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THE IMAGE OF THE BOREL-SERRE BORDIFICATION

IN ALGEBRAIC K -THEORY

ROB DE JEU AND ALEXANDER D. RAHM

Abstract. We give a method for constructing explicit non-trivial elements in the third K-group
(modulo torsion) of an imaginary quadratic number field. These arise from the relative homology
of the map attaching the Borel–Serre boundary to the orbit space of the SL2 group over the ring of
imaginary quadratic integers on its symmetric space - hyperbolic three-space. We provide an algorithm
which produces a chain of matrix quadruples specifying our element of K3 of the field, modulo torsion.
We carry out the algorithm for the Eisenteinian integers as well as for the imaginary quadratic integers
of discriminant −7.

1. Introduction

We use the SL2-group of the ring of integers O := OQ(
√
−m ) of an imaginary quadratic number field

Q(
√
−m ), where m is a square-free positive integer, in order to obtain explicit elements of infinite

order in the algebraic K-group K3(O)/torsion = K3(k)/torsion.
Let Γ be a subgroup of finite index in SL2(O), with torsion-free image of Γ in PSL2(O); and let

Γ1, . . . ,Γs denote the stabilisers inside Γ of the cusps of the action on hyperbolic 3-space. Let P• be
a projective resolution for Γ, and denote the homology of the cone of the natural map

⊕iP•(Γi)⊗Z[Γi] Z → P•(Γ)⊗Z[Γ] Z ,

by H∗(Γ; Γ1, . . . ,Γs). Then we have a long exact sequence

· · · → ⊕iHn(Γi) → Hn(Γ) → Hn(Γ; Γ1, . . . ,Γs) → ⊕iHn−1(Γi) → Hn−1(Γ) → · · · .
Let ∆i be the stabiliser of the ith cusp inside ∆ = GL2(Q(

√
−m )), so that Γ is a subgroup of ∆ and

each Γi is a subgroup of ∆i. We can replace Γ with ∆ and each Γi with ∆i in the above, obtaining a
long exact sequence of relative homology involving ∆ and the ∆i, and the natural homomorphisms
give rise to a commutative diagram

. . . // ⊕iHn(Γi)
αn

//

��

Hn(Γ) //

��

Hn(Γ; Γ1, . . . ,Γs) //

��

⊕iHn−1(Γi)
αn−1

//

��

. . .

. . . // ⊕iHn(∆i) // Hn(∆) // Hn(∆;∆1, . . . ,∆s) // ⊕iHn−1(∆i) // . . . .

(1.1)

Using a result of Suslin, one can see that the map ⊕iHn−1(Γi) → ⊕iHn−1(∆i) is trivial for n ≥ 2
(cf. Lemma 2.10). Therefore the image of a class in H3(Γ; Γ1, . . . ,Γs) lifts to a class in H3(∆).
From this lift, one can obtain an element in K3(k)/torsion ≃ Z by standard methods. However, in
order to show that the resulting element is non-trivial we need some more control. In Section 2 we
therefore carry out a variation of this process, and apply it to suitable homology classes obtained
from triangulations in Section 4. For the Eisenstein integers, our triangulation actually provides an
element of H3(Γ; Γ1, . . . ,Γs), but in the case of O a non-principal ideal domain, the fact that there
are several SL2(O)–orbits of cusps does force us to bypass H3(Γ; Γ1, . . . ,Γs) completely, which we
achieve in Section 4, yielding an algorithm that works for all rings of imaginary quadratic integers.
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2. The relation with K3(k)

In this section we modify some by now classical constructions in [9] and [3, p. 73] to suit our
current needs. We shall use this in Theorem 4.6 below to show that our algorithm in Section 4 can
be used to obtain a non-trivial element in K3(k)/torsion if k is an imaginary quadratic number field.

In order to be able to take non-trivial torsion in stabilisers into account, and be able to work in
PSL2(O) instead of SL2(O) if desired, we work in somewhat greater generality.

Let L be a field, and fix two subgroups Λ ⊆ Λ̃ of L∗. (Typically, we have in mind Λ = {1} or {±1},
and Λ̃ = O∗

torsion with O the ring of algebraic integers in a number field.) Let ∆ = GL2(L)/Λ. Let

L be the set of orbits for the action of Λ̃ on L2 \ {(0, 0)} given by scalar multiplication, which has a
natural map to P1

L. For n ≥ 0 we let Cn(L2) be the free Abelian group with as generators (n + 1)-
tuples (l0, . . . , ln) of elements in L such that if li1 and li2 have the same image in P1

L then li1 = li2 .
We shall call such a tuple (l0, . . . , ln) with all li distinct in L (or equivalently, in P1

L) non-degenerate,

and we shall call it degenerate otherwise. Then ∆ acts on Cn(L2) as Λ ⊆ Λ̃, and with the usual

boundary map d : Cn(L2) → Cn−1(L2) for n ≥ 1 given by d(l0, . . . , ln) =
∑n

i=0(−1)i(l0, . . . , l̂i, . . . , ln)
we get a complex

· · · d
// C4(L2)

d
// C3(L2)

d
// C2(L2)

d
// C1(L2)

d
// C0(L2)

of Z[∆]-modules.
Let

∧̃2
L∗ =

L∗ ⊗Z L∗

〈(x)⊗ (−x) with x in L∗〉 .

We denote the class of a⊗ b in ∧̃2
L∗ with (a)∧̃(b). It is easily verified that (a)∧̃(b)+(b)∧̃(a) is trivial.

For three non-zero points p0, p1 and p2 in L2 with distinct images in P1
L, we define cr2(p0, p1, p2)

in ∧̃2
L∗ by the rules:

• cr2(gp1, gp2, gp3) = cr2(p1, p2, p3) for every g in GL2(L);
• cr2((1, 0), (0, 1), (a, b)) = (a)∧̃(b).

Because cr2((0, 1), (1, 0), (a, b)) = (b)∧̃(a) and cr2((1, 0), (a, b), (0, 1)) = (−ab−1)∧̃(b−1) = −(a)∧̃(b),
we see that cr2 is alternating. It is also clear that if we scale one of the pi by λ in Λ̃ then cr2(p0, p1, p2)
changes by a term (λ)∧̃(c) with c in L∗. Let

(2.1) ∧̃2
L∗/Λ̃∧̃L∗ =

∧̃2
L∗

〈(λ)∧̃(c) with λ in Λ̃ and c in L∗〉
.

We then obtain a group homomorphism f2,L : C2(L2) → ∧̃2
L∗/Λ̃∧̃L∗ by letting this be trivial on a

degenerate generator (l0, l1, l2), and by mapping a non-degenerate generator (l0, l1, l2) to cr2(p0, p1, p2)
with pi a point in li.

We also define a group homomorphism f3,L : C3(L2) → Z[L♭], with L♭ = L\{0, 1}. We define it
to be trivial on a degenerate generator (l0, l1, l2, l3), and we let it map a non-degenerate generator
(l0, l1, l2, l3) to [cr3(l0, l1, l2, l3)], the cross-ratio of the images of the points in P1

L. Recall that cr3 is
defined by similar rules as those for cr2:

• cr3(gl0, gl1, gl2, gl3) = cr3(l0, l1, l2, l3) for every g in GL2(L);
• cr3([1, 0], [0, 1], [1, 1], [x, 1]) = x for x 6= 0, 1.

We define δ2,L : Z[L♭] → ∧̃2
L∗/Λ̃∧̃L∗ by mapping a generator [x] to the class of (1− x)∧̃(x). Then

the diagram

C3(L2)
d

//

f3,L
��

C2(L2)

f2,L
��

Z[L♭]
δ2,L

// ∧̃2
L∗/Λ̃∧̃L∗



Rob de Jeu and Alexander D. Rahm

commutes. For the non-degenerate case this is a direct calculation: using the GL2(L)-invariance
of both f3,L and f2,L and the GL2(L)-equivariance of d we can start with a generator (l0, l1, l2, l3)

containing the classes of (a, 0), (0, b), (1, 1) and (xc, c) in L for some and a, b and c in L∗ and x in L♭,

which results in [x] in Z[L♭] under f3,L and the class of (1− x)∧̃(x) under f2,L ◦ d. For a degenerate
tuple (l0, l1, l2, l3) the commutativity is obvious if {l0, l1, l2, l3} has at most two elements as then f2,L
is trivial on every term in d(l0, l1, l2, l3). If it consists of three classes A, B and C with A occurring
twice among l0, l1, l2 and l3, then up to permuting B and C the six possibilities for (l0, l1, l2, l3) are
(A,A,B,C), (A,B,A,C), (A,B,C,A), (B,A,A,C), (B,A,C,A) and (B,C,A,A). After cancellation
of identical terms with opposite signs in d(l0, l1, l2, l3), we see that commutativity follows because f2,L
is alternating.

From the above diagram we now obtain the commutative diagram

· · · d
// C4(L2)

��

d
// C3(L2)

f3,L
��

d
// C2(L2)

f2,L
��

d
// C1(L2)

��

d
// C0(L2)

0 // B2(L)
δ2,L

// ∧̃2
L∗/Λ̃∧̃L∗ // 0

(2.2)

with

(2.3) B2(L) =
Z[L♭]

f3,L ◦ d(C4(L2))
.

We observe that we could take GL2(L)-coinvariants in the top row because of the properties of f3,L
and f2,L. In particular, f3,L induces a homomorphism H3(C•(L2)∆) → ker(δ2,L).

In order to describe B2(L) more explicitly, we note that f3,L ◦ d maps a non-degenerate generator

(l0, . . . , l4) to
∑5

i=1(−1)icr3(l0, . . . , l̂i, . . . , l4) with l0, . . . , l4 distinct points in P1
L. Using the invariance

of cr3 under the action of GL2(L), we may use the points [1, 0], [0, 1], [1, 1], [x, 1] and [y, 1] in P1
L for

x and y in L♭ with x 6= y. This then under f3,L ◦ d yields the 5-term relation

(2.4) [x]− [y] + [y/x]− [(1− y)/(1− x)] + [(1− y−1)/(1− x−1)] .

For a degenerate generator (l0, . . . , l4) we note that f3,L ◦ d is trivial if {l0, . . . , l4} has at most three
elements because all the terms in d(l0, . . . , l4) are degenerate. If this set contains four classes, then
after cancelling possible identical terms in d(l0, . . . , l4) and applying f3,L to the result we see that it
is of the form [cr3(m1, . . . ,m4)] − sgn(σ)[cr3(mσ(1), . . . ,mσ(4))] for a permutation σ in S4 with sign

sgn(σ), and four distinct points mi in P1
L. Those images generate the subgroup

(2.5) 〈[x] + [x−1] with x in L♭〉+ 〈[y] + [1− y] with y in L♭〉
of Z[L♭].

Remark 2.6. According to (the proofs of) Lemmas 1.2, 1.3 and 1.4 of [9], if L has at least four
elements, then the group B2(L) is a quotient of the group

p(L) =
Z[L♭]

〈[x]− [y] + [y/x] + [(1− x)/(1− y)]− [(1− x−1)/(1− y−1)] with x, y in L♭, x 6= y〉
of loc. cit. It is obtained from p(L) by dividing out certain elements of exponent dividing 6 (and their
exponent divides 2 if x2 − x+ 1 has a solution in L).

Recall from loc. cit. that if L is infinite, then there is a short exact sequence

0 → Tor(L∗, L∗)∼ → K3(L)ind → B(L) → 0 ,

where Tor(L∗, L∗)∼ denotes the unique non-trivial extension of Tor(L∗, L∗) by Z/2Z if L has charac-
teristic different from 2, and Tor(L∗, L∗) otherwise, K3(L)ind = coker(KM

3 (L) → K3(L)), and B(F )
is the kernel of p(F ) → F ∗ ⊗Z F ∗/〈x⊗ y + y ⊗ x〉 under the map [x] → x⊗ (1− x).
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By mapping x⊗y to (y)∧̃(x), we get a map from the complex 0 → p(L) → L∗⊗ZL
∗/〈x⊗y+y⊗x〉 →

0 to the complex in the bottom row of (2.2). Since 2(−x)⊗x = 2(x⊗x) it is clear from the definition

of ∧̃2
L∗/Λ̃∧̃L∗ in (2.1) that the map F ∗ ⊗ F ∗/〈x ⊗ y + y ⊗ x〉 → ∧̃2

L∗/Λ̃∧̃L∗ is surjective with

kernel of exponent dividing a = lcm(2, |Λ̃|) whenever Λ̃ is finite. Multiplying by a then gives a map
ker(δ2,L)/torsion → B(L)/torsion, with the latter isomorphic with K3(L)ind/torsion if L is infinite.

Fix a non-zero point p in L2, and for n ≥ 0 let Pn(L) = Pn(L, p,Λ) be the free Abelian group with
as generators the (n+1)-tuples (g0, . . . , gn) of elements in ∆ such that if gi1p and gi2p give the same
point in P1

L then gi1p = gi2p already in L. Clearly, Pn(L) is a projective Z[∆]-module, and P•(L) with
the boundary d : Pn(L) → Pn−1(L) for n ≥ 1 given by d(g0, . . . , gn) =

∑n
i=0(−1)i(g0, . . . , ĝi, . . . , gn)

is a complex of projective Z[∆]-modules. The evaluation homomorphism Pn(L) → Cn(L2) mapping
(g0, . . . , gn) to (g0p, . . . , gnp) gives the commutative diagram

· · · d
// P4(L)

��

d
// P3(L)

��

d
// P2(L)

��

d
// P1(L)

��

d
// P0(L)

��

· · · d
// C4(L2)

d
// C3(L2)

d
// C2(L2)

d
// C1(L2)

d
// C0(L2)

(2.7)

of Z[∆]-modules, and we obtain a homomorphism H3(P•(L)∆) → H3(C•(L2)∆). Combining it with
the map in (2.2), we obtain a homomorphism

(2.8) H3(P•(L)∆) → ker(δ2,L) .

Remark 2.9. There are augmentations P•(L) → Z and C•(L2) → Z, and if L is infinite those give
Z[∆]-resolutions of Z, with the first being a projective resolution. Clearly P•(L) is a subcomplex

of the standard resolution for ∆, so we obtain a canonical isomorphism H3(P•(L)∆)
≃→ H3(∆,Z).

In this case the morphism P•(L) → C•(L2) is the (up to chain homotopy unique) morphism of
Z[∆]-resolutions of Z.

Now let p be the point [1, 0] in P1
L and consider its stabiliser

∆∞ =

{(
a b
0 c

)
with a, c in L∗, b in L

}
/Λ · id2

in ∆. Let N1 = {(10
b
c) with b in L, c in L∗} ⊂ GL2(L) and N1,1 the subgroup of N1 where c = 1. Let

∆∞
1 be the image of Λ̃ ·N1 in ∆∞ and let ∆∞

1,1 be a subgroup of the image of Λ̃ ·N1,1.

Lemma 2.10. Let m ≥ 1 and assume [L : Λ̃] is finite but L is infinite.

(1) The image of the map Hm(∆∞
1,1,Z) → Hm(∆∞

1 ,Z) is killed by multiplication by [Λ̃ : Λ].

(2) If Λ̃/Λ is cyclic and m is even then the image of the map Hm(∆∞
1,1,Z) → Hm(∆∞

1 ,Z) is
trivial.

Proof. It will suffice to prove those results for ∆∞
1,1 equal to the image of Λ̃ ·N1,1 in ∆∞

1 . Note that

we have compatible isomorphisms ∆∞
1 ≃ Λ̃/Λ × N1 and ∆∞

1,1 ≃ Λ̃/Λ × N1,1. If N ′
1 ⊂ N1 consists

of the matrices (10
0
c ) with c in L∗ then by [10, Theorem 1.9] the natural map N1 → N ′

1 induces

an isomorphism on homology. The composition ∆∞
1 ≃ Λ̃/Λ × N1 → Λ̃/L × N ′

1 then induces an

isomorphism on homology. Since this composition maps ∆∞
1,1 to Λ̃/L×{(10

0
1)}, the result is clear. �

Let p1, . . . , ps with s ≥ 1 be distinct points in P1
L. Fix elements A1, . . . , As in ∆ with pj = Aj [1, 0].

Then A−1
j1

Aj2 is in ∆∞
1 if and only if j1 = j2.

We shall consider elements in P3(L) satisfying the following. (In Proposition 4.5 we shall prove
that it is fulfilled by the elements obtained from our algorithm in Section 4.)

Assumption 2.11. Suppose α in P3(L) is such that the following hold.
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(1) It is a sum of (g0, g1, g2, g3) with each gi in a coset Aji∆
∞
1 .

(2) In P2(L)∆, we can write dα =
∑s

j=1Ajβj for βj in the kernel of

d : Z[∆∞
1,1 ×∆∞

1,1 ×∆∞
1,1]∆∞

1,1
→ Z[∆∞

1,1 ×∆∞
1,1]∆∞

1,1
.

Note that each (g0, g1, g2, g3) in the first condition is in P3(L) for p = (1, 0): Aj1γ1[1, 0] = Aj2γ2[1, 0]
with the γi in ∆∞

1 implies j1 = j2, and γ1(1, 0) = γ2(1, 0) already in L because of the definition of ∆∞
1 .

We now prove that under mild hypotheses we can associate an element in ker(δ2,L) to any α
satisfying Assumption 2.11.

Proposition 2.12. Assume [Λ̃ : Λ] is finite, and let t ≥ 1 be an integer such that the image of
H2(∆

∞
1,1,Z) in H2(∆

∞
1 ,Z) is annihilated by multiplication by t. To α satisfying Assumption 2.11 we

can then associate a well-defined element in ker(δ2,L) by computing the map in (2.8) with p = [1, 0]
on those (g0, g1, g2, g3) in tα for which the g0, . . . , g3 lie in four distinct cosets Aj∆

∞
1 .

Proof. Note that a t exists by Lemma 2.10 if L is infinite, and it obviously exists if L is finite. We
can write tβj = dβ̃j in Z[∆∞

1 × ∆∞
1 × ∆∞

1 ]∆∞

1
for some β̃j in Z[∆∞

1 × ∆∞
1 × ∆∞

1 × ∆∞
1 ], which is

unique up to adding an element in the kernel of Z[∆∞
1 ×∆∞

1 ×∆∞
1 ×∆∞

1 ] → Z[∆∞
1 ×∆∞

1 ×∆∞
1 ]∆∞

1
.

From the definitions we clearly have that the standard resolution of ∆∞
1 is a subcomplex of P•(L),

so that

α̃ = tα−
s∑

j=1

Aj β̃j

gives a well-defined class in H3(P•(L)∆) modulo the image of H3(∆
∞
1 ,Z). Note that under the

composition (2.8) of the homomorphisms obtained from (2.7) and (2.2), the β̃j do not contribute to

the image (and hence this image is independent of the choice of the β̃j) because γ
′[1, 0] = [1, 0] for all

γ′ in ∆∞
1 , so they only result in combinations of degenerate generators in C3(L2), which are killed by

f3,L. Similarly, the only terms (Aj1γ1, Aj2γ2, Aj3γ3, Aj4γ4) (with all γi in ∆∞
1 ) in α that contribute

are those where all Aji are distinct. �

Remark 2.13. If Λ̃ is finite, and a = lcm(2, |Λ̃|), then according to Remark 2.6, multiplication by
a gives us a map ker(δ2,L)/torsion → B(L)/torsion. If L is infinite then the latter is isomorphic

with K3(L)ind/torsion. So for finite Λ̃ and infinite L, Proposition 2.12 gives a way of constructing
an element in K3(L)ind/torsion out of α. We shall use this in Section 4 in order to show that for an
imaginary quadratic number field k, we can obtain elements of infinite order in K3(k)/torsion ≃ Z

from suitable triangulations of hyperbolic 3-space.
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3. The Borel-Serre boundary

Let k be an imaginary quadratic number field, and let O be its ring of algebraic integers. We work

with the Borel–Serre bordification Ĥ of hyperbolic 3-space H, which yields a compact orbit space

Γ\Ĥ [7, appendix]. Recall from [7, page 512] the identification, for a torsion-free subgroup Γ of finite
index in SL2(O), between the integral homology of the cusp stabiliser Γi and the integral homology
of the torus Ti joined at the ith cusp by the Borel–Serre compactification. Namely,

⊕iHn(Γi; Z) ∼= ⊕iHn(Ti; Z) ∼= Hn(∂(Γ\H); Z),

where the direct sum runs over the orbits of cusps modulo Γ, and the identification passes over to the
boundary of the quotient of hyperbolic 3–space H by Γ. Consider the map α induced on homology
when attaching the boundary in the Borel–Serre compactification of Γ\H.

It turns out [5] that the above relative homology group H3(Γ; Γ1, . . . ,Γs) is precisely the kernel of
the map α2 induced on second degree homology by the attaching map α. So the answer given in [5]
to a question of Serre provides an isomorphism from H3(Γ; Γ1, . . . ,Γs) to the one-generator group
〈∪iTi〉 ∼= Z.

This is the case because we can locate the induced maps αn in the first of the long exact se-
quences (1.1). Taking into account that the cohomological dimension of Γ is 2, this long exact
sequence concentrates in

. . . H3(Γ) = 0

〈∪iTi〉
⊕

i〈Ti〉
⊕

i〈Ti〉/〈∪iTi〉 ⊕Hcusp
2

Hcusp
2

⊕
i〈xi〉

⊕
i〈xi, yi〉

⊕
i〈yi〉 ⊕Hcusp

1

Hcusp
1 ⊕{vanishing

ideal } ⊕
i Z Z → 0

α3 = 0

α2

α1

α0

augmentation

where xi and yi denote the cycles generating H1(Ti), and the maps without labels are the obvious
restriction maps making the sequence exact. Note that the cuspidal homology satisfies equality of
ranks between Hcusp

2 and Hcusp
1 , because the naive Euler-Poincaré characteristic vanishes.

The isomorphism from H3(Γ; Γ1, . . . ,Γs) to the one-generator group 〈∪iTi〉 ∼= Z tells us that a

representative for the generator of H3(Γ; Γ1, . . . ,Γs) is given by the Borel–Serre bordification F̂ of an

ideal fundamental polyhedron F for the action of Γ on H, because the boundary of Γ\F̂ is ∪iTi. In

H3(Γ; Γ1, . . . ,Γs), the polyhedron F̂ is given as a chain of matrix quadruples: we triangulate F̂ into
tetrahedra, fix a basepoint, and then replace each tetrahedron by the quadruple of matrices that map
the basepoint to its four corners. The vertices of the tetrahedra are actually on one ∆–orbit, because
we have chosen F to be an ideal polyhedron (all of its vertices are cusps). If O is a principal ideal
domain, then these vertices are even on one Γ–orbit, because there is just one SL2(O)–orbit of cusps
in this case.
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4. Explicit determination of the homology classes

In this section, we outline an algorithm to compute a chain of matrix quadruples satisfying As-
sumption 2.11, for an imaginary quadratic number field k with ring of algebraic integers O.

We call a polyhedron in hyperbolic 3–space H an ideal polyhedron, if all of its vertices are cusps.
Our algorithm inputs an ideal polyhedron F tessellated by finitely many fundamental domains for
the action of SL2(O) on H, such that the facets of F occur in pairs with an SL2(O)-identification
between them. Yasaki [12] has conceived and implemented an algorithm which, for all O, produces
ideal polyhedra satifying this condition. He has obtained explicit polyhedra for all discriminants
of absolute value smaller than 100, and all imaginary quadratic fields of class number 1 and 2. So
we know that our input object exists and is practically available for our computations. We equip
the Borel–Serre boundary of hyperbolic 3-space H with a coordinate system by taking the cusp in
C ∪ {∞} as the first coordinate, and the position on the attached real plane, expressed as a number
in C, as the second coordinate.

Before we proceed we need some preliminaries. Recall that SL2(C) acts on the boundary of
hyperbolic 3-space by fractional linear transformations, via the formula

(
a b
c d

)
· z =

az + b

cz + d
.

The SL2(O)-orbits of P1
k for this action correspond to the ideal class group of k, with the principal

ideals corresponding to the orbit of ∞.

Lemma 4.1 (Flöge). Let α
β in P1

k be any cusp with (α, β) not a principal ideal. Then its stabiliser

in PSL2(O) is isomorphic to the Abelian group (with respect to natural addition)

A :=

{
c ∈ O | cα

β
∈ O and c

α2

β2
∈ O

}

by the map

c 7→ ±
(
1− cαβ c(αβ )

2

−c 1 + cαβ

)
.

Proof. Given in [2, 9.3]. Note that Flöge used the action formula
(

a b

c d

)

·z = az−b
cz−d . �

Corollary 4.2. Let α
β in P1

k be any cusp with (α, β) not a principal ideal, and let Mα,β =

(
α − 1

β

β 0

)
.

Then M−1
α,β conjugates the stabiliser of α

β in SL2(O) to the group ±
(
1 O

α2 ∩ O
β2

0 1

)
.

Proof. We perform the conjugation using the explicit shape of the cusp stabiliser given in Flöge’s
lemma above, finding

(
0 1

β

−β α

)(
±
(
1− cαβ c(αβ )

2

−c 1 + cαβ

))(
α − 1

β

β 0

)
= ±

(
1 c

β2

0 1

)
.

Then by Lemma 4.1, the cusp stabiliser gets conjugated to the group ±
(
1 1

β2A
0 1

)
,

with A :=
{
c ∈ O | cαβ ∈ O and cα

2

β2 ∈ O
}
. We have A

β2 = O
α2 ∩ O

αβ ∩ O
β2 , which equals O

α2 ∩ O
β2 by

considering the factorisations of the fractional ideals for O. �

We now once and for all fix representatives (α, β) of the ideal class group of k, and matrices Mα,β

as above. (For the principal ideal we take (1, 0) and M1,0 = id2 the 2 × 2-identity matrix.) Let
C1, . . . , Ch (with h the class number of k) be the matrices thus obtained. Then every cusp in P1

k is of
the form gCi ·∞ for some g in SL2(O), with i uniquely determined by the SL2(O)-orbit of the cusp.
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Note that g1Ci1 ·∞ = g2Ci2 ·∞, with the gi in SL2(O), implies that i1 = i2, and with i = i1 = i2 we
have that C−1

i g−1
2 g1Ci is in

(4.3)

{(
u µ
0 u−1

)
with u in O∗ and µ in I

}

for some fractional ideal I of k. Namely, for the orbit of ∞ this is clear because the corresponding
Ci is the 2 × 2-identity matrix; and for a cusp Ci · ∞ corresponding to a non-principal ideal this
follows from Corollary 4.2, using that O∗ = {±1}, because the only two imaginary quadratic fields
with O∗ 6= {±1} are Q(

√
−3) and Q(

√
−1), which have class number 1.

Take F as at the beginning of this section, i.e., it is an ideal polyhedron tessellated by finitely many
fundamental domains for the action of SL2(O) on H, such that the facets of F occur in pairs with an
SL2(O)-identification between them. Let p1, . . . , ps be the cusps in the boundary of F . Fix elements
A1, . . . , As in GL2(k) of the form gCi with g in SL2(O) such that pj = Aj ·∞. On the plane attached
to the cusp pj , we induce the origin and axes for the second coordinate by transport with the matrix

Aj of the origin and axes on the plane at the cusp ∞. Denote the group {±
(

1 µ

0 1

)

| µ ∈ O} by U .
We then have the following algorithm.

Algorithm 4.4. Input: An ideal polyhedron F tessellated by finitely many fundamental domains
for the action of SL2(O) on H, such that the facets of F occur in SL2(O)–conjugate pairs of opposite
orientation, and such that the basepoint b := (∞, 0) lies in the boundary of F .

First step: Triangulate the Borel–Serre bordification F̂ of F .

• Triangulate the surface of F̂ . This is always possible since F̂ is a polyhedron and hence its

surface is homeomorphic to a 2–sphere. As F̂ is an ideal polyhedron, we can choose all of the
vertices of the triangulation to lie again at the cusps; and we do so.

• Omit the triangles that touch the basepoint b, in order to obtain a set of base triangles.
• For each base triangle, record the tetrahedron that it spans together with b. This collection
of tetrahedra is the triangulation that we want.

Second and final step: Express F̂ as a chain of matrix quadruples, such that each of the ideal
tetrahedra is specified by the quadruple of matrices that map the basepoint b to its four corners. We
obtain these matrices by concatenating

• a U–move in the plane attached by the Borel–Serre construction at the cusp ∞ with
• the fixed matrix Ai moving the cusp ∞ to the cusp where the i-th corner of the tetrahedron
is located.

We observe that the matrices chosen here are unique up to multiplication by ±id2. Moreover, if
we have gi · b = hgj · b for moves gi and gj , and h in SL2(O), then g−1

i hgj is in the group in (4.3)

and stabilises b, hence is of the form
(

u 0
0 u−1

)

with u in O∗. Taking, in the notation of Section 2,

Λ = Λ̃ = O∗, and ∆ = GL2(k)/Λ̃ · id2, we have well-defined quadruples (g0, g1, g2, g3) of classes in ∆,
and the geometric identification of points under the action of SL2(O) now gives rise to identification
of the classes in ∆ of the corresponding chosen matrices. Finally, we notice that from (4.3) it is also
clear that the quadruples are all in P3(k).

We now show that the resulting element α in P3(k) satisfies Assumption 2.11.

Proposition 4.5. The formal sum α of quadruples of matrix classes produced by Algorithm 4.4 has
the following properties.

(1) It is a sum of (g0, g1, g2, g3) with each gi in some coset AjiU .
(2) In P2(k)∆, we can write dα =

∑s
j=1Ajβj for βj in the kernel of

d : Z[U × U × U ]U → Z[U × U ]U .

Proof. (1) The second step of Algorithm 4.4 places the matrices gi into some coset AjiU .
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(2) By Poincaré’s theorem on fundamental polyhedra [4], the properties of F give rise to a finite
index subgroup Γ of SL2(O), such that F is a fundamental domain for Γ, strict in its interior,
and such that inside hyperbolic space, the polyhedron F has boundary zero modulo the action
of Γ. Denoting the stabiliser in Γ of the cusp∞ by Γ∞, this allows us to write dα =

∑s
j=1Ajβj

in Z[∆ ×∆ ×∆]Γ with βj in Z[Γ∞ × Γ∞ × Γ∞]Γ∞
, where Γ∞ is clearly contained in U . As

F is an ideal polyhedron, the orbit space F/Γ is a hyperbolic manifold, and hence the image
of Γ in PSL2(O) is torsion-free. By the construction of the Borel-Serre compactification [7],

the boundary of F̂ modulo Γ consists of one 2–torus at each cusp. Tori are closed surfaces
that admit no boundary, so for all j we obtain d(βj) = 0.

�

Note that it is possible to obtain an explicit description of the group Γ involved in the above
proof [6], but that this is outside of the aims of the present paper.

We shall now show that the classes obtained in Algorithm 4.4 give rise to non-zero classes in
K3(O)/torsion = K3(k)/torsion ≃ Z under the method discussed in Remark 2.13.

We observe that KM
3 (k) is 2-torsion for any number field k by [11, Theorem 8] (and in fact trivial

if k is totally imaginary). Therefore K3(k)ind/torsion = K3(k)/torsion. As stated in loc. cit., the
rank of K3(k) is given by the number of infinite places, so that for an imaginary quadratic field k we
have K3(k)ind/torsion = K3(k)/torsion ≃ Z.

Theorem 4.6. Let k be an imaginary quadratic number field with ring of algebraic integers O, and
let α in Z[∆×∆×∆×∆]∆ be a class obtained from Algorithm 4.4. Then Proposition 2.12 applies to α

with Λ = Λ̃ = O∗. Multiplying the resulting element in ker(δ2,k) by a = lcm(2, |Λ̃|) as in Remark 2.6,
we obtain a non-zero element in K3(k)/torsion.

Proof. That α satisfies the conditions in Assumption 2.11 is stated in Proposition 4.5. According to
Lemma 2.10(2), Proposition 2.12 applies to α with t = 1.

Clearly Remark 2.6 applies, so it only remains to show that the resulting element in B(k)/torsion ⊆
p(k)/torsion is non-trivial. But the dilogarithm D : C♭ → R applied to the generators of Z[C♭] satisfies
all the relations imposed when creating p(k) or B2(k). Moreover, if an ideal tetrahedron in H has
vertices a0, a1, a2 and a3 in P1

C, then its hyperbolic volume equals cr3(a0, a1, a2, a3). (For a discussion
of those facts see, e.g., [13, §2].)

But according to Proposition 2.12, the only (g0, g1, g2, g3) in α that contribute to the image in p(L)
are those for which the four cusps Qi = gi · [1, 0] in P1

C are distinct. Applying the dilogarithm to
the resulting generator [cr3(Q0, Q1, Q2, Q3)] in p(L) then gives the volume of the corresponding ideal
tetrahedron in H in the triangulation of H obtained by collapsing the boundary in the Borel-Serre
bordification to single points at the cusps. Under this process all other (g0, g1, g2, g3) collapse to
degenerate tetrahedra, so in total we obtain the volume of the triangulation, which is non-zero. �

5. Examples

In this section, we consider some explicit examples for the machinery developed in Sections 2 and 4,
by applying our algorithm to two cases where the ring of integers is Euclidean. For O Euclidean,
Cremona [1] has given a coordinate description of an ideal polyhedron in hyperbolic 3-space fulfilling
our algorithm’s input condition, and we use the coordinates printed there.

5.1. The Eisenstein integers case. We consider the case of the Eisenstein integers, namely the

ring O−3 := Ok for k = Q(
√
−3). Let ρ := 1+

√
−3

2 .
The ideal polyhedron F specified for O−3 in [1] admits as symmetry group the group of order 12

generated by

(
1 −1
1 0

)
and

(
1 ρ− 1
ρ 0

)
. Therefore the group Γ discussed in the proof of Proposi-

tion 4.5 is a normal subgroup of index 12 in SL2(O−3), such that the quotient of SL2(O−3) by Γ is
that symmetry group.
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Figure 5.1. Base triangles for O−3. Each vertex is specified by the matrix which
moves the point (∞, 0) into it.

Then the base triangles of the triangulation of the Borel–Serre compactification F̂ of F for the
action of Γ are given in Figure 5.1. Recall that the ideal tetrahedra of our triangulation are spanned
as the convex hulls of a base triangle together with the basepoint. The set of cusps in the boundary
of F is {0, 1, ρ,∞}. We will make use of the following matrices in Γ, which map some (but not
necessarily all) of the elements of this set of cusps back into this set.

A :=

(
0 −1
1 2

)
, B :=

(
1 ρ
0 1

)
, C :=

(
1 1
0 1

)
.

The matrices B and C are in the cusp stabiliser Γ∞; concatenating them after the matrix A gives
the moves from the cusp at ∞ to the cusps at the corners of F ; and we generate them with the three
basic moves A · ∞ = 0, B · 0 = ρ and C · 0 = 1. Combining with words in B and C concatenated
before the matrix A, allows us to express all of the vertices of the base triangles as images of the
basepoint b = (∞, 0). The coordinates of the vertices of the base triangles in Figure 5.1 are then the
following:

(∞, ρ) = B · b, (∞, 1) = C · b, (0, 0) = A · b, (0, 1) = AC · b,
(0, ρ) = AB · b, (1, 0) = CA · b, (1, 1) = CAC · b, (1, ρ) = CAB · b,
(ρ, 0) = BA · b, (ρ, 1) = BAC · b, (ρ, ρ) = BAB · b.

The tetrahedra of the triangulation, specified by these base triangles, of F̂ then give rise to the
following chain of matrix quadruples α:

(1, CAC,C,CAB) + (1, CAB,C,BAC) + (1, BAC,C,B) + (1, BAC,B,BAB)
+(1, BA,BAC,BAB) + (1, BA,BAB,B) + (1, AB,BA,B) + (1, A,AB,B)

+(1, A,AC,AB) + (1, A, C,AC) + (1, AC,C,CA) + (1, CA,C,CAC) + (1, CA,CAC,CAB)
+(1, CA,CAB,BAC) + (1, CA,BAC,BA) + (1, CA,BA,AB) + (1, CA,AB,AC).

Here the quadruple (1, CA,BA,AB) specifies the only tetrahedron of non-zero volume. Letting
those matrices act on [1, 0] and taking the cross-ratio of the resulting four points yields −1/(ρ−1) = ρ,
so that the element we obtain in ker(δ2,k) is [ρ]. Note that in this triangulation we use only Γ, not
the full group SL2(O), and we can strengthen the discussion after Algorithm 4.4 and Proposition 4.5.
Namely, because the image of Γ in PSL2(O) is torsion-free by the proof of Proposition 4.5, we can

use Λ = Λ̃ = {±1} and ∆ = GL2(k)/{±id2} in Theorem 4.6. Then a = 2, and the non-trivial element
we obtain in B(k)/torsion ≃ K3(k)/torsion is 2[ρ].

5.2. The case of discriminant -7. Let ω := 1+
√
−7

2 in k = Q(
√
−7). The ideal polyhedron F

specified for O−7 in [1] admits as symmetry group the group of order 6 generated by
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Figure 5.2. Base triangles for O−7. Each vertex is specified by the matrix which
moves the point (∞, 0) into it.

(
1 −1
1 0

)
and

(
−1 ω

ω − 1 1

)
.

Therefore the group Γ discussed in the proof of Proposition 4.5 is a normal subgroup of index 6 in
SL2(O−7), such that the quotient of SL2(O−7) by Γ is that symmetry group.

The set of cusps in the boundary of our ideal polyhedron F is {0, 1, ω, ω2 , ω+1
2 ,∞}. We will make

use of the following matrices, which map some (but not necessarily all) of the elements of this set of
cusps back into this set.

S :=

(
0 −1
1 2

)
, V :=

(
1 ω

2
0 1

)
, W :=

(
1 1

2
0 1

)
.

The matrices V and W are not in SL2(O), so we do not obtain an element of H3(Γ; Γ1, . . . ,Γs) along
the way as was the case with the element α for the Eisensteinian integers. But this is no problem,
because for Theorem 4.6, we only need the matrices to be in ∆∞

1,1. Concatenating words in V and
W after the matrix S gives the moves from the cusp at ∞ to the cusps at the corners of F ; and
we generate them with the three basic moves S · ∞ = 0, V · 0 = ω

2 and W · 0 = 1
2 . The matrices

V 2 and W 2 are in the cusp stabiliser Γ∞; combining with words in V 2 and W 2 concatenated before
the matrix S, allows us to express all of the vertices of the base triangles as images of the basepoint
b = (∞, 0). The coordinates of the vertices of the base triangles in Figure 5.2 are then the following:

(∞, ω) = V 2 · b, (∞, 1) = W 2 · b, (0, 0) = S · b, (0, 1) = SW 2 · b,
(0, ω) = SV 2 · b, (1, 0) = W 2S · b, (1, 1) = W 2SW 2 · b, (1, ω) = W 2SV 2 · b,
(ω, 0) = V 2S · b, (ω, 1) = V 2SW 2 · b, (ω, ω) = V 2SV 2 · b.
(ω+1

2 , ω) = VWSV 2 · b, (ω+1
2 , 0) = VWS · b (ω+1

2 , 1) = VWSW 2 · b
(ω2 , 0) = V S · b (ω2 , 1) = V SW 2 · b (ω2 , ω) = V SV 2 · b

The tetrahedra of the triangulation, specified by these base triangles, then give the following α:

(1, SW 2, V WS, V SW 2) + (1, SW 2,W 2SV 2, V WSW 2) + (1, V SW 2, V WS, V 2S)
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+(1, S, SW 2, SV 2) + (1, S,W 2, SW 2) + (1, SW 2,W 2,W 2S) + (1,W 2S,W 2,W 2SW 2)
+(1,W 2SV 2,W 2SW 2,W 2) + (1, V WSW 2,W 2SV 2,W 2) + (1, V WSV 2, V WSW 2,W 2)

+(1, V 2SW 2, V WSV 2,W 2) + (1, V 2SV 2, V 2SW 2,W 2) + (1, V 2SV 2,W 2, V 2)
+(1, V 2SV 2, V 2, V 2S) + (1, SV 2, V 2, S) + (1, V 2S, V 2, V SV 2) + (1, V SV 2, V 2, V S)

+(1, V S, V 2, SV 2) + (1, SV 2, SW 2, V S) + (1, SW 2, V SW 2, V S)
+(1, SW 2, V WSW 2, V WS) + (1, SW 2,W 2S,W 2SV 2) + (1,W 2S,W 2SW 2,W 2SV 2)

+(1, V S, V SW 2, V SV 2) + (1, V SV 2, V SW 2, V 2S) + (1, V WS, V WSV 2, V 2S)
+(1, V WSV 2, V 2SW 2, V 2S) + (1, V 2SW 2, V 2SV 2, V 2S) + (1, V WS, V WSW 2, V WSV 2).

Here the three quadruples in the first row specify the only tetrahedra of non-zero volume. For each
of those quadruples, letting the matrices act on [1, 0] and taking the cross-ratio of the resulting four
points yields ω/(ω + 1) = (2 + ω)/4, (ω + 1)/2 and ω so that the element we obtain in ker(δ2,k) is
[ω/(ω+1)]+ [−(1−ω)/ω]+ [ω]. (Note that 2 = ω(1−ω) and 1+ω = −(1−ω)2.) Because k contains
only two roots of unity, Theorem 4.6 gives that 2[ω/(ω + 1)] + 2[−(1 − ω)/ω] + 2[ω] is a non-trivial
element in B(k)/torsion ≃ K3(k)/torsion.
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