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Computation of a cover of Shimura

curves using a Hurwitz space

Emmanuel Hallouin
∗

November 16, 2013

Summary — Using a Hurwitz space computation, we determine the canonical
model of the cover of Shimura curves X0(2) → X (1) associated to the quaternion
algebra over the cubic field of discriminant 132, which is ramified at exactly two
real places and unramified at finite places. Then, we list the coordinates of some
rational CM points on X (1).

Introduction

In his classic “Shimura curve computations” [Elk98], Elkies considers Shimura
curves from a computational point of view. He explicitly determines covers
between Shimura curves associated to the same quaternion algebra and also
coordinates of some CM points of those curves. His approach relies mostly on
the uniformization of these curves by a quotient of the hyperbolic plane. Several
mathematicians have investigated this kind of computational challenge [Voi06,
BT07, GR04]. Elkies himself published a second article on the area [Elk06],
where he computes the canonical models of some Shimura curves associated with
quaternion algebras whose center is one of the cubic cyclic totally real fields of
discriminant 49 = 72 or 81 = 92 and ramified at no finite place and exactly two
of the three real places of the center. He ends his article by describing the cover
of Shimura curves X0(2) → X (1) (see §1 for definitions) for the cubic field K of
discriminant 132. More precisely, he shows that the curve X (1) has genus zero
and that the cover X0(2) → X (1) is a degree 9 cover with a certain ramification
behavior. But he does not compute equations for the canonical model of this
cover. In this work, we compute such a model explicitly.

We also illustrate the utility of the computation of Hurwitz spaces. A great
tool to compute an explicit model of a cover of P1

C with given ramification
data is to consider the whole family of covers having this ramification data.
This kind of family is parameterized by a moduli space called a Hurwitz space.
Hurwitz spaces date back to Hurwitz himself [Hur91] and they show up in the
classical study of moduli of curves. More recently, they have been studied in
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the context of inverse Galois theory by many authors including Fried, Völklein,
Malle, Matzat, Debes [FV91, Völ96, MM99, DF94]. At the same time, they
have been considered from a computational point of view [MM99, Cou99]. As
we will see, they can also be very useful when looking for explicit models of
interesting curves, such as Shimura curves.

The connection between Hurwitz spaces and the Shimura cover computed
here is that the latter belongs to a family of degree 9 covers of P1

C with Galois
group PSL2(F8). A precise definition of this family is given at the beginning
of §2. This family is parameterized by one Hurwitz space. This Hurwitz space
and the associated universal family can be computed, using deformation meth-
ods, as in our previous work [Hal05]. Then the computation of the Shimura
curve is reduced to finding the corresponding parameter in the Hurwitz space.
This parameter is characterized by the existence of extra automorphisms.

The paper is organized as follows. In §1, we study the cover X0(2) → X (1)
in detail, focusing on the fields of definition of the cover and of the elliptic
points. We use Shimura and Deligne’s theory of canonical models. In §2, we
show that the existence of an extra automorphism of X0(2), the Atkin-Lehner
involution of X0(2), results in the existence of relations between branch points of
the cover X0(2) → X (1). We show that these relations characterize a non-trivial
closed subset of the moduli space. Since this Hurwitz space has dimension 1,
only a finite number of values of the parameter can appear; in fact there is
exactly one such value, the one corresponding to the Shimura cover we are
looking for. Once we explicitly know the map X0(2) → X (1) and the Atkin-
Lehner involution, it is an easy task to deduce the coordinates of some CM
points on X (1). In §3, we obtain, this way, some rational CM points on X (1).

Acknowledgments: The author would like to thank Jean-Marc Couveignes
for helping him to give a more geometric flavor to this paper, Anne Hernandez
for having very kindly corrected his English and the anonymous referee for
having extremely carefully read the first submitted version of this work.

1 The cover of Shimura curves

In this section we will introduce several Shimura curves and give some of their
properties; we refer to Shimura’s initial article [Shi67] for this section. The
book by Alsina and Bayer [AB04] is also a very concrete reference, even if it
only deals with Shimura curves associated to quaternion algebras over Q. We
will need some classical results about the arithmetic of quaternion algebras;
besides Vignéras’ classic [Vig80] on this subject, we recommend the book by
Maclachlan and Reid [MR03].

Let K be the unique cyclic cubic field of discriminant 132 which can be
obtained by adjoining to Q a root θ0 of x3 + x2 − 4x+ 1 ∈ Q[x]. It has narrow
class number one and thus class number one. We denote by σ1, σ2, σ3, 1 ≤ i ≤ 3,
the three real embeddings of K into R.

The quaternion algebra. Let B be the quaternion algebra over K which
is ramified at σ2 and σ3 and nowhere else; the algebra B is unique up to K-
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algebra isomorphism. The unramified place σ1 gives rise to an embedding i∞ :
B →֒ M2(R) which restricts to σ1 on K. Let O be a maximal order in B;
the ring O is unique up to conjugation in B since K has narrow class number
one [MR03, Theorem 6.7.6]. We denote by O1 the group of invertible elements
of O of reduced norm 1. Then the group Γ(1) = i∞(O1)/{±1} is an arithmetic
Fuchsian group [Vig80, Chapter IV, §1, Example 5], and in particular a discrete
subgroup of PSL2(R).

The Shimura curves. Let H be the upper half-plane. The group PSL2(R)
acts on H via

(

a b
c d

)

.τ = aτ+b
cτ+d

. The quotient Γ(1)\H can be given the structure
of a compact Riemann surface. Let us denote by X (1)C the associated complex
algebraic curve.

LetQ8 denote the unique unramified degree 3 extension of the 2-adic fieldQ2.
The prime 2 is inert in K and unramified in B, so we have an embedding i2 :
B →֒ M2(Q8) in such a way that i2(O) = M2(Z8). Let O2 be the suborder
defined by:

O2 = {ω ∈ O : i2(ω) is upper triangular modulo 2}.

It is an Eichler order of level 2 [MR03, Definition 6.6.6]. We denote by O1
2 the

group of units of reduced norm 1 and then consider the subgroups Γ(2) ⊂ Γ0(2)
of Γ(1) defined as follows:

Γ0(2) = i∞
(

O1
2

)

/{±1}
Γ(2) = i∞

({

ω ∈ O1
2 : i2(ω) ≡ ( 1 0

0 1 ) mod 2
})

/{±1}.

These are also discrete subgroups of PSL2(R). The quotients of H by these
subgroups can also be given the structure of a compact Riemann surface; we
respectively denote by X0(2)C and X (2)C the corresponding complex algebraic
curves. We have the tower:

PSL2(F8)

X (2)C X0(2)C X (1)C
56 9

The cover X (2)C → X (1)C is the Galois closure of the cover X0(2)C → X (1)C.
The field K(

√
−2) embeds in B and there exists ω2 ∈ O such that ω2

2+2 = 0.
This element normalizes the Eichler order O2 and its image i∞(ω2) ∈ PSL2(R)
normalizes the group Γ0(2). It induces an a morphism w2 : X0(2)C → X0(2)C
which is an involution since ω2

2 ∈ R. It is called the Atkin-Lehner involution
on X0(2)C.

The cover X0(2)C → X (1)C. Thanks to Shimizu’s area formula, Elkies [Elk06,
p. 314-315] proves that X (1)C has four elliptic points: P0 of order 3 and P1, P2,
P3 of order 2. Moreover the curve X (1)C has genus zero. The map X0(2)C →
X (1)C is a cover of degree 9 = #F8 + 1, with Galois group PSL2(F8) (acting
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on the nine points of P1
F8
) and is ramified at the elliptic points P0, P1, P2, P3.

Since elements of order 3 and 2 in PSL2(F8) have cycle shapes 33 and 241
respectively, the ramification data of this cover must be (33, 241, 241, 241). We
denote by Q1, Q2, Q3 the three unramified points on X0(2)C above P1, P2, P3

respectively.

CM points. Let L be a CM extension of K and OL its ring of integers. It
is possible to embed the field L into the quaternion algebra B [MR03, Theo-
rem 7.3.3], via i : L →֒ B, in such a way that i−1(i(L) ∩ O) = OL (it is said
that the embedding i is optimal). Then all the elements of i∞ ◦ i(L) share the
same fixed point τ ∈ H. The image of τ in the quotient Γ(1) \H is called a CM
point by L on X (1)C. Two embeddings i and i′ give rise to the same CM point
on X (1)C if and only if there exists ω ∈ O1 such that i′ = ωiω−1 or i′ = ωiω−1,
where i denotes the embedding i composed with the canonical involution of B.
This links the counting of CM points by L on X (1)C and the counting of the
embeddings of OL in O up to an invertible element as in Vignéras [Vig80, Chap-
ter III, §5-C]. In our case, the final result is that there are as many CM points
associated to L as the class number of OL (for a very concrete introduction to
CM points, see Alsina and Bayer [AB04, Chapter 6]).

Shimura-Deligne canonical model. Shimura [Shi67] proved that so-called
Shimura curves admit a canonical model defined over the narrow class field ofK,
namely K itself here. A few years later, Deligne [Del71, Mil90] gave his own
construction of these canonical models in a more functorial setting.

Concerning the curve X (1)C, the Main Theorem I [Shi67, §3.2] implies that
there exists an algebraic curve X (1) and a holomorphic map j : H → X (1)
satisfying the following conditions.

• The curve X (1) is defined over the narrow class field of K, namely K
itself.

• The map j yields an analytic isomorphism from Γ(1) \ H to X (1)(C).

• Let L be a CM-extension of K with class number hL. Then there are
exactly hL points with CM by L on X (1). If τ1, . . . , τhL

∈ H are the fixed
points of the corresponding embeddings of L into B then the values j(τi),
for 1 ≤ i ≤ hL, form a complete Galois orbit over K and for each i, the
Hilbert class field of L is generated by j(τi) over L.

It is also a consequence of the Main Theorem that the curve X (2)C admits
a canonical model: there exists an algebraic curve X (2) and a holomorphic
map j2 : H → X (2) such that:

• the curve X (2) is defined over the ray class field ofK with modulus 2σ1σ2σ3

which, in that case, is K itself;

• the cover X (2) → X (1) is also defined over K;

• the map j2 yields an analytic isomorphism from Γ(2) \ H to X (2)(C).
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Being a subcover of the Galois cover X (2) → X (1) whose automorphisms are
defined over K, the curve X0(2)C admits also a canonical model defined over K.
It will be denoted by X0(2). As in the classical context of modular curves,
the modular polynomial relating the functions j and j ◦ w2 gives a birational
realization of X0(2) in P1

C × P1
C; this polynomial has coefficients in K. Finally,

the involution w2 is an automorphism of X0(2) which is also defined over K.

Galois descent to Q. Elkies [Elk98, p. 38] and Voight [Voi06, §6] show how
to descend Shimura curves to Q in certain cases. Here we need a different
argument.

The elliptic point P0 of order 3 has CM byK(
√
−3) which has class number 1.

It follows from Shimura’s result, that the point P0 is thus defined over K.
Similarly, the elliptic points P1, P2, P3 of order 2 have CM by K(

√
−1) which

has class number equal to 3. Thus these points must form a complete Galois
orbit over K. The field K(P1) is a cyclic degree 3 extension of K and K(Pi) =
K(P1) for i = 2, 3.

Proposition 1 The curve X (1) is defined over Q, in such a way that:

1. the unique elliptic point P0 of order 3 is rational over Q;

2. the three elliptic points P1, P2, P3 of order 2 form a complete Galois orbit

over Q.

The curve X0(2) is defined over Q, in such a way that:

1. the Atkin-Lehner involution w2 is an automorphism of X0(2) defined over Q;

2. the three elliptic points Q1, Q2, Q3 order 2 form a complete Galois orbit

over Q and are pointwise fixed by w2.

Proof — We begin with the descent for the curve X (1). We will in fact prove
that the marked curve X (1) \ {P0} ∪ {P1, P2, P3}1 descends to Q.

Recall that the cubic field K is a Galois extension of Q. For each σ ∈
Gal(K/Q), let Bσ be the unique quaternion algebra ramified at σ2 ◦σ and σ3 ◦σ
and nowhere else. The algebras B and Bσ are σ-isomorphic, meaning that
there exists a Q-isomorphism φσ : B → Bσ which restricts to σ on K. The
order Oσ = φσ(O) is a maximal order of Bσ and the image by i∞ ◦ φ−1

σ of the
units of reduced norm 1 in Oσ is again a Fuchsian group Γ(1)σ ⊂ PSL2(R). The
corresponding Shimura curve is denoted by XBσ

(1)C, so that X (1)C = XB(1)C.
In fact, as explained in Milne [Mil90, Theorem 5.5], one has an isomorphism (of
algebraic curves over K) between the canonical models XBσ

(1)K ≃ X (1)σK .
By the functoriality of the Deligne’s construction of canonical model [Del71,

§6], the Q-algebra isomorphism B → Bσ induces a K-isomorphism of canonical
models XB(1) → XBσ

(1). Thanks to our previous identification, we deduce

1By this notation, we mean that the points P1, P2, P3 are unordered. Thus an automor-
phism of this (affine) curve is the restriction of an automorphism of X (1) which fixes P0 and
permutes P1, P2, P3.

5



that for each σ ∈ Gal(K/Q), there exists an isomorphism ϕσ : X (1) → X (1)σ of
algebraic curves over K. Moreover it is easy to verify that these isomorphisms
map an elliptic point of a given order to an elliptic point of the same order.
So ϕσ is an isomorphism between the curve X (1) and its conjugate X (1)σ which
sends P0 to Pσ

0 and {P1, P2, P3} to {Pσ
1 , P

σ
2 , P

σ
3 }.

We want to show that the morphisms ϕσ yield effective Galois descent data
to Q in the spirit of Weil [Wei56]. We need to verify that the cocycle con-
ditions are satisfied by the isomorphisms ϕσ. As noted by Milne [Mil08, §16,
Theorem 16.32], it suffices to prove that the curve X (1) does not have any
non-trivial automorphism which fixes P0 and permutes {P1, P2, P3}. Such an
automorphism would be of order 2 or 3. The cross ratio2 λ = (P0, P1;P2, P3)
would then be equal to one of the following three cross-ratios:

(∞, 0; 1,−1) = −1 or (∞, 1; ζ3, ζ
2
3 ) = 1 + ζ3 or (∞, 1; ζ3,−2ζ23 ) = −ζ3,

where ζ3 = e
2iπ

3 . On the other hand, since P0 is rational over K and since the
points P1, P2, P3 form a complete Galois orbit, we have λ ∈ K(P1). Let τ ∈
Gal(K(P1)/K) be such that τ(P1) = P2, τ(P2) = P3 and τ(P3) = P1. If λ were
in K then

λ = τ(λ) = (P0, P3;P1, P2) =
λ− 1

λ
.

Hence λ2−λ+1 = 0 which leads to a contradiction (recall that [K(P1) : K] = 3).
Therefore K(λ) = K(P1). Finally, let us denote by HK(

√
−1) the Hilbert class

field of K(
√
−1). Since HK(

√
−1) = K(

√
−1) · K(P1), the cross ratio λ must

satisfy:
HK(

√
−1) = K(λ,

√
−1).

Neither (∞, 0; 1,−1), nor (∞, 1; ζ3, ζ
2
3 ), nor (∞, 1; ζ3,−2ζ23 ) satisfies this, thus

the curve X (1) does not have any non-trivial automorphism fixing P0 and per-
muting P1, P2, P3. As we said, in this case, the Weil descent criterion is auto-
matically satisfied.

Let us consider the curve X0(2). Again we use the functoriality of the Deligne
construction of canonical models but the Shimura data consists now in the alge-
bra B, the maximal order O and the Eichler order O2. For each σ ∈ Gal(K/Q),
since the inert prime 2 of K is Gal(K/Q)-invariant, the suborder φσ(O2) is
again the Eichler order of level 2 of Oσ. Then the isomorphism of canon-
ical models ϕσ : X (1) → X (1)σ lifts to an isomorphism of canonical mod-
els X0(2) → X0(2)

σ. On the other hand, since PSL2(F8) is equal to its central-
izer in the group of permutations of the points of P1

F8
, the cover X0(2) → X (1)

and its conjugates do not have any non-trivial automorphisms. Therefore the
previous isomorphisms between X0(2) and its conjugate give an effective descent
data to Q.

2Recall that the cross ratio between four distinct points P0, P1, P2, P3 ∈ P1 is defined

by (P0, P1;P2, P3) =
(x0y2−x2y0)(x1y3−x3y1)
(x1y2−x2y1)(x0y3−x3y0)

, where Pi = (xi : yi). If Q0, Q1, Q2, Q3 ∈

P1 are four other points, then there exists h ∈ Aut(P1) such that h(Pi) = Qi if and only
if (P0, P1;P2, P3) = (Q0, Q1;Q2, Q3).
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We know that the Atkin-Lehner involution w2 of X0(2) comes from a trace
zero element ω2 ∈ B of reduced norm 2. The element φσ(ω2) is clearly a trace
zero element in Oσ of reduced norm 2 which normalizes the Eichler order Oσ

2 .
Thus the construction of the Atkin-Lehner involution is Galois-invariant and the
automorphism w2 : X0(2) → X0(2) must be defined over Q. Moreover, since w2

permutes elliptic points of given order, it permutes the Qi’s. So w2 must fix one
of them. By Galois conjugation, it fixes all of them. �

2 The Shimura curve and the Hurwitz space

In our previous work [Hal05], we computed an algebraic model of the universal
family of degree 9 covers of P1

C with Galois group PSL2(F8), with ramification
type (33, 241, 241, 241) and such that the first branch point is rational while the
three others are conjugate to each other. The final result (Proposition 9, loc.
cit.) consists in an open set U of P1

Q together with a fibered surface ε : E → U
in genus one curves defined by the following equation3:

E(f, g, h) =
(

T 3 + 531
223T

2 + 189
223T + 81

223

)

f3 −
(

T + 3
5

)

f2g

−
(

T 2 + 18
37T + 9

37

)

f2h+
7 · 223

(

T + 9
7

)

223 · 5 · 37(T + 3)
fgh

+
163 · 223

(

T 2 + 84
163T + 81

163

)

3 · 52372(T + 3)
fh2

+
2232

2 · 335372(T + 3)(T 2 + 6
49T + 9

49 )
g3

− 2 · 223
3253372(T + 3)

gh2 − 237 · 2232
(

T 2 − 48
7 T + 97

)

3353373(T + 3)2
h3.

We denote by Eη the generic fiber. The open set U is the so-called (absolute)
Hurwitz space parameterizing our family and the variable T is one of its co-
ordinates4. This model is minimal in the sense that every fiber is a smooth
genus 1 curve, i.e. the morphism E → U is smooth. This can be proved by
computing ∆, the analogue for cubic plane curves, of the usual discriminant for
cubic Weierstrass equations, as in Poonen [Poo01, §3]. Here one has:

∆ =
31222312

23524783712
(T − 1)13

(T + 3)12(T 2 + 6
49T + 9

49 )
4
,

and the support of ∆ does not intersect U .
3Actually, this equation is not exactly the one given in the cited proposition. During the

present work, we realize that the equation we gave in our previous article was not minimal.
By an easy linear change of variables, we obtain the new equation which is minimal as we will
see.

4Exactly 18 points have been removed from P1
Q

to obtain U . These points correspond to
the degenerate covers of the family. The zeros of the denominators of the coefficients of the
equation are among these values.
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A function ϕ ∈ Q(U)(E) is also given. This function is such that the

map Eη
ϕ→ P1

Q(T ) is a degree 9 cover, with (geometric) Galois group PSL2(F8),

and with four branch points: the point of type 33 is at ϕ = ∞, the three points
of type 241 have the ϕ-coordinates equal to the three roots of x3+H(T )(x+1),
where H ∈ Q(U) is explicit.

We denote by Q1,η,Q2,η,Q3,η the zeros of the function f on the generic fiber.
These are the three unramified points of ϕ on Eη over the three branch points
of type 241. Each Qi,η extends to a horizontal divisor on E which will play a
role in the proof bellow.

The specializations of this family at rational points of U yield PSL2(F8)
covers of P1

Q defined over Q, with four branch points and expected ramification
data.

We now determine the rational specialization of ε : E → U corresponding to
the cover X0(2) → X (1).

Proposition 2 The cover X0(2) → X (1) corresponds to the specialization at

the value T = −1 of our family.

Proof — First, the cover X0(2) → X (1) is truly a member of our family. Indeed
the ramification data and the Galois group correspond and we know that the
unique elliptic point of order three on X (1) is rational and that the three other
points of order 2 are conjugate to each other.

Let Et be the specialization we are looking for5. Since points Q1, Q2, Q3 are
known to be the unramified points over the branch points of the cover X0(2) →
X (1) of type 241, these points must necessarily be the specializations Qi,t of Qi,
1 ≤ i ≤ 3. On Et, we also know that there exists the involution w2 defined
over Q which fixes these specializations. Extending the scalars to Q(Q1,t), the
genus 1 curve Et becomes an elliptic curve whose origin can be chosen to be equal
to Q1,t. Since w2 fixes Q1,t, it must be negation and the 2-torsion is generated
by Q2,t,Q3,t. Thus in the group of points of the elliptic curve (Et,Q1,t), we are
looking for, there must be the equalities 2Q1,t = 2Q2,t = 2Q3,t.

In order to solve these equations in t, we need a section of ε : E → U . We
introduce the base change given by the horizontal divisor Q1. Let U ′ → U the
cover defined by the equation E(0, g, 1) = 0 (recall that Q1 is a zero of the
function f on the generic fiber Eη). We verify that this cover is unramified
(the genus of Q(U ′) equals 2). Therefore the base change ε′ : E ⊗U U ′ → U ′ is
still smooth. This time, there is a section, namely the horizontal divisor Q1,
so the fibration becomes an elliptic surface. On this surface, let us consider
the divisor D = 2Q1 + 2Q2 + 2Q3 (where doubles are calculated with Q1 as
the origin). The restriction of the morphism ε′ to D gives rise to a degree 3
cover D → U ′. This cover has a single point above the value t we are looking for.
Using a Weierstrass model of the elliptic surface, it is an easy computational task
to deduce the actual value of t. Details of the computations are unfortunately
too large to figure in this paper. The result is that only T = −1 holds. �

5We know that Et is defined over Q so the value t is an element of U(Q). Unfortunately,
knowing that a point on a curve is defined over Q does not help to find it.
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Since we know an algebraic model of the universal family ϕ : Eη → P1
Q(T ),

it is very easy to compute the specialization ϕ−1 : E−1 → P1
Q. We deduce an

explicit algebraic model of X0(2) → X (1). The equation is simplified by taking
the unitarization in f of ET=−1(

1561
1850f,− 70

37g, 1) in place of the specialization
of E at T = −1 directly.

Corollary 3 The curve X0(2) has equation:

f3 − f2g − f2 − 25
84fg +

40
147f − 625

702g
3 + 50

441g − 640
9261 = 0

and the cover X0(2) → X (1) is given by the function:

ϕ = − 241129
125 f2g− 36309

125 f2+ 1715
3 fg2+ 22099

30 fg− 637
200f− 1715

9 g3+ 1225
36 g2− 1708

45 g− 1301
75 .

It is a degree 9 cover ramified at ϕ = ∞ and at the three roots of x3 − x2 −
992x− 20736.

Knowing this model, it is possible to check some easy facts.
• Since w2 is defined over Q, its set of fixed points, i.e. Q1, Q2, Q3 and

a fourth point R, is Galois invariant. But so is {Q1, Q2, Q3}, hence R is Q-
rational. It has (f, g)-coordinates equal to

(

16
21 , 0

)

. Thus X0(2) is an elliptic
curve which, as suggested by Watkins [Elk06, §4], is Q-isomorphic to the elliptic
curve [1,−1, 1,−65773,−6478507].

• The involution w2 of Q(f, g) is given by:

w2(f) =
733824f2 − 733824fg − 454272f + 1715000g3 − 218400g + 133120

4501875g3 + 733824g + 279552
,

w2(g) =
−91728f2g + 91728fg2 + 56784fg + 62244g2 − 3328g

214375g3 + 34944g + 13312
.

It fixes the Qi’s and the rational point
(

16
21 , 0

)

.
• Besides the absolute Hurwitz space U , we have also computed an explicit

model of the inner Hurwitz space which parameterizes the PSL2(F8)-Galois
covers. The latter covers the first one by a degree three cyclic morphism. The
field of definition of the points above T = −1 is known to be the field of moduli
of the Galois closure of the cover X0(2) → X (1), that is the cover X (2) →
X (1). Here this field of definition is K itself, which was expected since the
cover X (2) → X (1) is known to be defined over K (we recall that the field of
moduli is included in all the fields of definition).

3 Rational CM points on X (1)

We begin by considering the CM elliptic points of order 2, P1, P2, P3 on X (1)
corresponding to the field K(

√
−1). According to Shimura’s result, the Hilbert

class field of K(
√
−1) must satisfy:

HK(
√
−1) = K(

√
−1) ·K(P1),

9



We check that the field of definition of the Pi’s is the cubic field Q(θ1) with θ31−
θ21 − 4θ1 + 12 = 0 whose discriminant is equal to 22132; moreover we truly
have HK(

√
−1) = K(

√
−1, θ1).

Following Elkies [Elk98, §5.3], a rational CM point on X (1) must come from
a CM a field L which is not only Galois over K but over Q. Thus L must be
equal to K(

√
−D) for some D ∈ Z>0 such that Q(

√
−D) has class number one.

An easy computation shows that only D = 3, 7, 8 can appear.

Proposition 4 On X (1) there are CM points which are defined over Q:

1. the point with ϕ = ∞ is a CM point corresponding to the field K(
√
−3),

2. the point with ϕ = 24·33·11
53 is a CM point corresponding to the field K(

√
−7),

3. the point with ϕ = − 23549
53 is a CM point corresponding to the field K(

√
−2).

Proof — The point with ϕ = ∞ is known to correspond to the CM fieldK(
√
−3).

In order to calculate some other rational CM points, we compute the “modular
polynomial” Φ2(X,Y ) which is such that Φ2(ϕ,ϕ ◦ w2) = 0. It is a symmetric
polynomial of bi-degree (9, 9). The polynomial Φ2(X,X) factorizes into:

Φ2(X,X) =
(

X − 4752
125

)2 (
X + 23549

125

) (

X3 −X2 − 992X − 20736
)

·
(

X3 + 95568
125 X2 − 1212672

125 X − 203493376
125

)2 ·
(

X3 − 16752
125 X2 − 22910208

15625 X + 1126199296
15625

)2
.

The two rational roots of this polynomial are necessarily rational CM points
on X (1).

On X0(2) there is a point Q, defined over Q(
√
−7), such that ϕ(Q) =

ϕ(w2(Q)) = 4752
125 . This means that the point ϕ = 4752

125 is a CM point cor-

responding to K(
√
−7).

There are eight points on X0(2) above the ϕ-value − 23549
125 which form a

complete set of Galois conjugates over Q and of which the field of definition is
a degree eight number field M . The compositum K(

√
−2) ·M is the 2-ray class

field of K(
√
−2). Thus, the point with ϕ-value − 23549

125 is necessarily a CM point

corresponding to the field K(
√
−2). �
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