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A simple reversible Turing machine with four states, three symbols and no halting configuration is constructed that has no periodic orbit, simplifying a construction by Blondel, Cassaigne and Nichitiu and positively answering a conjecture by Kari and Ollinger. The constructed machine has other interesting properties: it is symmetric both for space and time and has a topologically minimal associated dynamical system whose column shift is associated to a substitution. Using a particular embedding technique of an arbitrary reversible Turing machine into the one presented, it is proven that the problem of determining if a given reversible Turing machine without halting state has a periodic orbit is undecidable.

• reversible,

• both space and time symmetric,

• without periodic points (aperiodic),

• topologically transitive and minimal,

• with a substitutive trace shift, and

• small: four states and three symbols, Almost periodic points exists in any metric dynamical system [START_REF] Birk | Quelques thÃľorÃĺmes sur les mouvements des systÃĺmes dynamiques[END_REF], but several examples of systems without periodic points exist. Nevertheless, when in 1997 Kůrka considered Turing machines from a dynamical systems point of view, he conjectured that the existence of periodic points in this model was necessary. The intuition suggests that a non-trivial Turing machine will always need to cover arbitrary long distances to avoid temporal periodicity, and most machines do this by regularly moving over periodic configurations. A counterexample was found later by Blondel, Cassaigne and Nichitiu [START_REF] Blondel | On the presence of periodic configurations in Turing machines and in counter machines[END_REF] and the approach taken by Kůrka gave birth to a series of publications about dynamical properties of Turing machines [START_REF] Oprocha | On entropy and Turing machine with moving tape dynamical model[END_REF][START_REF] Jeandel | Computability of the entropy of one-tape Turing machines[END_REF][START_REF] Gajardo | One head machines from a symbolic approach[END_REF][START_REF] Gajardo | Zigzags in Turing machines[END_REF]. Considering Turing machines as dynamical systems has several motivations (and difficulties). Motivations are related to the study of complexity of dynamical systems in the sense of predictability of the system behaviour from its description and initial conditions. If a universal Turing machine is embedded into a given dynamical system, this one inherits the complexity of the machine, and in particular several questions about the system result to be undecidable. But typical undecidable problems about Turing machines are not always natural for dynamical systems. One of the drawbacks comes from the existence, in the context of Turing machines, of a finite initial configuration and a starting and a halting state. Which, in terms of dynamical systems, imply to work over a particular subset of points (usually a non-compact subset), and to be limited to systems that halt at some points (in particular when starting at the halting state). Kůrka looked at Turing machines directly as dynamical systems by omitting the halting and starting states and eliminating the notion of blank state to work over arbitrary initial tapes. In this new context, the difficulty comes from the fact that very few undecidable problems consider the behavior of machines without initial state and starting from potentially infinite configurations. Surprisingly enough, the first problem of this kind was studied and proved undecidable in 1966 by Hooper [START_REF] Hooper | The undecidability of the Turing machine immortality problem[END_REF]. The immortality problem asks for the existence of initial configurations where the machine does not halt (or where a given state is never attained). We remark that it is different from the totality problem, that asks for the existence of a finite configuration where the machine does not halt (for example, a machine that goes to the left over any symbol but halts when attaining the blank symbol is total, but not mortal). Defining mortal machines requires to avoid unbounded searches through a repetitive movement which would lead to immortal trajectories. Hooper uses a technique of recursive calls which implements unbounded searches by performing imbricate calls to searches of length three. This is the technique used in [START_REF] Blondel | On the presence of periodic configurations in Turing machines and in counter machines[END_REF] to define a complete (without halting states) Turing machine without periodic points. There, the undecidability of the problem of existence of periodic points for complete Turing machines is also proved. Another achievement in this direction is the undecidability of the periodicity problem, established by Kari and Ollinger [START_REF] Kari | Periodicity and immortality in reversible computing[END_REF]. They focus on the restricted class of reversible machines. It is not necessary to recall the importance of "reversibility" in the context of computer science and dynamical systems, but we would like to point out its relation to other properties. A system is called "reversible" when the precedent configuration is uniquely defined (if it exists). In the case of complete Turing machines, it results to be equivalent to bijectivity and surjectivity of the global transition function, and it can be easily checked from the machine transition rule. Surjectivity is a necessary condition for transitivity, which says that, for every pair of points, there is a third point that passes as close as we want to both. A system which is transitive has a high uniformity, since most points pass near every other point and have, then, a similar behaviour over an arbitrary long time. Minimality is a stronger property. A minimal system is a system without proper subsystems, i.e., with no topologically closed subsets which are also closed for the dynamics. In a minimal system, every point passes, as close as we want, to any other point. Minimal systems have no periodic orbits, because these are proper subsystems. Thus aperiodic and reversible machines are good candidates to be minimal systems. The machines defined in [START_REF] Blondel | On the presence of periodic configurations in Turing machines and in counter machines[END_REF] are not reversible, and the machines defined in [START_REF] Kari | Periodicity and immortality in reversible computing[END_REF] are not complete, thus no dynamical system can be defined from them. The methods used in these papers were not directly adaptable to the construction of such machines, and their existence was stated as an open question in [START_REF] Kari | Periodicity and immortality in reversible computing[END_REF]. The SMART machine answers this question positively and the associated system also results to be minimal. Usually minimal systems come from substitutions and SMART is not the exception. In Section 2 a subshift is associated to SMART, following [START_REF] Gajardo | One head machines from a symbolic approach[END_REF], and it is proved that it is a substitutive subshift of a primitive substitution of non-constant length that we exhibit. Stronger than reversibility, time-symmetry says that the inverse of a function is conjugated with the function itself through an involution, which in this context means that the reverse of the Turing machine has the same rule that the direct machine, up to a transposition of the symbols and states. SMART is also time symmetric. The existence of SMART allows the definition of a big family of aperiodic machines in Section 3, from which the problem of existence of periodic points, restricted to the context of reversible and complete Turing Machines, is proved to be undecidable.

A small aperiodic complete and reversible Turing machine

In this section we present the SMART machine and prove its aperiodicity. The proof mainly follows the scheme developed in [START_REF] Blondel | On the presence of periodic configurations in Turing machines and in counter machines[END_REF].

1.1. Preliminary definitions and the machine 1.1.1. Word notation. In this work, Σ * denotes the set of finite sequences of elements of Σ, called finite words. Also, Σ ω represents the set of right-infinite sequences of elements of Σ, called semi-infinite words, and ω Σ denotes the left-infinite sequences of Σ. Finally, Σ Z denotes the set of bi-infinite words.

Turing Machine.

A Turing machine (TM) M is a tuple M = (Q, Σ, δ), where Q is a finite set of states, Σ is a finite set of symbols, and

δ ⊆ Q × Σ × Σ × Q × {-1, 0, +1} is the transition table.
M is said to be deterministic if δ is functional in its two first components; it is said to be complete if δ is total in its two first components.

Configuration of a Turing machine.

A configuration is a tuple (w, i, r

) of Σ Z ×Z×Q. A finite configuration is a tuple (v, i, r) of Σ m ×{0, 1, ..., m- 1} × Q, for some m ∈ N. A right semi-finite configuration is a tuple (u, i, r) of Σ ω × N × Q. A left semi-finite configuration is an element (u, i, r) of ω Σ × -N × Q.

Instructions of a Turing machine.

An instruction (r, s, s ′ , r ′ , c) can be applied to a configuration (w, i, r ′′ ) if w i = s and r ′′ = r, leading to the configuration (w ′ , i + c, r ′ ), where w ′ i = s ′ and w ′ k = w k for all k = i. If the configuration is finite or (right or left) semi-finite with domain K, and i + c ∈ K, then the instruction cannot be applied and the machine halts. If no instruction can be applied, the machine halts too. It is said that the instruction (r, s, s ′ , r ′ , c) starts from the state r and goes to state r ′ . We say that M reaches configuration y from x if y is the result of evolving M on x over a finite number of steps, and we denote this by x ⊢ * y. This notion is considered for finite, semi-finite and infinite configurations. M is said to be reversible if each configuration has at most one immediate predecesor. In the computational context, Turing machines have an initial and a final state, but since we are studying its dynamics, we omit these definitions.

The SMART machine.

The machine which is the object of this article is described in figure 1. We remark the symmetry between states b and d, and between p and q. State b writes the same as d on the tape, but it goes in the opposite direction of d. The analogous occurs with p and q.

Basic movements of SMART

The behaviour of SMART consists in recursively applying different types of bounded searches. These can be described by the next four propositions. They say that the machine finally transverse every block of 0s. But in the proof of these propositions, we can see that it does it by recursive calling smaller bounded searches in a nested way. Proof. We make an induction over n. The basis can be done by hand by simulating the machine. Let us take n ≥ 1. We will do the proofs just for B(n) and

B(n): (∀s + ∈ {1, 2})(∀s * ∈ {0, 1, 2}) s * 0 n 0 s+ b ⊢ * s * 0 n+1 s+ b D(n): (∀s + ∈ {1, 2})(∀s * ∈ {0, 1, 2}) s+ 0 0 n s * d ⊢ * s+ 0 n+1 s * d P (n): (∀s + ∈ {1, 2}) 0 0 n s+ p ⊢ * 0 n+1 s+ p Q(n): (∀s + ∈ {1, 2}) s+ 0 n 0 q ⊢ * s+ 0 n+1 q Lemma 1. B(n), D(n), P (n) and Q(n) are true for all n ∈ N. p b d q 0|1 ◮ 1|1 ◮ 2|2 ◮ 0|1 ◭ 1|1 ◭ 2|2 ◭ 2|0 ◭ 0|2 ◮ 1|0 ◮ 2|0 ◮ 0|2 ◭ 1|0 ◭
P (n), because D(n) and Q(n) are symmetric. Let us suppose that B(n -1), D(n -1), P (n -1) and Q(n -1) are true. First we prove B(n). s * 0 0 0 n-2 0 s+ b Apply B(n -1) s * 0 0 0 n-2 0 s+ b One step s * 1 0 0 n-2 0 s+ d Apply D(n -1) s * 1 0 0 n-2 0 s+ d One step s * 1 0 0 n-2 0 s+ q Apply Q(n -1) s * 1 0 0 n-2 0 s+ q One step s * 0 0 0 n-2 0 s+ b (1)
Now, for P (n):

0 0 0 n-2 0 s+ p One step 2 0 0 n-2 0 s+ d Apply D(n -1) 2 0 0 n-2 0 s+ d One step 2 0 0 n-2 0 s+ q Apply Q(n -1)
2 0 0 n-2 0 s+ q One step 0 0 0 n-2 0 s+ p

Apply P (n -1)

0 0 0 n-2 0 s+ p (2)
It is important to remark that applying B(n) always implies to apply B(n -1) as the first step, and also B(n -2) and B(0). Analogously, applying P (n) implies to apply P (n -1) and P (0) as the last step. Interestingly, just before applying P (0) by the last time, i.e., 3 steps before finishing P (n), the head is on the rightmost 0 with state p. This will be used in the future. Thus, we define the next two propositions which also hold.

P ′ (n): (∀s + ∈ {1, 2}) 0 0 n s+ p ⊢ * 0 n 0 s+ p Q ′ (n): (∀s + ∈ {1, 2}) s+ 0 n 0 q ⊢ * s+ 0 0 n q 1.

Aperiodicity

A dynamical system is a pair (X, T ), where X is a set called phase space and T :

X → X is called global transition function. A point x is called periodic for T if there exists n ∈ N such that T n (x) = x.
We can associate a dynamical system to a Turing machine by describing the configuration set by

X = ω Σ × Q × Σ ω ,
where the first component is the configuration to the left of the head, and the third component is the configuration to the right of the head. T consists in one application of δ over X, by shifting the tape and leaving the head at the center. This dynamical system is known as Turing machine with moving tape (TMT) and it was introduced in [START_REF] Kůrka | On topological dynamics of Turing machines[END_REF]. T is a total function only if M is complete. Reversibility of M results to be equivalent to biyectivity of T .

Following [START_REF] Kari | Periodicity and immortality in reversible computing[END_REF], we say that a Turing machine M is aperiodic if its associated moving tape system T has no periodic point. Let us remark that periodic points in the moving tape system can correspond to periodic configurations where the machine makes repetitive movements in a fixed direction. First, we prove the aperiodicity of two particular but important points. Proof. Starting with any of these configurations, the machine makes a few steps (≤ 9), leading to s+ 0 1 0 w p , with s + ∈ {1, 2} depending on the initial state (if p then s + = 2, if b then s + = 1). Now we can apply Lemma 2 to see that the machine's evolution cannot be periodic.

In order to generalize aperiodicity to any configuration, we will prove that, in the evolution of every configuration, arbitrary large blocks of 0s appear in a recurrent way. Proof. We just make the proof for initial state q, since p is symmetrical. Let us start with n maximal such that x ∈ C n . If there is no maximal n, then x is already on every C m . 

1 0 0 0 n s++ d one step 1 0 0 n 0 s++ q Q ′ (n + 1)
1 0 0 n 0 s++ q we are done Theorem 1. The SMART machine has no periodic points.

Proof. Consider an arbitrary configuration. After less than 9 steps, the head will be reading a 0 symbol in either state q or p, after which, by propositions P ′ and Q ′ , it arrives to one of the sets C n described in Lemma 4. The amount of 0s will grow then, expanding to the right or to the left. At some point, the machine will either reach a configuration of the form 0 0 w r , with r ∈ {b, p} (or its symmetric), which we know to be aperiodic from Lemma 2, or it will pass by an infinite sequence of configurations of the form 0 0 n-1 s+ r with r ∈ {b, p} (or its symmetric), implying that its behaviour is not periodic.

Corollary 1.

There exists a complete reversible Turing machine without any periodic point.

Other properties of the SMART machine

More definitions 2.1.1. Subshifts, languages and subword.

The shift function σ, is defined in Σ ω by σ(w) i = w i+1 . Finite and semi-infinite words can be concatenated in a natural way. A finite word v is said to be a subword of another (finite or semi-infinite) word u, if there exist two indices i and j, such that v = u i u i+1 ...u j . In this case we write: v ⊑ u. Given a subset S ⊆ Σ ω , a formal language is defined:

L(S) = {v ∈ Σ * | (∃u ∈ S) v ⊑ u} . (4) 
Reciprocally, given a formal language L, a set of infinite sequences can be defined:

S L = {u ∈ Σ ω | (∀v ⊑ u) v ∈ L} . ( 5 
)
When S satisfies S L(S) = S, it is called a subshift.

Metric

A metric is defined in Σ ω by d(u, v) = 2 -n if n is the smallest natural such that u n = v n .
This metrics makes Σ ω a compact space which means that every sequence has an accumulation point. Subshifts coincide with subsets of Σ ω which are topologically closed and σ-invariant. Analogously, a metric can be defined in the phase space of a Turing machine with moving tape

X: d((u, r, u ′ ), (v, r ′ , v ′ )) = max{d(u, v), d(u ′ , v ′ )}+∆ rr ′ ,
where ∆ rr ′ = 1 if r = r ′ and 0 if r = r ′ . With this metric, X is compact and T is a continuous function, thus (X, T ) is a topological dynamical system. The cylinder of a finite word v is

[v] = {w ∈ Σ ω : w 0 . . . w |v|-1 = v}.
It corresponds to all the elements in S which are at a distance less than or equal to 2 -|v| from any point that starts with v. Analogously, a finite configuration (v, r, v ′ ) will have an associated cylinder

[(v, r, v ′ )] = {(w, r, w ′ ) ∈ X : w |v| . . . w 1 = v ∧ w ′ 0 . . . w ′ |v ′ |-1 = v ′ }.

The t-shift

Taking into account the notions previously introduced, we can define the projection π : X → Q × Σ by π(w ′ , r, w ′′ ) = (r, w ′′ 0 ). Now we define the sequence τ (x) = (π(T n (x))) n∈N , it is called the trace of x. The t-shift associated to T , denoted by S T ⊆ (Q × Σ) ω , is the image of τ : S T = {τ (x) | x ∈ X}. Since τ is continuous and surjective from (X, T ) to (S T ⊆ (Q × Σ) ω , σ), S T is a subshift. Function τ can also be applied to finite and semi-finite configurations, with the consideration that, if the evolution stops, the obtained sequence will be finite.

Dynamical Properties

In a dynamical system (X, T ), the orbit of a point is O T (x) = {T (x), T 2 (x), ...}.

A point x in a dynamical system (X, T ) is transitive if for every cylinder U , there exists some natural n such that T n (x) ∈ U . This is equivalent to saying that the orbit of x is topologically dense. If such a point exists, the system is said to be transitive.

A dynamical system (X, T ) is said to be minimal if each of its points is transitive. It is equivalent to having no proper subsystem, i.e., no proper subset Y ⊂ X is topologically closed and T invariant.

A substitution φ is a morphism φ : A * → A * . It can be extended to A ω . A semi-infinite word w ∈ A ω is a fixed point of φ if φ(w) = w. A substitutive subshift is the closure of the orbit of a fixed point of some substitution.

Time symmetry

The inverse of a reversible Turing machine is not exactly a Turing machine, since for the inverse machine rules are applied by moving before reading/writing. With this in mind, we remark that the rules of the inverse of a machine (Q, Σ, δ) (that we will call δ -1 ) are obtained by "reversing" the original rules as follows.

(r ′ , s ′ , s, r, -c) ∈ δ -1 ⇐⇒ (r, s, s ′ , r ′ , c) ∈ δ A Turing machine is said to be time-symmetric if there exist involutions

h Q : Q → Q and h Σ : Σ → Σ such that: (h Q (r), h Σ (s), h Σ (s ′ ), h Q (r ′ ), c) ∈ δ -1 ⇐⇒ (r, s, s ′ , r ′ , c) ∈ δ Also, if we define h : X → X such that h(w ′ , r, w ′′ ) = (h Σ (. . . w ′ -2 w ′ -1 ), h Q (r), h Σ (w ′ 0 w ′′ )), if state r is reached from the left, or h(w ′ , r, w ′′ ) = (h Σ (w ′ w ′′ 0 ), h Q (r), h Σ (w ′′ 1 w ′′ 2 . . .))
, if state r is reached from the right; we have:

T (h(x)) = h(T -1 (x))
This is an adaptation of the definition of time symmetry in cellular automata, as seen in [START_REF] Gajardo | On time-symmetry in cellular automata[END_REF]. Let us remark that since h is local, it can also be applied to finite configurations.

SMART dynamical properties

Proposition 1. The SMART machine is time-symmetric.

Proof. Using involutions: h Σ (0) = 0, h Σ (1) = 2, h Q (d) = q and h Q (b) = p, we will have that the SMART machine is time-symmetric as can be seen on the diagram of the inverse machine in Fig. 2. With the previous result, we can now prove that every finite configuration can be reached from a block of 0s of the apropiate size. Lemma 5. For every finite word v ′ ∈ {0, 1, 2} * of length n, and every i ∈ {1, . . . , n}, there exist

p b d q 1|0 ◭ 2|0 ◮ 0|1 ◮ 1|0 ◮ 2|0 ◭ 0|1 ◭ 1|1 ◮ 2|2 ◮ 0|2 ◮ 1|1 ◭ 2|2 ◭ 0|2 ◭ b p q d 0|2 ◮ 1|1 ◮ 2|2 ◮ 0|2 ◭ 1|1 ◭ 2|2 ◭ 1|0 ◭ 0|1 ◮ 2|0 ◮ 1|0 ◮ 0|1 ◭ 2|0 ◭
k 1 , k 2 ∈ N and r ∈ Q such that 2 0 n ′ 0 2 b ⊢ * 2 k 1 v ′ 1 ... v ′ i ... v ′ n 2 k 2 r
, where

n ′ = k 1 + k 2 + n -3.
Proof. First, we will use the fact that the SMART machine is time-symmetric, so applying h • T t • h is the same as applying T -t , for any time t ∈ N. So now we just have to prove that h

2 k 1 v ′ 1 ... v ′ i ... v ′ n 2 k 2 r = 1 k 1 h Σ (v ′ 1 ) ... ... ... h Σ (v ′ n ) 1 k 2 h Q (r)
will eventually reach h 2 0 n ′ 0 2 b = 1 0 n ′ 0 1 p . Based on the proof of Theorem 1, we know that we can generate an increasing amount of 0 symbols in the tape. For this reason, we know that

1 h Σ (v ′ 1 ) ... ... ... h Σ (v ′ n ) 1 h Q (r)
will eventually reach one of the configurations considered in Lemma 4, with a block of 0s that will grow until arriving to one of the next configurations:

1 0 j 0 v1 ...v l 1 p
or 1 0 0 j v1 ...v l 1 q or 1 v1... v l 0 0 j 1 q or 1 v1...v l 0 j 0 1 p .

Thus, applying either Q ′ (0) or P ′ (0) we arrive to one of the next situations:

(i)

1 0 j 0 v1 ...v l 1 p or (ii) 1 0 0 j v1 ...v l 1 q or (iii) 1 v1... v l 0 0 j 1 q or (iv) 1 v1...v l 0 j 0 1 p , (6) 
for some v ∈ {0, 1, 2} n-j-1 , and v 1 = 0 in situations (i) and (ii), and v l = 0 in the other two.

In order to reach 1 0 n ′ 0 1 p , we will need a certain amount of 1 symbols at the left or right of the initial configuration; this amount depends on v. Let k(v) be the function that gives the amount of non-0 symbols in v. As before, we will do the proof only for configurations of the form (i) and (ii).

Case (i)

1 k(v) 1 0 0 j v1 v2 ... v l 1 p
Regardless of the value of v 1 = 0 in 1 or 3 steps we reach the next, with i = 0 or 1

1 k(v) 1 0 j-i+1 0 0 i v2 ... v l 1 q
Apply Q(ji)

1 k(v) 1 0 j 0 0 v2 ... v l 1 q
Two steps

1 k(v) 0 0 j 0 0 v2 ... v l 1 p P (j + 2)(or more if v 2 = 0) 1 k(v) 0 0 j 0 0 v2 .. v l 1 p
applying the previous steps iteratively k(v) -1 times

1 0 0 n ′ 1 p Apply P (n ′ ) 1 0 0 n ′ 1 p (7)
Case (ii)

1 k(v) 1 0 0 j v1 v2 ... v l 1 q
Two steps 1 k(v) 0 0 0 j v1 v2 ... v l 1 p P (j + 1)

1 k(v) 0 0 0 j v1 v2 ... v l 1 p
Which reduces to case 1 [START_REF] Kari | Periodicity and immortality in reversible computing[END_REF] In this way, we have proved that, for (i) and (ii), we will always reach 1 0 n ′ 0 1 p , with n ′ = j + 1 + k(v). For cases (iii) and (iv), we can assure, by symmetry, that the machine will reach 1 0 n ′ 0 1 q , then:

1 1 0 n ′ 0 1 q Two steps 1 0 0 n ′ 0 1 p Apply Q ′ (n ′ + 1) 1 0 0 n ′ 0 1 p (9)
Concluding that, for the last two cases, we need just one additional 1 symbol to reach the desired configuration.

Lemma 6. The orbits of configurations 0 0 ω r1 and ω 0 0 r2 are dense in X, with r 1 ∈ {b, p} and r 2 ∈ {d, q}. Proof. We just need to prove that any finite configuration can be reached from 0 0 ω b . The other cases can be proved by symmetry and time symmetry. Since any finite configuration can be reached from 2 0 n 0 2 b for some n, we just need to prove that 0 0 ω b can reach 2 0 n 0 2 b , for any n ∈ N.

0 0 ω b One step 1 0 0 ω d
Apply D(n + 3)

1 0 0 n+1 0 0 0 ω d
One step

1 0 0 n+1 0 1 0 ω b
Apply B(n + 2)

1 0 0 0 n+1 1 0 ω b
Two steps

1 2 0 0 n+1 1 0 ω d
Apply D(n + 1)

1 2 0 n+1 0 1 0 ω d
Two steps

1 2 0 n 0 2 1 0 ω b Corollary 2.
The SMART machine is transitive as well as its t-shift.

Theorem 2. The SMART machine is minimal as well as its t-shift.

Proof. As we know from Lemma 4 and Theorem 1, we can "create" an arbitrary amount of 0s starting from any initial configuration. Now, from Lemma 5, if the correct amount of 0 is provided, we can reach any finite configuration. This proves that every point is transitive, and so SMART is minimal. Since its t-shift is a factor of (X, T ), it inherits minimality.

The t-shift is substitutive

In this part, we will prove that the t-shift is not only minimal, but also substitutive. For this, we will present a substitution and, with a pair of results, prove that the t-shift of SMART is the closure of the shift orbit of a fixed point of that substitution. First, we recursively define the following functions.

• B : {1, 2} × N → (Q × Σ) * B(s + , n) = B(s + , n -1) 0 b D(1, n -1) s+ d Q(1, n -1) 1 q B(s + , 0) = 0 s+ 1 b d q • D : {1, 2} × N → (Q × Σ) * D(s + , n) = D(s + , n -1) 0 d B(1, n -1) s+ b P (1, n -1) 1 p D(s + , 0) = 0 s+ 1 d b p • P : {1, 2} × N → (Q × Σ) * P (s + , n) = 0 p D(2, n -1) s+ d Q(2, n -1) 2 q P (s + , n -1) P (s + , 0) = 0 s+ 2 p d q • Q : {1, 2} × N → (Q × Σ) * Q(s + , n) = 0 q B(2, n -1) s+ b P (2, n -1) 2 p Q(s + , n -1) Q(s + , 0) = 0 s+ 2 q b p Lemma 7. B(s + , n) is the trace corresponding to applying proposition B(n) to s * 0 n 0 s+ b until s * 0 ns + 1 s+ b .
The analogous goes for D(s + , n), P (s + , n) and Q(s + , n).

Proof. It is enough to see the proof of lemma 1 and take the trace. Now, let us define the substitution.

φ : (Q × Σ) * → (Q × Σ) * φ( 0 b ) = 0 0 1 1 b d b p = 0 b D(1, 0) φ( s+ b ) = s+ b φ( 0 p ) = 0 0 2 1 p d b p = 0 p D(2, 0) φ( s+ p ) = 0 s+ 2 s+ p d q p = P (s + , 0) s+ p φ( 0 d ) = 0 0 1 1 d b d q = 0 d B(1, 0) φ( s+ d ) = s+ d φ( 0 q ) = 0 0 2 1 q b d q = 0 q B(2, 0) φ( s+ q ) = 0 s+ 2 s+ q b p q = Q(s + , 0) s+ q Lemma 8. B(s + , n) = B(s + , 0)φ(B(s + , n -1)) D(s + , n) = D(s + , 0)φ(D(s + , n -1)) P (s + , n) = φ(P (s + , n -1))P (s + , 0) Q(s + , n) = φ(Q(s + , n -1))Q(s + , 0)
Proof. It is enough to prove it for B(s + , n) and P (s + , n), the other cases can be proved by symmetry.

B(s

+ , 0)φ(B(s + , n)) = B(s + , 0)φ(B(s + , n -1) 0 b D(1, n -1) s+ d Q(1, n -1) 1 q ) = B(s + , 0)φ(B(s + , n -1)) 0 b D(1, 0)φ(D(1, n -1)) s+ d φ(Q(1, n -1))Q(1, 0) 1 q ) = B(s + , n) 0 b D(1, n) s+ d Q(1, n) 1 q = B(s + , ns + 1) φ(P (s + , n))P (s + , 0) = φ( 0 p D(2, n -1) s+ d Q(2, n -1) 2 q P (s + , n -1))P (s + , 0) = 0 p D(2, 0)φ(D(2, n -1)) s+ d φ(Q(2, n -1))Q(2, 0) 2 q φ(P (s + , n -1))P (s + , 0) = 0 p D(2, n) s+ d Q(2, n) 2 q P (s + , n) = P (s + , n + 1)
Theorem 3. The t-shift of SMART is the closure of a fixed point of substitution φ.

Proof. It is enough to prove that φ n ( 0 b ) = 0 b D(1, n -1) for all n ∈ N, because, from lemma 7, 0 b D(1, n -1)
is the trace of 0 0 ω b over the first steps and, as the configuration is transitive, the orbit of this configuration is dense. We will prove it by induction.

Base of induction: φ(

0 b ) = 0 0 1 1 b d b p = 0 b D(1, 0) Induction hypothesis: φ n ( 0 b ) = 0 b D(1, n -1)
Induction thesis:

φ n+1 ( 0 b ) = φ(φ n ( 0 b )) // Induction hypothesis = φ( 0 b D(1, n -1)) = 0 b D(1, 0)φ(D(1, n -1)) // Lemma 8 = 0 b D(1, n) (10)

An application of SMART

We will prove the second part of the conjecture in [START_REF] Kari | Periodicity and immortality in reversible computing[END_REF]: "it is undecidable whether a given complete RTM admits a periodic configuration".

In order to ease the understanding of the proof, we will present two key proof techniques.

Proof techniques 3.1.1. Reversing the computation

This technique is used in [START_REF] Kari | Periodicity and immortality in reversible computing[END_REF]. It takes a reversible Turing machine M = (Q, Σ, δ), and creates a new reversible and complete machine M ′ = (Q×{-, +}, Σ, δ ′ ), where (r, +) and (r, -) states represent M in state q running forwards or backwards in time, respectively. If at some iteration no instruction of M can be applied, the time direction is switched.

It is noteworthy to say that we can choose to switch the direction on just a set of pairs (state,symbol), defining in this way a possibly incomplete machine. For example, we can just switch the sign on the halting state of M ; then M ′ will come back to the initial configuration if M halts from it.

Embedding

This technique consists in inserting a machine M inside a machine N to produce a new machine N , in such a way that some property of M will be translated into a property of N . In order to do this, some states of N are duplicated and connected to particular states of M . For example, in order to insert M = (Q, Σ, δ) inside N = (Q ′ , Σ, δ ′ ), we select a state r ∈ Q ′ and split it into two new states, r ′ and r ′′ , and connect the input instructions of r to r ′ and the outputs to r ′′ . Now one can connect r ′ with the starting state of M , and r ′′ with the halting state of M . The connection can be done by a no movement and no writing instruction ((r ′ , * , * , r 0 , 0)). We can also connect other states of M to those of N . In order to do this, we can use another state from N or we can split one of the new states r ′ or r ′′ into series.

Undecidability of the aperiodicity of complete reversible Turing machines

In [START_REF] Kari | Periodicity and immortality in reversible computing[END_REF], it is proved that the aperiodicity of (non-complete) reversible Turing machines is undecidable. There the proof is performed by reduction from the reachability problem of aperiodic reversible Turing machines: Given an aperiodic and reversible Turing machine M = (Q, Σ, δ) and two states r 1 , r 2 , decide whether from r 1 M can reach r 2 or not, which is proved undecidable in the same paper. The proof uses the technique of "reversing the computation" between r 1 and r 2 in order to define a reversible machine which has a periodic point if and only if (M , r 1 , r 2 ) satisfies reachability. Now we will combine this idea with the technique of "embedding" and the SMART machine to define a complete reversible machine with the same characteristic.

Definition 1. A state r ′ ∈ Q of a Turing machine M = (Q, Σ, δ) is said to be defective if there exists a symbol s ′ ∈ Σ such that there exists no instruction (r, s, s ′ , r ′ , c), for no r ∈ Q, s ∈ Σ and c ∈ {-1, 0, +1}. Analogously, we say that r ′ is an error state if there exists a symbol s ′ ∈ Σ such that there exists no instruction (r ′ , s ′ , s, r, c), for no r ∈ Q, s ∈ Σ and c ∈ {-1, 0, +1}.

Theorem 4. It is undecidable whether a given complete RTM admits a periodic orbit.

Proof. Let us take an aperiodic RTM machine M = (Q, Σ, δ) and two states r 1 , r 2 ∈ Q. Let us suppose that M has m defective states and n error states. Now, let us remove all transitions starting at state r 2 and all transitions arriving to state r 1 . Using the technique of "reversing the computation", we create a new RTM machine M ′ = (Q × {+, -}, Σ, δ ′ ) such that machine M is simulated forwards and backwards in time as we explained before, but now the direction is switched from -to + only in state r 1 and from + to -in state r 2 .

The machine M ′ is next duplicated to obtain two machines M ′ 1 and M ′ 2 . We will denote their forward and backward parts by M ′ i + and M ′ i -respectively. The embedding into SMART is performed as follows. We invite the reader to look at figure 3 for a better understanding. We first split two states of SMART as many times as needed to have the necessary connections. We will denote by q ′ i , q ′′ i , with i ∈ {1, ..., m} the set of split states of the first group, and by p ′ j and p ′′ j , with j ∈ {1, ..., n}, the set of split states of the second group.

• States q ′ i are connected to defective states of M ′ 1 + and states p ′ j are connected to M ′ 1 -.

• Error states of machine M ′ 1 are directly connected to defective states of machine M ′ 2 (going from

M ′ 1 + to M ′ 2 -, and from M ′ 1 -to M ′ 2 +).
• Error states of machine M ′ 2 -are connected to states q ′′ i , and error states of M ′ 2 + are connected to p ′′ j .

The obtained machine will be called SM ART . We first remark that if the machine M can reach r 2 from r 1 , then SM ART has a periodic point. Now let us suppose that r 2 is not reachable from r 1 through M . This new machine is constructed such that, if we enter M ′ 1 through one of the split states r ′ i and we exit, then we exit by r ′′ i and we find that the tape and the position of the head are not modified. We call this property innocuity of the embedding. Let us prove innocuity for the split states q ′ i (the proof for states p ′ j is analogous). If we enter M ′ 1 + by state q ′ i we have three possibilities:

• The first one is to stay inside M ′ 1 + and never exit.

• The second is to go to M ′ 1 -through state r 2 ; then the dynamics is reversed an we are forced to go to M ′ 2 + . Now the dynamics is repeated and we go again to state r 2 of M ′ 2 to finally exit by state q ′′ i . As any computation is next reversed, the tape and the position of the head do not change.

• The third is to go through error states of

M ′ 1 + to M ′ 2 -.
Here the computation is reversed to exit by state q ′′ i . Again the tape and the position of the head do not change.

Thus, if we start on a state of SMART, the SMART dynamics is respected (except in the case we enter an infinite computation of M at some moment, but since M is aperiodic, this is not a problem). Therefore, since SMART is aperiodic, no periodic points appear. Let us study now the case when we start inside M . Three possibilities appear again.

• The first one is to exit the M ′ i system. Then we arrive to the previous case, and we already know that the dynamics will not be periodic.

• The second is to fall into an infinite computation inside one of the parts of M ′ 1 or M ′ 2 . This again cannot be periodic because M has no periodic points.

• The third is to move internally through the different machines M ′ 1 +, M ′ 1 -, M ′ 2 + and M ′ 2 -. But, by construction, the only way of doing this is to alternate between M ′ i + and M ′ i -, and this needs to go from r 1 to r 2 , which is supposed impossible.

We conclude that r 2 is not reachable from r 1 by M , if and only if SM ART has no periodic points. End DefEq.

M ′ 2 - M ′ 2 + r 1 r 2 r 1 p ′′ 1 ... p ′′ n q ′′ 1 ... q ′′ m M ′ 1 + M ′ 1 - r 1 r 2 r 1 q ′ 1 ... q ′ m p ′ 1 .
Add Parametric Relation A : (tape A) (@Eqtape A) reflexivity proved by (@Eqtape refl A) symmetry proved by (@Eqtape sym A) transitivity proved by (@Eqtape trans A) as eqtape equiv.

Add Parametric Morphism A : (@tl A) with signature (@Eqtape A) ==> (@Eqtape A) as tl morph. intros. destruct H. assumption. Qed.

Notation "x :: xs" := (Cell x xs). Notation "x == y" := (Eqtape x y) (at level 70). 
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 1 Figure 1: The SMART machine. An arrow from r to r ′ labelled s|s ′ c represents the instruction (r, s, s ′ , r ′ , c) of the machine.
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  CoInductive Eqtape t t' : Prop := eqtape : hd t = hd t' → Eqtape (tl t) (tl t') → Eqtape t t'.

	Library Tape
	Require Export Relation Definitions.
	Require Export Setoid.
	Set Implicit Arguments.
	Section DefEq.
	.. p ′ n
	Lemma Eqtape refl : ∀ t, Eqtape t t.
	cofix t; intros; constructor.
	reflexivity.
	destruct t0.
	simpl.
	apply t.
	Qed.
	destruct t0.
	simpl.
	destruct H.
	simpl in H0.
	apply t.
	assumption.
	Qed.
	cofix t; intros; constructor. Figure 3: Embedding used in the proof of Theorem 4 destruct H.
	destruct H0.
	rewrite H ; rewrite H0 ; reflexivity.
	destruct t0.
	destruct t'.
	destruct t''.
	simpl.
	destruct H.
	destruct H0.
	simpl in H1.
	simpl in H2.
	apply t with (t' := t'); assumption.
	Qed.

Variable letter : Type. CoInductive tape : Type := Cell { hd: letter; tl: tape }. Lemma Eqtape sym : ∀ t t', Eqtape t t' → Eqtape t' t. cofix t; intros; constructor. destruct H. rewrite H ; reflexivity. destruct t'. Lemma Eqtape trans : ∀ t t' t'', Eqtape t t' → Eqtape t' t'' → Eqtape t t''.

  Map. Variables A B : Type. Variable f : A → B. CoFixpoint map (s : tape A) : tape B := f (hd s)::map (tl s). End Map. Add Parametric Morphism A B f : (@map A B f )with signature (@Eqtape A) ==> (@Eqtape B) as map morph. cofix x; intros; constructor.Lemma map comp: ∀ A B C (f : B → C ) (g : A → B) t, map f (map g t) == map (compose f g) t. [ta sa ta'] [tb sb tb'] [tc sc tc'] H H0. inversion H. inversion H0. apply samecfg0. rewrite H3 ; rewrite H11 ; reflexivity. rewrite H8 ; rewrite H16 ; reflexivity. Qed. Add Relation cfg samecfg reflexivity proved by samecfg refl symmetry proved by samecfg sym transitivity proved by samecfg trans as samecfg equiv. Notation "x === y" := (samecfg x y) (at level 70). Morphism step with signature samecfg ==> samecfg as step morph. Proof. intros [[a ta] sa [a' ta']] [[b tb] sb [b' tb']] H. induction b'; unfold step; unfold goRight; unfold goLeft; simpl; (apply samecfg0; (assumption --(constructor; simpl; [reflexivity | constructor; simpl; [ reflexivity | assumption ]]))).

	destruct x0. Add inversion H.
	destruct y. inversion H2.
	simpl. inversion H7.
	destruct H. simpl in H8.
	simpl in H. simpl in H9.
	rewrite H. simpl in H10.
	reflexivity. simpl in H11.
	destruct x0. rewrite H8.
	destruct y. rewrite H10.
	simpl. apply x. destruct H. simpl in H0. induction sb; Qed.
	assumption. Add Parametric Morphism n : (nstep n) Qed. with signature samecfg ==> samecfg
	as nstep morph.
	Proof.
	induction n; intros. intros A B C f g. -simpl; assumption. cofix t; intros; constructor. -simpl. reflexivity. apply IHn. simpl. apply step morph. apply t. assumption. Qed. Unset Implicit Arguments. Qed.

Definition compose {A B C } (f : B → C ) (g : A → B) := fun x ⇒ f (g x).

intros
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Appendix A. Formal proof of combinatorial lemmas with the Coq proof assistant

The key ingredients of the paper are technical combinatorial lemmas about configurations accessibility. These lemma are handled by a careful case analysis and properly defined inductive properties. We started to investigate how such tedious lemmas can be completely and formally formalized and proved using the Co proof assistant software. The following pages provide the reviewer with complete proof of key lemmas of both the aperiodicity and the time-symmetry of the SMART machine. It is not intended to be published with the main content of the paper but rather provided as an hint to the reviewer that case analysis was indeed check up to the last detail.

The source code is organized as follows:

Tape is a formalization of infinite tapes of symbols (essentially streams) equipped with an adequate equivalence relation.

SMART defines the transition rule of the SMART machine.

Turing is a formalization of the machine dynamics: single and multi-step transitions eqquiped with an adequate equivalence relation on configurations.

SMARTaper states and proves the key lemmas for aperidocity: lemma PQBD corresponds to lemma 1, lemma srun corresponds to lemma 2, lemma irun corresponds to the main argument of lemma 3.

SMARTts states and proves time-symmetry of the SMART machine (lemma inv h and theorem timesym).

Library SMART Require Export Tape.

Inductive letter :

Library Turing Require Export SMART. 

Require Import Arith.

Lemma zzzL0 : ∀ t n, zzz (L0 :: t) n = L0 :: zzz t n.

Proof. induction n.

auto.

simpl; rewrite IHn; reflexivity. Qed.

Definition conf p n x t t'

Definition conf q n x t t' := Cfg (zzz (x::t) n) Qq (L0::t'). Definition img q n x t t' := Cfg t Qq (x::(zzz t' (n+1))).

Definition conf b n x y t t' := Cfg (zzz (x::t) n) Qb (L0::y::t'). Definition img b n x y t t' := Cfg t Qb (x::(zzz (y::t') (n+1))).

Definition conf d n x y t t' := Cfg (x::t) Qd (zzz (y::t') (n+1)). Definition img d n x y t t' := Cfg (zzz (x::t) (n+1)) Qd (y::t'). 

intro n; unfold v; ring. Qed.

Definition img p' n x t t' := Cfg (zzz t n) Qp (L0::x::t'). Definition img q' n x t t' := Cfg (x::t) Qq (zzz t' (n+1)). 

Definition conf gp n x t t' := Cfg (x::t) Qp (zzz (L1::L0::t') (n+1)). Definition img gp n x t t' := Cfg (x::t) Qp (zzz (L1::t') (n+2)).

Lemma conf gp is p : ∀ n x t t', conf gp n x t t' = conf p n L1 (x::t) (L0::t'). Proof. intros; unfold conf gp, conf p; simpl. reflexivity. Qed.

Lemma img gp is p : ∀ n x t t', img gp n x t t' = conf p (S n) L1 (x :: t) t'. Proof. intros; unfold img gp, conf p; simpl; replace (n + 2) with (S (n + 1)) by ring; simpl; reflexivity. Qed. Definition growP n := ∀ x t t', ((