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Study and computation of a Hurwitz space and totally

real PSL2(F8)-extensions of Q

Emmanuel Hallouin
∗

November 16, 2013

Summary. —Developing on works by Fried, Völklein, Matzat, Malle, Dèbes, Wewers, we give a method for computing a
Hurwitz space and illustrate it on some example of number theoristic interest: we study and compute a family of degree 9
covers of P1

C
with monodromy group PSL2(F8) and having four branch points. We deduce explicit regular PSL2(F8)-

extensions of the rational function field Q(ϕ) with totally real fibers. This gives rise to totally real polynomials over Q

with Galois group PSL2(F8).
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Introduction

This work deals with explicit inverse Galois theory. More precisely, let G = PSL2(F8) acting on the nine points
of P1

F8
and consider the two conjugacy classes 2a and 3a whose elements have cycle shapes 24×1 and 33 respectively.

As suggested to us by Juergen Klueners, we study the family of degree 9 covers of P1
C, with monodromyG, ramified

over four branch points and having the following branch cycle description:

C = (2a, 2a, 2a, 3a).

By Riemann-Hurwitz formula, the total space of such a cover has genus 1.
Following works of numerous mathematicians like M.D.Fried, H.Völklein, B.H.Matzat, H.Malle, P.Dèbes,

S.Wewers, we adopt the modular approach. Also we introduce the Hurwitz space that parameterizes our family.

∗Groupe de Recherche en Informatique et Mathématique du Mirail (G.R.I.M.M.), University of Toulouse II, France.

1



Our computational point of view gives us the opportunity to illustrate some notions or phenomena turning around
the general theory of Hurwitz spaces: let us mention the distinction between the inner and the absolute Hurwitz
space, the problem of selecting totally real fibers, the braid action, the choice of a suitable curve on a Hurwitz
space, the study of the boundary of a Hurwitz space, intersection theory on the universal curve, the patching and
the deformation of a degenerate cover. Moreover, we show how explicit all this notions can be made. We organize
the paper as follows.

Section 1 is devoted to the study of the Hurwitz spaces parameterizing this family. Because geometric and
arithmetic Galois groups of covers in our family may differ, we both consider the absolute Hurwitz space and
the inner one. As in [MM99], to find rational points on these varieties, we draw suitable curves on them. The
“absolute” curve H and the “inner” one HG, we have chosen, parameterize covers with a Q-rational 3a type
branch point and whose other three branch points are conjugate to each other. By means of braid action, we
show that these curves are Q-isomorphic to P1

Q. We end this section by introducing a pointed Hurwitz space used
in the computation.

In section 2, we point out a specific degenerate cover in our family. Because its irreducible components are
covers of P1

C with only three ramified branched points, we succeed in the computation of an algebraic model of
this cover over Q. Following methods of [Cou99], we then explicitly deform this degenerate element in order to
compute an algebraic model of our family over Q((π)) the completion of our pointed Hurwitz space at one point
in its boundary. Comparing with our previous work in the area (see [HRD03]), this deformation step requires
new algorithms since the genus of the total space is no longer zero but one.

In section 3, we both globalize and descend the previous local algebraic model, to deduce a global algebraic
model defined over Q(H). The final result consists in a model of the universal family over Q(H) given with a de-
gree 9 morphism to P1

Q(H) available from http://www.univ-tlse2.fr/grimm/algo/hallouin/PSL 2 F 8.result.

Even if the ramification data of the (degree 3) cover HG → H has been computed in section 1, we cannot com-
pute the algebraic Q-model of this cover at that time. Indeed, this computation requires arithmetic information
from the algebraic model of the family. This is why we wait till section 4 to compute this cover.

Last, taking advantage of all the previous computations, in section 5, we give an example of an element of our
family whose arithmetic and geometric Galois groups are equal to PSL2(F8) and which has an interval of totally
real specializations. We end this work by giving two examples of totally real polynomials over Q, one with Galois
group equal to PSL2(F8), the other one with Galois group PΓL2(F8). As far as we know, such polynomials had
not been yet computed.

I would like to thank Jean-Marc Couveignes for having long discussions with me about this work during the
(long and full of traps) computation and Pierre Dèbes for having read an early version of this paper.

1 Hurwitz spaces

1.1 Inner and absolute Hurwitz spaces

Moduli spaces parameterizing family of covers of P1
C are called Hurwitz spaces. They have been studied by Fried

and Völklein in [FV91, Vl96]. We list here results we can deduce from this general theory.
We put a partial order on the four branched points by imposing that the last one has ramification type 3a. This

family is then parametrized by a quasi-projective regular variety over Q̄, called Hurwitz space, denoted H1
3(G,C)

and which satisfies the following properties:
• Because of the transitivity of the braid action, this variety is absolutely irreducible.
• Since classes 2a and 3a are rational, H1

3(G,C) is defined over Q.
• Let U1

3 denote the variety of partially ordered 4-tuple ({z1, z2, z3}, z4) with zi ∈ P1
C and zi 6= zj . The map:

br : H1
3(G,C) −→ U1

3

h 7−→ ({z1, z2, z3}, z4)

where z1, z2, z3, z4 are the four branched points (z4 being the unique one with type 3a) of the cover corresponding
to h, is a finite étale morphism defined over Q.

• Since PSL2(F8) is self-centralizing in S9 the covers in our family do not have any non trivial automorphism.
The moduli space is then a fine one. To each point h ∈ H, there corresponds a degree 9 cover E → P1

ϕ defined
over Q(h), with geometric Galois group equal to PSL2(F8) and expected inertia.

• Since the normalizer of PSL2(F8) in S9 is the semi-direct product of this group by the Frobenius:

PΓL2(F8) = PSL2(F8)⋊ 〈Fr 〉 , Fr((x : y)) = (x2 : y2),

the arithmetic Galois group of the cover ϕ : E → P1
Q(h) may be bigger than the geometric one. In other terms,

denoting by Egal the Galois closure of the cover E → P1
Q(h), the constant field of Q(Egal) may be a cyclic degree
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three extension k of Q(h) as shown in the following diagram:

Q(Egal)

or PSL2(F8)
PΓL2(F8)

k(ϕ) Q(h)(E)

Q(h)(ϕ)

PSL2(F8)

1 or 3
9

The difference between the geometric and arithmetic Galois groups is also “parametrized”. LetH1
3(G,C)in denotes

the quasi-projective regular variety over Q parameterizing the G-cover with inertia C. This is another Hurwitz
space, often called inner, while the preceding one is called absolute (see [Fri95, FV91]). The inner Hurwitz space
is also an absolutely irreducible variety and it is a covering of degree #|PΓL2(F8)/PSL2(F8)| = 3 of the absolute
one. In our case, the cover is irreducible and cyclic of degree three:

b̂r : H1
3(G,C)in → H1

3(G,C).

With the above notation, if b̂r(ĥ) = h, then k = Q(ĥ). So to any rational point ĥ in H1
3(G,C)in, there corresponds

a cover with geometric and arithmetic Galois groups equal to PSL2(F8). In the sequel, we will look for such a
point such that the corresponding degree 9 cover of P1

Q has totally real fibers.

1.2 The good choice of a Hurwitz curve

1.2.1 The Hurwitz curve

In order to find rational points in these Hurwitz spaces, we follow [MM99] or more recently [Det04] and “draw
rational curves on them”: we choose to make the three ramification points with type 2a to be conjugate to each
other. More precisely let i be the immersion defined by:

i : P1
Q \ {− 27

4 , 0,∞} −→ U1
3

t 7−→
(
{roots of X3 + t(X + 1)},∞

)
.

The curves we have drawn on our Hurwitz spaces come from the pull-back of this immersion:

HG H1
3(G,C)in

H H1
3(G,C)

P1
Q \ {− 27

4 , 0,∞} U1
3

i

The left size in this diagram is a tower of covers of curves whose degree and ramification data can be computed
using braid action. Before this, we need to recall some basic things about the π1 of the bottom spaces.

Let us choose t0 ∈
]
27
4 , 0

[
and the following homotopic basis (or standard bouquet) of π1

(
P1 \ {− 27

4 , 0,∞}, t0
)

P1(R)−27

4

0γ0γ1 t0

Put i(t0) =
(
{λ01, λ02, λ03}, λ04

)
; regarding π1(U1

3 , i(t0)), it is well known that it possesses a standard presentation
in terms of the standard braids Qi often drawn as follows:
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λ0i λ0i+1

λ0i λ0i+1

These homotopic bases being fixed, we have:

Lemma 1 The map i∗ induced by the immersion i on the π1:

i∗ : π1
(
P1 \ {− 27

4 , 0,∞}, t0
)
→ π1

(
U1
3 , i(t0)

)
.

satisfies:

i∗(γ1) = Q2 and i∗(γ0) = Q2Q1 (first Q2 then Q1)

Sketch of proof — In the two following pictures, we draw the images by i∗ of the paths γ1 and γ0, that is the
paths i ◦ γi on U1

3 :

λ04

λ03

λ02

λ01

λ04

λ01

λ02

λ03

In the π1(U1
3 , i(t0)), these two paths are respectively homotopic to the braids:

λ04

λ04

λ01

λ01

λ03 λ02

λ03 λ02

λ04

λ04

λ03

λ03

λ02

λ02

λ01

λ01

We recognize the braids Q2 and Q2Q1 respectively. �

Having carefully chosen an homotopic basis of π1
(
P1
C \ i(t0)

)
, one can describe the fibers of H → P1

C,t

and Hin → P1
C,t over t0 by means of the Nielsen classes N (G,C)ab and N (G,C)in respectively. The rami-

fication of the two preceding covers are then computed using the standard braid action formulas (see [FV91]
or [Vl96]).

We summarize the results we can deduce from the computation of the braid action in the following proposition:
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Proposition 2 1. The curve H is irreducible, defined over Q and the cover H → P1
Q,t is a degree 18 cover

ramified over t = − 27
4 , 0 and ∞ with ramification type 9 · 7 · 2, 35 · 13 and 29 respectively.

2. The cover HG → H is a cyclic degree 3 cover totally ramified at two of the unramified points of H above t = 0.

3. The curves H and HG are genus zero curves and are Q-isomorphic to P1
Q.

1.2.2 An algebraic model of the cover H → P1
Q

In this section, we explain how we have computed an algebraic Q-model of the degree 18 cover H → P1
Q.

Proposition 3 The degree 18 cover H → P1
Q is explicitly given by:

t = H(T ) = −27

4

(T + 3)
(
T 2 + 6

49T + 9
49

) (
T 5 − 9

49T
4 − 3366

2401T
3 + 2430

2401T
2 − 2187

2401T + 2187
2401

)3

D(T )2
(1)

H(T ) +
27

4
= −228312

714
T 9(T − 1)2

D(T )2
(2)

where polynomial D equals:

D(T ) = T 9 + 9
7T

8 − 1188
343 T

7 + 7668
16807T

6 + 188082
823543T

5 + 1246590
823543 T

4 − 498636
117649T

3 + 2125764
823543 T

2 − 531441
823543T + 531441

823543 .

Proof — Due to proposition 2, the cover H → P1
Q is a degree 18 cover ramified over three points with ramification

type (29, 35 · 13, 9 · 7 · 2). Moreover, the two curves involved are Q-isomorphic to P1
Q on which we can choose

coordinates. Let t′ be the coordinate on P1
Q such that t′ = 0, 1,∞ are the ramified points in the given order.

Let T ′ be the coordinate on H such that T ′ = ∞, 0, 1 are the three points over t′ = ∞ in the given order. There
exist three unitary polynomials P0, P1, Q1 ∈ Q[T ′], prime to each other, and c ∈ Q such that:

t′ =
P0(T

′)2

cT ′7(T ′ − 1)2
, t′ − 1 =

P1(T
′)3Q1(T

′)

cT ′7(T ′ − 1)2
and deg(P0) = 9, deg(P1) = 5, deg(Q1) = 3.

By derivating equality
P 2

0

cT ′7(T ′−1)2 − 1 =
P 3

1Q1

cT ′7(T ′−1)2 , we get:

P0 [2T
′(T ′ − 1)P ′

0 − P0(9T
′ − 7)] = P 2

1 [(3P ′
1Q1 + P1Q

′
1)T

′(T ′ − 1)− P1Q1(9T
′ − 7)]

and this leads to the system:

9P 2
1 = 2T ′(T ′ − 1)P ′

0 − P0(9T
′ − 7) (3)

9P0 = (3P ′
1Q1 + P1Q

′
1)T

′(T ′ − 1)− P1Q1(9T
′ − 7) (4)

Equation (3) gives ten relations between the coefficients of P0 and P1, all linear in the nine coefficients of P0. We
eliminate them and compute the degree 4 coefficient of P1 with the unused equation. Then equation (4) gives
nine relations between the coefficients of P1 and Q1 all linear in the four coefficients of Q1. We eliminate them.
The six unused equations relate the leaving four unknown coefficients of P1. We solve this system using Groebner
algorithms in magma. Constant c then equals to the leading coefficient of P 2

0 − P 3
1Q1.

Last, changing the coordinates by putting t = 27(1−t′)
4t′ and T = 1

T ′
gives the expected model. �

Because of the automorphisms, we can not yet compute a Q-model of the cover HG → H. This will be done
in section 4, at the end of this paper.

1.2.3 Labelling a few points and totally real fibers

In order to label a few points, let us describe precisely the elements in our family: to each value T0 of the
parameter T , there corresponds a cover:

ϕ : ET0

9−→ P1
Q(T0)

, genus(ET0
) = 1.

(we use the same notation for the function ϕ and its specialization). The branch points of ϕ are ∞ and the roots
of the polynomial:

(X − λ1)(X − λ2)(X − λ3) = X3 +H(T0)(X + 1) ;
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the ramification fibers over these points are given by the following divisors equality:

(ϕ− λ1) = 2A+ 2B + 2C + 2D + E − (3L+ 3M + 3N)

(ϕ− λ2) = 2G+ 2H + 2I + 2J +K − (3L+ 3M + 3N)

(ϕ− λ3) = 2W + 2X + 2Y + 2Z + U − (3L+ 3M + 3N)

whereA,B,C,D,E,G,H, I, J,K,L,M,N,U,W,X, Y, Z denote points on ET0 . Moreover, the constant field ofQ(Egal
T0

)

is Q(S0) where S0 ∈ P1
Q,S satisfies HG(S0) = T0.

The polynomial X3 + t0(X + 1) is totally real if and only if t0 < − 27
4 . In this case, one of its roots is

greater than 3 and the other two, say λ2 > λ3, are negative. The real points of H−1
(]
−∞,− 27

4

[)
are the

values T0 ∈ R∗
+ \ {1}. Following criteria of [DF94] §2.3, one can prove that:

Proposition 4 For every T0 ∈ R∗
+ \{1}, one has t0 = H(T0) < − 27

4 . All the roots of X3+ t0(X+1) are real; the

singular values of the cover corresponding to T = T0 are all real. Two of them, λ2 > λ3, are negative and ]λ3, λ2[
is an interval of totally real specialization.

1.3 Pointed Hurwitz space

In the sequel, we will need a scalar extension in order to rationalize the branch points. Instead of choosing the
branch point of type 3a to be rational, we force two other branch points to be rational. Then we can suppose
that the three branch points of type 2a are 0, 1 and λ−1 (∞ is still the branch point of type 3a). This pointing
involves an S3-cover of H corresponding to the six ways to send the three roots of X3 + t(X + 1) to {0, 1, λ−1}
by an homography. To find the relation that rely t to λ, just start form the polynomial X(X − 1)(X − λ−1), kill
the trace and make the constant and degree 1 terms being equal. This leads to the following:

t = − 33(λ2 − λ+ 1)2

(λ− 2)2(λ+ 1)2(2λ− 1)2
, t+

27

4
= − 36λ2(λ− 1)2

22(λ− 2)2(λ+ 1)2(2λ− 1)2
.

where H′ denotes the pointed Hurwitz space we have introduce. This kind of Hurwitz space could also be studied
by means of braid action. Nevertheless, since we only need to use this Hurwitz space locally, we can avoid this
work. The point of H′ we choose, is above λ = 0 and T = 0. Necessarily, the completion of H′ at such a point gives
rise to the following diagram of local fields, every extension being totally ramified: and where π is an uniformizing
element of H′ at the point we have chosen.

This pointing permits us to define ψ to be the homographic transformation of ϕ such that:

(ψ) = (3L+ 3M + 3N)− (2W + 2X + 2Y + 2Z + U)

(ψ − 1) = 2G+ 2H + 2I + 2J +K − (2W + 2X + 2Y + 2Z + U)

(ψ − λ) = 2A+ 2B + 2C + 2D + E − (2W + 2X + 2Y + 2Z + U).

2 A degenerate cover and its deformation

We now focus on the degenerate cover corresponding to the value T = 0 over t = − 27
4 or locally at π over λ. We

though investigate the boundary of our Hurwitz space. This boundary has been intensively studied by S.Wewers
in his PhD thesis [Wew98].

In concrete terms, we want to compute an algebraic model of our family locally at π. This is an elliptic
surface E over Q[[π]] whose special and generic fiber are respectively denoted by Eπ and Eη.

The key point is that the special fiber Eπ of this surface can be explicitly described by mean of braid action
as explained in [Cou99, Cou00].
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Indeed, degenerencies correspond to points coalescing and let-
ting two branched points coalesce, one can compute the mon-
odromy of the resulting degenerate cover. In our case, it is a
cover of semi-stable curves with only two crossing components,
meeting at a point denoted by O. The first one is a genus zero
cover Γ0 → P1 with monodromy:





σ2 = (16)(28)(47)(59)(3)

σ3 = (15)(27)(34)(89)(6)

σ1,4 = (165873429)

The second one Γ1 → P1 is an elliptic curve covering a P1 with
monodromy:





σ1 = (14)(25)(67)(89)(3)

σ2,3 = (192437856)

σ4 = (128)(346)(597)

Each component Γi corresponds to a discrete valuation vi
for Q(E).

Γ1

Γ0
A

B
C

D
E

O
L
M

N

U
Z

Y
X

W

G
H

I
J
K

λ2

λ3λ1

λ4
Φ0

Using intersection theory on the fibered surface E (see [Sil94], Chap III, §8 or [Liu02], §9.1), we are able to
compute the valuations vi of a function on E provide we know the horizontal part of its divisor. First of all, braid
action shows that the thickness at the point O is 1. In other terms, the two components Γi of the special fiber Eπ
intersect with Γ0 · Γ1 = 1 and we have Γ0 · Γ0 = Γ1 · Γ1 = −1.

Let us now compute the divisor of ψ on the surface E : its horizontal part (ψ)H satisfies (ψ)H · Γ0 = −9
therefore its vertical part (ψ)V is such that (ψ)V ·Γ0 = 9. Since ψ(K) = 1, necessarily v0(ψ) = 0 and (ψ)V = aΓ1,
a ∈ Z. Intersection with Γ0 shows that aΓ1 · Γ0 = a = 9. In conclusion (ψ)V = 9Γ1 and ψ specializes to Γ0 → P1

while ψ/π9 specializes to Γ1 → P1.
In conclusion the special fiber Eπ is made of two components Γ0 and Γ1, both of them covering P1 by a

degree 9 map. The component Γ0 → P1 is obtained by specializing the function ψ while the component Γ1 → P1

is obtained by specializing the function ψ
λ .

2.1 Algebraic model of the two components of the degenerate cover

The goal of this section is to compute independently an algebraic model of each component of the special fiber Eπ.
This is easier than computing an algebraic model of a non degenerate cover of the family because each component
is a degree nine cover of P1

C ramified at only three points (and not four).

• The component Γ0 → P1 of our degenerate cover is given by ψ0 the specialization of ψ whose divisor satisfies:

(ψ0) = 9O− (2W +2X +2Y +2Z +U) and (ψ0 − 1) = 2G+2H +2I +2J +K − (2W +2X +2Y +2Z +U).

This is a “Tchebycheff” like extension whose computation is easy (cf. § 2.2).

• On the other hand, the component Γ1 → P1 is given by ψ1 the specialization of ψλ whose divisor is given by:

(ψ1) = 3L+ 3M + 3N − 9O and (ψ1 − 1) = 2A+ 2B + 2C + 2D + E − 9O.

In this case, the computation of a model will be made easier by the fact that there is a 3-torsion point on Γ1 (see
the proof of the following proposition). This also explain that Γ1 admits a Deuring normal form:

Proposition 5 Let θ ∈ Q̄ be a root of θ3 − 3375
128 = 0. The elliptic curve Γ1 has the following Weierstrass

equation v2+θuv+v−u3 = 0. Moreover in this model, the cover ψ1 : Γ1 → P1 is given by the function ψ1 ∈ Q(u, v)
defined by ψ1 = 32

15θ +
128
225θ

2u+ v+1
u .

Proof — First we prove that the elliptic curve Γ1 has a 3-torsion point. Let dω1 denotes the holomorphic

differential on Γ1 and define the principal divisors (δ) by dψ1

dω1
and (η) by δ2

ψ1(ψ1−1) . Then:

(δ) = 2L+ 2M + 2N +A+B + C +D − 10O, (η) = L+M +N − E − 2O ⇒
(
ψ1

η3

)
= 3E − 3O.

Choosing O as the origin of the elliptic curve Γ1, the last equality shows that E is a 3-torsion point.
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Secondly, elliptic curves with such a point have a generic model, known as the Deuring normal form (see [Sil86],
Chap III, Exercise 3.23):

v2 + auv + v − u3 = 0, a ∈ Q̄.

The point E = (0, 0) is the marked 3-torsion point whose opposite −E equals (0,−1). Moreover, we have (u) =
E + (−E)− 2O and (v) = 3E − 3O.

We so have boiled down to the computation of the algebraic number a. To this end, we must take function ψ1

into account; we note that (ψ1) = (vη3) or ψ1 = vη3 by multiplying η by a suitable constant. It suffices to
compute η; this function belongs to the dimension 3 vector space L(E+2O) of which {1, u, v+1

u } is a basis. There
exists b, c, d ∈ Q̄ such that η = b+ cu+d v+1

u . Evaluation at E shows that d3 = 1; we choose d = 1. The unknown
constants a, b, c can be calculated observing the proportionality of the two functions:

v(ψ1 − 1) ∼ 1

η4

(
dψ1

dω1

)2

.

Differentiating the equality ψ1 = vη3 permits to write the right member in terms of u, v, a, b, c; rewriting the left
one is easy. The result is that b = 32/15a, c = 128/225a2 and a3 − 3375/128 = 0. �

2.2 The first term of the algebraic model of E
The two components of the special fiber Eπ being computed separately, we now want to patch them in order to
find an algebraic model of the special fiber Eπ. We pick two functions x and y in Q(E) and give heuristics about
the equation between them. In the following “proof”, some evidence for these heuristics to be true are developed;
nevertheless only the success of the method at the end of §3 is a true proof.

Heuristic 6 Let x and y be the two functions in Q(E) defined by their horizontal divisor and the following

normalizations:
{
(x) = K + (−K)− 2L

x(U) = π,
and

{
(y) = K + U + (−K − U)− 3L
y
x (K) = π.

They are related by an equation with coefficients in Q((π)) whose first order is given by:

(199 +O(π)) y2 + (5100 +O(π))xy + (1 +O(π)) y + (10178 +O(π))x3 + x2 +
(
−π +O(π2)

)
x = 0.

Moreover, the (x, y)-coordinates of the points {A,B,C,D,E, L,M,N} can be computed; for example:

x(A) = 1017 +O(π), y(A) = 1264 +O(π).

“proof” — We need to make an hypothesis about the way of the sections (−K) and (−K −U) intersect Eπ: we
suppose that we are in the “generic” situation, that is (−K) · Γ1 = (−K − U) · Γ1 = 1. In this case (x)H · Γ0 = 1
and (x)V · Γ0 = −1. Since x

π (U) = 1, there exists b ∈ Z such that ( xπ )V = bΓ1 and (x)V = (b + 1)Γ1 + Γ0.
Intersecting with Γ0 shows that −1 = (b + 1) − 1, that is (x)V = Γ0. In exactly the same way, one verifies
that (y)V = 2Γ0. Therefore functions x and y are parameters on Γ1 and x

π ,
y
π2 on Γ0.

Functions x and y are related by a Weierstrass equation of type:

a02y
2 + a11xy + a01y + a30x

3 + x2 + a10x = 0,

where aij ∈ Q((π)). The first significant term of the π-adic developments of these coefficients can be deduced
from results of § 2.1.

• From the Γ0 side, the function x
π specializes to x0 in such a way that (x0) = K −O and x0(U) = 1. So x0 is a

parameter of the line Γ0 and it is easily seen that:

ψ0 =
2

1 + T9 (2x0 − 1)

where T9 denotes the 9-th Tchebycheff polynomial.
The function y

π2 specializes to the function y0 such that (y0) = K + U − 2O and y0
x0
(K) = 1. Therefore one

has y0 + x20 − x0 = 0. Since x
π and y

π2 are related by:

π2a02

( y

π2

)2

+ πa11

(x
π

)( y

π2

)
+ a01

( y

π2

)
+ πa30

(x
π

)3

+
(x
π

)2

+
a10
π

(x
π

)
= 0,
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we deduce that:
a01 = 1 +O(π), and a10 = −π +O(π2).

We also deduce the first terms of the π-adic developments of the (x, y)-coordinates of the points {G,H, I, J,K,U,
W,X, Y, Z}; for example one has:

x(G) = 8466π +O(π2), y(G) = 7760π2 +O(π3).

For later use, we last compute the residue of ψ at π
x and π2

y ; for example one has ψ = − 1
216

(
π
x

)9
+ · · · .

• From the Γ1 side, the functions x and y specialize to x1 and y1 such that:
{
(x1) = O + (−K)− 2L

(y1) = 2O + (−K − U)− 3L
=⇒

{
x1 ∈ L(2L−O)

y1 ∈ L(3L− 2O).

Because, both of this two vector spaces have dimension one, with the help of magma, we are able to compute,
up to a constant, x1 and y1 with respect to u and v. From the Γ0 component, we remember that the residue

of ψ at π9

x equals − 1
216 , therefore the residue of π

9

ψ at x equals −216. The function x1 is so the unique one such

that ψ−1
1 = −216x1 + · · · . The equation that relates x1 and y1 is then easily computed:

199y21 + 5100x1y1 + y1 + 10178x31 + x21 = 0.

This permits to complete the first order of our model . �

2.3 The π-adic deformation

We now have to explicitly deform the preceding special fiber. In concrete terms, we want to compute the π-
adic developments of all the preceding quantities. This step will require explicit computation in the algebraic
group Eη1. More precisely, we will need the:

2.3.1 The “line algorithm”

Let E(x, y, z) be a cubic in P2
Q((π)) and O a rational point on this cubic. The set of points is known to be endowed

with a group law whose unit element is O. As this law will play a crucial role in the sequel, let us recall how it
is defined. Given P,Q two points on E, we denote by LP,Q the line passing through P,Q and by P ∗Q the third
intersection points between E and LP,Q (Bezout theorem). Then the point P +Q is the third intersection point
between E and the line LO,P∗Q. Moreover, this group law operation can be easily computed.

So in Q((π))(E), one has: (
LP,Q

LP+Q,O

)
= P +Q− (P +Q)−O

The same way, if P1, . . . , Pr are r points of E, then:
(

LP1,P2

LP1+P2,O
× LP1+P2,P3

LP1+P2+P3,O
× · · · × LP1+···+Pr−1,Pr

LP1+···+Pr,O

)
= P1 + · · ·+ Pr − (P1 + · · ·+ Pr)− (r − 1)O.

Last, given Z1, . . . , Zr and P1, . . . , Pr a family of points on E such that the divisor
∑
i Zi−

∑
j Pj is known to be

principal, we are able to compute a function on E whose divisor is the preceding one.

Fact 7 Given Z1, . . . , Zr and P1, . . . , Pr a family of points on E such that the divisor
∑
i Zi −

∑
j Pj is known

to be principal, say generated by a function f and let F be a family of points on E, then we are able to compute

the values of f at all the points of F up to the same constant.

2.3.2 The deformation

Let us return to the deformation. Knowing all the quantities modulo πk, we complete all the π-adic developments
by adding a generic unknown term: for example we put x(A) = (known terms) + xAπ

k + O(πk+1) with xA ∈ Q

unknown to be found. Using the “line algorithm”, we compute, modulo πk+1, all the values:




c0ψ(p) p ∈ {A,B,C,D,E,G,H, I, J,K},
c1(ψ − 1)(p) p ∈ {A,B,C,D,E, L,M,N},
c2(ψ − λ)(p) p ∈ {G,H, I, J,K,L,M,N},
c0ψ(Pi) 1 ≤ i ≤ 30,

1If the genus of the generic fiber Eη would be greater than 2, this step would require computation in the jacobian of this curve.
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where c0, c1, c2 are unknown constants. We eliminate these constants using (for example) c0ψ(K), c1(ψ − 1)(L)
and c2(ψ − λ)(K) and deduce in term of all the πk-terms, the values (modulo πk+1) of the functions ψ, ψ − 1
and ψ − λ. From them, we collect (linear!) equations in the unknown terms by writing that:

π9 = ψ(A) = ψ(B) = ψ(C) = ψ(D) = ψ(E)

1 = ψ(G) = ψ(H) = ψ(I) = ψ(J)

π9 − 1 = (ψ − 1)(A) = (ψ − 1)(B) = (ψ − 1)(C) = (ψ − 1)(D) = (ψ − 1)(E)

−1 = (ψ − 1)(M) = (ψ − 1)(N)

1− π9 = (ψ − λ)(G) = (ψ − λ)(H) = (ψ − λ)(I) = (ψ − λ)(J)

−π9 = (ψ − λ)(M) = (ψ − λ)(N)

1 = ψ(Pi)− (ψ − 1)(Pi)

π9 = ψ(Pi)− (ψ − λ)(Pi).

This deformation leads to the computation of a model of Eη over Q((π)) the completion of Q(H′). We reach (and
need) the precision O(π376). For example, the equation coefficient:

a11 = 1 + 6778π + 700π2 + 6801π3 + 11005π4 + · · ·+ 4522π372 + 9470π373 + 10730π374 + 3650π375 +O(π376).

We also know π-adic developments of the values of x and y at all the points A, . . . , Z; for example:

x(A) = 1017 + 5644π + · · ·+ 8350π374 + 6423π375 +O(π376)

y(A) = 1264 + 1041π + · · ·+ 10161π374 + 11201π375 +O(π376).

Last it is easy to compute the π-adic development of the parameter T :

T = 1709π2 + 8301π6 + · · ·+ 9535π374 + 5028π375 +O(π376).

3 Computation of a rational model of the universal family

Since elements of our family do not have any non trivial automorphism, there exists a universal family (see [FV91],
§4). The generic fiber is a genus one curve E defined over Q(H) with a degree 9 morphism ϕ : E → P1

Q(H) with

monodromy group G, ramified at the three roots of X3 +H(T )(X + 1), ∞ and with expected inertia. The goal
of this section is to compute an explicit model of this universal family.

3.1 A model of the total space E over Q(H)

The curve E we are looking for and the generic fiber Eη of the elliptic surface we have computed in the preceding
section are related by the following equality: Eη = E ⊗Q(H) Q((π)) (that is why we both denote by E these two
objects).

So the two functions x and y of §2.2 and 2.3 lead to a local algebraic model of E defined over the field Q((π))
which is an extension of the completion of Q(H) = Q(T ) at T = 0. Our problem is thus a descent problem. We
first need to point out an algebraic model defined over Q(T ) at least theoretically:

Lemma 8 The curve E admits a total degree 3 model over Q(H): there exists two functions f, g ∈ Q(H)(E) that
are related by an equation P of total degree 3 such that:

P (f, g) =
∑

i+j≤3

bijf
igj = 0, bij ∈ Q(H).

Proof — Let dω denotes the holomorphic differential on E . The following divisor is rational over Q(H) and
principal, say generated by ∆ ∈ Q(E):

(∆) =
dϕ

dω
= A+B + C +D +G+H + I + J +W +X + Y + Z − 4(L+M +N)

This divisor helps to find a function f in Q(H)(E) with degree only equal to 3:

(f) =

(
ϕ3 +H(T )(ϕ+ 1)

∆2

)
=

(
(ϕ− λ1)(ϕ− λ2)(ϕ− λ3)

∆2

)
= E +K + U − (L+M +N)

We find another function of degree 3 by letting:

E′ = K + U − E, K ′ = E + U −K, and U ′ = K + E − U.

Then the divisor E′ +K ′ + U ′ − (L+M +N) is rational over Q(H) and principal, say generated by g.
As f, g ∈ L(L+M +N) of dimension 3, they are related by a total degree 3 polynomial. �
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We now explain how we have computed the equation P , i.e. the coefficients bij in term of T the parameter
of H.

The functions f and g are known up to a multiplicative constant: we normalize them by imposing that:

[
b21
b30

=
b20
b30

= −1

]
⇔ [f(E′) + f(K ′) + f(U ′) = h(L) + h(M) + h(N) = 1] , where h =

f

g
.

We also suppose that b30 = 1.
Looking at infinity, one gets:

h3 − h2 + b12h+ b03 = (h− h(L))(h− h(M))(h− h(N)) ⇒
{
b03 = −h(L)h(M)h(N)

b12 = h(L)h(M) + h(L)h(N) + h(M)h(N).

The line algorithm permits to compute the π-adic developments of b03 and b12. Finding an algebraic relation
with T (of degree 1 in b03 and b12) is then just a mater of linear algebra.

In exactly the same way, by evaluating equation P at points E′, K ′ and U ′ (respectively E, K and U) one
gets coefficients b00 and b10 (respectively b02 and b01).

We need another family of rational points for the last coefficient b11: we choose P1 = 2L−M , P2 = 2M −N
and P3 = 2N − L. Always using the line algorithm, we compute the polynomials:

r(f) =

3∏

i=1

(f − f(Pi)) and s(f) =

3∑

i=1

g(Pi)
∏

j 6=i

f − f(Pi)

f(Pi)− f(Pj)
.

The last equation is nothing but P (f, g) ≡ 0 modulo 〈r(f), g − s(f)〉. This ends the computation of equation P .
See proposition 9 for the complete result.

We could also compute the function ϕ ∈ Q(E) but it would require heavy precision in the π-adic developments
(because of the height of the coefficients). We rather break off the computation on the universal family here;
nevertheless, for each value T0 of the parameter T , we will be able to compute the specialization of the function ϕ
in the residual field Q(ET0) as we will see in the following section.

3.2 Computation of ϕ in Q(ET0
)

We need some notations to explain how to compute specializations of ϕ. To each family F of points on E , and
each 1 ≤ i ≤ #F , we denote by σF,i : Q(H)(E) → Q(H) the i-th symmetric polynomial in the values at the
points of F ; for example, if F = {E,K,U}, one has:

σF,1(ϕ) = ϕ(E) + ϕ(K) + ϕ(U) σF,2(ϕ) = ϕ(E)ϕ(K) + ϕ(E)ϕ(U) + ϕ(K)ϕ(U) σF,3(ϕ) = ϕ(E)ϕ(K)ϕ(U).

We now fix T0 a value of the parameter T . Just putting T equal to T0 in the equation P computed in §3.1, one
gets an equation for the curve ET0 (see §5 for an example). More precisely, in the function field Q(ET0) = Q(f, g),
we have:

(f) = K + E + U − (L+M +N) (g) = K ′ + E′ + U ′ − (L+M +N).

The function ϕ we are looking for satisfies ϕ ∈ L(3L+3M+3N) which is spanned by the functions (f igj)0≤i+j≤3.
So computing ϕ reduce to find nine constants cij ∈ Q(T0) such that:

ϕ =
∑

0≤i+j≤3

cijf
igj .

First, the knowledge of the zeros E,K,U of f permits to obtain three easy equations: indeed ϕ(E), ϕ(K), ϕ(U)
are the roots of X3 +H(T0)(X + 1) and one must have:

σ{E,K,U},1(ϕ) = 0, σ{E,K,U},2(ϕ) = −σ{E,K,U},3(ϕ) = H(T0)

Secondly, in terms of divisors, one has:

2

(
dϕ

dω

)
=

(
ϕ3 +H(T0)(ϕ+ 1)

f

)
= 2(A+B + C +D +G+H + I + J +W +X + Y + Z)− 8(L+M +N)

We evaluate the two functions above at few points to obtain new equations.
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Two other easy equations come from the fact that the values of these two functions at E′,K ′, U ′ (the zeros
of g) are proportional. The rest of the system of equations should involve the leaving twelve singular points of ϕ
who form a rational family F over Q(H):

F = {A,B,C,D,G,H, I, J,W,X, Y, Z}
Using the π-adic developments, one pre-computes the values:

(
σF,1(f

igj)
)
0≤i+j≤4

, σF,1(g), σF,2(g), σF,3(g) ∈ Q(T )

By specializing, we obtain two new equations:

σF,1(ϕ) = 0, and σF,1(fϕ) = 0,

Last, eliminating f in the two algebraic relations of dϕdω = 0 and P (f, g) = 0, gives a degree twelve polynomial in g,
whose zeros are the values of g at the twelve points of F . Due to the pre-computation, coefficients in g11, g10, g9

are known; this completes the system. We note that the two last equations are respectively quadratic and cubic
while all the other are linear. So we need to use Groebner basis algorithm but the system is easily solved.

3.3 The p-adic deformation

In fact, all the previous computations were made modulo the prime p = 11287. We choose this prime because it
splits completely in the compositum of the fields of definition of the singular points of ϕ. All the coefficients that
appear belong to the prime field F11287 (and not in any extension of it).

We then have to recover the solution over Q from the one modulo p. To this end, we point out that all the
complexity of our situation is contained in the divisor equality:

(
ϕ3 +H(T0)(ϕ+ 1)

f

)
= 2

(
dϕ

dω

)
.

From this equality, we derive an algebraic system2 involving the coefficients bij of the equation P in f, g and the
coefficients cij who make ϕ be a function of f and g. In order to avoid multiple solutions, we should normalize
the equation P with respect to f and g. We are allowed to change f by c3f and g by c0+ c1f + c2g, ci ∈ Q̄. Only
one of these choices satisfies an equation normalized as follows:

f3 − f2g − f2 + b11fg + b10f + b03g
3 + b01g + b00 = 0

(we denote the same way the “old” and “new” functions f and g). Then the p-adic deformation reduces to
a Newton-Hensel iteration, the first term, i.e. the solution modulo p, being given by results from sections 3.1
and 3.2.

Having the solution modulo an (heuristically) large enough power of p, and using the LLL-algorithm, we end
the computation by recognizing the corresponding rational solution (see section 5 for a complete example).

3.4 Reconstructing the universal family

Using chinese remainder theorem and the fact that we can compute all the specializations of ϕ ∈ Q(H)(E) we
want to, we are able to finish the computation of the universal family, that is computing explicitly the function ϕ.
We summarize the final result in the following proposition:

Proposition 9 The total space E of the universal family is the genus one curve over Q(T ) defined by the equation:

0 = f3 − f2g − f2 + 1561T 4+5724T 3+6102T 2+2268T+729
2220T 4+9072T 3+8424T 2+3888T+972fg +

36349T 5+105285T 4+93474T 3+72090T 2+22113T+6561
102675T 5+407925T 4+373950T 3+247050T 2+78975T+18225f

+ 49729T 6+236826T 5+366255T 4+236844T 3+121743T 2+30618T+6561
330750T 6+1628100T 5+2398410T 4+1697112T 3+747954T 2+236196T+39366g

3

+ −99458T 6−473652T 5−732510T 4−473688T 3−243486T 2−61236T−13122
1540125T 6+7042950T 5+9280575T 4+7071300T 3+3408075T 2+984150T+164025g

+ −2784824T 8+5833680T 7+66850416T 6+110327184T 5+57760128T 4+27981936T 3+2624400T 2+314928T−472392
170953875T 8+1275223500T 7+3281715000T 6+3863335500T 5+3121395750T 4+1643530500T 3+629856000T 2+147622500T+22143375

The function ϕ : E → P1
Q(T ) that defines a degree 9 cover with monodromy G, ramified over the roots of X3 +

H(T )(X + 1), ∞ with ramification type C is such that:

ϕ = c21f
2g + c20f

2 + c12fg
2 + c11fg + c10f + c03g

3 + c02g
2 + c01g + c00

where the coefficients cij ∈ Q(T ) can be download from:

http://www.univ-tlse2.fr/grimm/algo/hallouin/PSL 2 F 8.result.

2Groebner basis methods failed to solve such a system otherwise we would not bother developing the deformation method used
here.
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Here are the heights in T of the coefficients cij :

c21 c20 c12 c11 c10 c03 c02 c01 c00
height 19 18 13 16 15 13 11 13 12

Let us end this section by a:
Question — Is the genus one curve E over Q(T ) an elliptic one?

4 Computation of the Hurwitz space HG

In order to find specializations whose arithmetic and geometric Galois group are equal, we have to explicitly
compute the cover HG → H. It is known to be cyclic of degree 3. Thanks to Kummer theory, over Q(j)
(with j2+j+1 = 0), the corresponding field extension is a radical one which is parametrized by an element a(T ) ∈
Q(j)(T )∗/Q(j)(T )∗

3
.

Thanks to the braid action, we verify that this cover is totally ramified over the two roots r, r′ of T 2+ 6
49T+ 9

49 .
Therefore, there exists a constant γ ∈ Q(j) such that:

a(T ) ≡ γ(T − r)±1(T − r′)±1 (mod Q(j)(T )∗
3
).

Moreover, because the descent to Q is possible, we have:

a(T ) ≡ γ
T − r

T − r′
(mod Q(j)(T )∗

3
) and NQ(j)/Q(γ) ∈ Q∗3.

The topology do not help anymore to find the constant γ because of its arithmetic nature. To find this constant γ,
it suffices to compute the image of a(T ) by any specialization evT0

: Q(j)(T )∗/Q(j)(T )∗
3 → Q(j, T0)

∗/Q(j, T0)
∗3

where T0 ∈ C. We choose T0 = 1
2 and put:

α = evT0(a) = γ
1
2 − r
1
2 − r′

∈ Q(j).

One can relate α to the specialized cover ϕ : E 1
2
→ P1

Q, or more precisely to Egal
1
2

→ P1
Q its Galois closure . Indeed,

the constant field of Q(Egal
1
2

) is a degree 3 cyclic extension k of Q, Gal(k/Q) = 〈σ〉, and α corresponds to k(j)/Q(j)

by Kummer theory:
k(j) = Q(j)( 3

√
α).

We find that the extension k/Q is the unique cubic extension of discriminant 792:

{
k = Q(θ)

θ3 − θ2 − 32θ + 79 = 0
=⇒

{
k(j) = Q(j)

(
3
√
β
)

β = (θ + j2σ(θ) + jσ2(θ))3 ∈ Q(j).

Kummer theory again shows that α = β or β2; this completes the computation of the element a(T ).
Over Q(j), in term of fields extension, the cover HG → H is given by:

Q(j, T ) ⊂ Q(j, T )( 3
√
a(T ))

The descent to Q is easy: the element 3
√
a(T )+

(NQ(j)/Q(γ))
1/3

3
√
a(T )

is algebraic over Q(T ) and has the following minimal

polynomial:

X3 − 3NQ(j)/Q(γ)
1/3X − TrQ(j)/Q(γ)T

2 − 2TrQ(j)/Q(γr)T +TrQ(j)/Q(γr
2)

(T − r)(T − r′)
∈ Q(T )[X].

With the help of magma, we compute a parameter S of this curve and deduce that:

Proposition 10 The cover HG → H is given by the rational fraction T = HG(S) with:

HG(S)−
1

49
= − 23 × 43× 419× (S − 121588

441 )(S − 67537
441 )

3× 73 × (S3 − 582S2 + 721028699
9261 S − 294590157121

12252303 )
. (5)

This expression points out the value T = 1
49 over which there are three rational points. Finding other such

values is now easy:
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Proposition 11 The positive values of T over which there are three rational points in the cover HG = P1
Q,S →

H = P1
Q,T and whose numerator and denominator have less than three digits are:

{
489
41 ,

1
49 ,

17
113 ,

703
127 ,

51
211 ,

971
251 ,

109
349 ,

197
533 ,

57
617 ,

321
769

}
.

All these values correspond to covers in our family who have arithmetic and geometric Galois groups equal

to PSL2(F8).

5 Two numerical examples: the values T = 1
49 and T = 1

2

In this section, we conveniently specialize the preceding results in order to compute totally real polynomials over Q
with Galois group equal to PSL2(F8) or PΓL2(F8).

Due to formula (5), there are three rational points S = ∞, 121588
441 , 67537

441 above the value T = 1
49 ; this means

that the cover ϕ : E 1
49

→ P1
Q has geometric and arithmetic Galois groups equal to PSL2(F8). By specializing

results from §3, one computes the equation between (the specializations of) f and g:

f3 − f2g − f2 + 68425
92796fg +

9714395
27506688f + 382202500

2350284363g
3 − 3822025

48996288g − 230085905
12594624768 = 0

and the function ϕ ∈ Q(f, g):

ϕ = 143033373690367585683456
6840410226716265675875 f2g − 38163798107779728384

7347379405710274625 f
2 − 7876734306017280

357946911740047 fg
2 + 245154404440349184

99969458921684555 fg+
23639734871190207
3758250335401675 f + 2625578102005760

357946911740047 g
3 + 8063814809600

2484834242989g
2 − 35024389280012

36525195075515g − 17895514803768
9611893440925 .

Using proposition 4, we know that all the singular values of ϕ are real; let λ2 > λ3 denote the two negative
ones. Then ]λ3, λ2[ is an interval of totally real specialization and it contains the rational − 3

2 . Specializing the
cover ϕ : E 1

49
→ P1

Q at ϕ = − 3
2 gives rise to:

Proposition 12 Over ϕ = − 3
2 , the cover ϕ : E 1

49
→ P1

Q specializes to the Q-extension defined by the following

polynomial:

x9 − 4x8 − 23908787388x7 − 759515260327432x6 + 158003731185076639933x5 + 9522611613786239896439820x4

− 82773878221652987709383821092x3 − 16730700989651224398111214871274384x2

− 383866034575302084802931793638509630716x− 2636920916455323082058289375932592281107728 ;

it is a totally real polynomial which has Galois group equal to PSL2(F8).

On the other hand, if we choose T = 1
2 , the cover ϕ : E 1

2
→ P1

Q has a geometric Galois group equal to PSL2(F8)

while its arithmetic one is equal to PΓL2(F8). Over ϕ = − 3
2 , one now has:

Proposition 13 Over ϕ = − 3
2 , the cover ϕ : E 1

2
→ P1

Q specializes to the Q-extension defined by the following

polynomial:

x9 + 3x8 − 3553997352x7 − 4298221687088x6 + 3053075490789817654x5 + 13839213425101401169658x4

− 683716551600885350018514400x3 − 6155072192386745582288234280312x2

− 6007542248971565196199450617656687x− 1422739680620109918728392701566390677 ;

it is a totally real polynomial which has Galois group equal to PΓL2(F8).
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