positive for xm in A such that π(A) > 0.

The last refinement consists of proving that the geometric drift property is fulfilled so that the
convergence of the chain to its equilibrium distribution happens at a geometric speed. The geometric
drift condition says that a φ-irreducible and aperiodic Markov chain with transition kernel P is
geometrically ergodic if there exists a function V : Ξ! (1,1), two numbers b in R and a < 1 and a
small set C in FΞ such that

Z

Ξ

V (zm)P (xm, dzm)  aV (xm) + bIC(x
m), 8xm 2 Ξ .

Taking the set C(ε) and the function V as previously defined for some 1 < A < 1 + 1/pb and taking
b = ANε+1 gives the desired property in view of (17).
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Indeed, if xm /2 C(ε), then (17) reads as

Z

Ξ

V (zm)P (xm, dzm) 

✓
pb(A− 1)ε+ pd

✓
1

A
− 1

◆
+ 1

◆

| {z }
:=a0<1

V (xm) + b⇥ 0 .

If xm 2 C(ε), then
Z

Ξ

V (zm)P (xm, dzm) = pbA
n(x)(A− 1)

Z

X⇥M

qb(x, y)α(x
m,xm [ {ymy})pM(my)dλ

Leb
X (y)dλLeb

M (my)

| {z }
1

+ pdA
n(x)

✓
1

A
− 1

◆ X

ymy2xm

qd(x, y)α(x
m,xm \ {ymy})

| {z }
<0

+An(x)

 pb(A− 1)| {z }
:=a00<1

An(x) + ANε+1

Taking a = max(a0, a00) gives the result.
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[6] Eap S., Ferrand A., Palomares C.M., Hébraud A., Stoltz J.F., Mainard D., Schlatter G.,
Benkirane-Jessel N. (2012) Electrospun nanofibrous 3D scaffold for bone tissue engineering,
Bio-Medical Materials and Engineering, 22: 137-141.

[7] Green P.J. (1995) Reversible jump Markov Chain Monte Carlo computation and Bayesian model
determination, Biometrika, 82: 711-732.

[8] Imberty M. and Descombes X. (2000) Simulation de processus objets : Etude de faisabilité pour
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