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Abstract — The problematic addressed in this article is
dealing with the improvement of retrieval in Case-Based
Reasoning for system design. The retrieval activity is based
on the evaluation of similarities between requirements
(target) and the solutions (sources). However, similarities
between features is often a subjective kind of knowledge
difficult to formalize within companies. Based on an
ontology of domain, the approach permits to retrieve
compatible solutions rather than similar ones using a model
of designer preferences. The requirements are modeled by
means of constraints. When constraints are confronted to
solutions in order to evaluate a compatibility measure,
missing information within solutions with regard to
requirements are taken into account using semantic
similarities between concepts. A case study validates the
proposals.

Keywords — Case—Based Reasoning, System design,
Ontology, Preference modeling, semantic similarity

[. INTRODUCTION

The proposals this article is dealing with focus on
retrieval activity within a case-based reasoning process
for system design. System design processes [1] [2] are
composed of two macro-processes: requirements
definition and solutions definition. Case-Based Reasoning
(CBR) processes [3] [4] are mainly used as design
processes. They are successful knowledge-based methods
in industry. They have been widely used for system
design in many domains (see e.g. [5] [6] [7] [8])
Requirements about a new system to develop are
considered as a “problem” to solve and CBR systems
permits to retrieve similar cases from a case base and to
adapt them to provide new solutions. However, at the
carliest step of design, a lot of uncertainties remain
although prior suitable design solutions could be helpful.
Therefore, some questions arise: how to formally define
the problem for an efficient retrieval? How to define
guidelines in order to define properly requirements and
solutions? How to take into account the designer
preferences? The retrieval step of a CBR methodology is
based on the use of similarity measures between features
or attributes for objects [5]. However, it is rather difficult
to obtain such a subjective knowledge from experts within
companies. Therefore, the problematic addressed in this
article concerns the improvement of the retrieval process

of CBR for systems' design. Firstly, an ontology is
proposed in order to formalize knowledge and provide
guidelines to designers. Secondly, the models of
requirements and solutions are described. Thirdly, the
retrieval process that take into account designer
preferences as well as missing information within
retrieved solutions is presented.

II. INFORMATION MODELING FOR SYSTEM
DESIGN

A. Ontology of concepts for design

The proposed ontology gathers some pieces of
knowledge by means of structured concepts. The
knowledge about the domain is formalized into
interrelated concepts. The aim of a concept is to guide
designer teams in charge to collect requirements and
finally, to develop solutions.

Thus, the knowledge embedded into a concept c is
formalized by:

— a set (noted V¢) that gathers models of conceptual
variables. Each one can be seen as a descriptor of the
concept c. It corresponds to a general characteristic of an
abstract object;

— a set (noted 2.) gathering models of conceptual
constraints related to some models of conceptual
variables. A model of conceptual constraint links one or
many models of conceptual variables giving some
authorized (or forbidden) combinations of values. A
conceptual constraint is considered as a formal piece of
knowledge embedded into a concept.

An example of ontology of concepts is represented in
Fig. 1 (only concepts are represented). The proposed
ontology is a hierarchical structure of concepts.
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The root of the ontology is the most general concept
named System. The concepts are linked by edges which
represent relations of generalization/specialization. Any
concept inherits all the characteristics of its parent.

B. System modeling

A System S (i.e. an object to design) is composed of a
set of Requirements R and of one or many Solutions.
Many solutions can be developed for a same System
leading to many competitive alternatives.

1) Requirements modeling: associated to a system to
design, the set of requirements is defined by means of: i) a
Requirements Concept RC, ii) Requirements Variables
associated to their domain and iii) Requirements
Constraints. The Requirements Concept RC, coming from
the ontology, represents the object to design at an abstract
level. The different entities are represented in Fig. 2.
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Fig.2. Requirements modeling

Therefore, by choosing a concept and associating it to
the requirements (and furthermore to a system), the
designer knows what are the Conceptual Requirements
Variables, their domain as well as Conceptual
Requirements Constraints. This information permits to
guide the designer for the requirements elicitation and to
formalize them by means of constraints.

2) Solutions modeling: a solution corresponding to a
system to develop is represented by means of: i) a
Solution Concept, ii) Solution Variables and their domain
and, iii) values of Solution Variables (Fig. 3).

1

1.%

Solution 1 1
Concept (SoC)

Solution ‘

Model of
Conceptual
Variable

Value of
Solution
Variable

Added
Solution
Variable

Copy of Added
Requirements
Variable

Conceptual
Solution
Variable

Fig. 3. Solutions modeling
A solution, within a system, is associated to a concept
(SoC) which is an abstract view of the solution that must

fulfill the system requirements. There is a constraint
between the Requirements Concept RC and each Solution
Concept SoC; corresponding to a solution Soli: the
concept SoC; is either RC itself or one of its descendant
into the ontology (noted: SoC; << RC).

Some Solution Variables are copies of models of
conceptual variables coming from SoC (they are named
Conceptual Solution Variables). Added Requirements
Variables are copied into each solution (they are named
Copy of Added Requirements Variables). If necessary,
new Solution Variables can be added by the designer to a
solution in order to better characterize it (they are named
Added Solution Variables). Each Solution Variable is
associated to its domain (not represented).

III. REQUIREMENTS DEFINITION PROCESS:
INTEGRATION OF DESIGNER
PREFERENCES

From the customers or stakeholders needs, the
Requirements Definition Process consists in:

— selecting the Requirements Concept (RC),

— and then, defining the Requirements Constraints.

It is considered in this article that constraints
representing requirements are discrete constraints. A
discrete constraint on a set of symbolic or numeric
variables expressed in extension defines a set of allowed
value n-tuples. Let be o a discrete constraint which
explicitly defines the allowed associations of values of a
set of n discrete variables Vo such that
Vo={Vv,, V,,---, V,]. The set of domains of these n

variables, noted D, is such that D={D,, D ,, =+, D

1
vnl -

Let Xa be a set of p allowed
n-tuples of  wvalues for Vo such that
Xa={ (Xyps X0, X ) (Xgq, X0, in)y"'y(xpw Xp2s ™" Xpn)}With

x;j a discrete symbolic or numeric value of the variable v;
in the n—tuple Ti. Let be V&, a n—tuple of values taken
by the variables of V.. The crisp constraint o is defined
by o: V&*© e X,.

Therefore, from this crisp set of allowed n-tuples, the
designer can define preferences for non—allowed n-tuples.
The preference function . is a mapping such that:
Woi D,y X Dy X+ XD, [0, 1]. The steps which permit

to define the preference function values are:

— Step 1: the value of , is defined for each allowed n-
tuple T; of X, such that uo(T,)=1, VT, € X, .

— Step 2: for the non-allowed n-tuples (this set is noted
Xum such that X =(D, XD, XD, )\X, the

designer can express its preferences. A preference for a n—
tuple T is a value between 0 and 1 representing how
much the n-tuple Tj is preferred for the next retrieval step.

Similarities are not taken into account to define the
function because in the case of symbolic values, it is quite
difficult for experts to express a similarity measure



between two symbols because of subjectivity). It is more
simple and efficient to ask to the designer how he wants
to express the flexibility about a discrete constraint. The
requirements remain crisp but a kind of flexibility is
introduced for the next retrieval step.

Clearly, only one concept corresponding to the object
to develop is required (RC). However, the designer can
define a set of allowed concepts which will be used
during the retrieval process. In order to define the
preference function of a concept c; with regard to RC
(Ugelc) ), the semantic similarity measure proposed in

[9] is used (equation 1). From this similarity measure, the
designer choose whether the concept is allowed to be
used during the retrieval process or not.

2*depth8ystem( com)
depthSystem( )+ depthSyslem( 2)

sim(c, ¢c,) =

(M

The notations are:

- depthSystem(C) :
between the concept “System” (the root) and the
concept c,

—  C¢om : the least common ancestor of RC and ¢; in

the ontology.

Finally, from the similarity measure, the designer
defines the preference function value for the concepts
(ug(RC)=15  ugelc) =sim(RC,c,)/c,# RC if ¢ is
required for the retrieval step ; MRc<Ck):0 if ¢ is not

the distance (number of arcs)

required.

III. SOLUTION DEVELOPMENT PROCESS:
RETRIEVAL OF PRIOR SOLUTIONS

During the
designer has:

— to choose into the ontology a Solution Concept

(SoC) to develop,

— to define the solution assigning a value to the

solution variables.

Accordingly with a Case-Based Reasoning
methodology [1] [2], previously developed solutions
(capitalized into a case base) can be suitable for
fulfillment of new requirements. Therefore, it is necessary
to retrieve similar (more exactly compatible) solutions
with regard to the new requirements.

Thus, it is necessary to evaluate a compatibility
measure of each preselected solution with regard to the
requirements constraints. More the compatibility measure
will be near to 1, more the solution is able to potentially
fulfill the requirements and lower the adaptation effort
will be. A compatibility measure has to be calculated for
each constraint (local compatibility) and then an
aggregation has to be done for the whole set of constraints
(global compatibility).

solution development process, the

1) Local compatibility: let o be a constraint
(involving n variables of the set Vo) where the designer
preferences have been integrated defining the preference
function u, . Let a solution Solx represented by a n-tuple

of q values noted V‘;'l“e corresponding to the set of

variables VSOIK. The solution Solx is associated to the

concept SoC. The compatibility of Solx with regard to the
constraint o is given by the equation 2.

1 iV, EVg, and Vg < Xa

Comp(Sol,, o) = u, (V) iV, SV, and Vg™ ¢ Xa )

Uge (S0C) itV Z Vg,

If all the variables involved into the constraint are
defined into the solution and their values belong to the
authorized n-tuples X, then the compatibility is
maximum (1). If the variables values do not belong to X,,
the compatibility is given by the preference function. If at
least one variable involved into the constraint is not used
into the solution (missing variable), then three
possibilities are offered: 1) Pessimistic way: the
compatibility is equal to 0 ; 2) Optimistic way: the
compatibility is equal to 1 ; 3) Our proposal: the
compatibility is given by the preference function value
corresponding to the concept SoC ( ug(SoC) ). That means
that if a variable is missing into a solution with regard to a
constraint, the cause is that the concept linked to the
solution is far from the required concept RC. It is a
compromise between pessimistic and  optimistic
viewpoints. The next step consists in aggregating the local
compatibilities.

Global compatibility: the local compatibilities of the
solution Sol, with regard to a set of M constraints
(2={0,0,..,0,}) have to be aggregated in order to

provide a global compatibility measure. Such aggregation
can be done by means of a Minkowski function [10]
(equation 3).

" 1p
Comp(Sol, =) = | . (1/M)*(Comp (Sol,, 5,) 3)
i=1

The parameter 3 permits to tune the aggregation

mechanism. (=1: weighted average, f->co: maximum).
Then, considering the compatibility measure of each
retrieved solution with regard to the whole set of
constraints, the selection of compatible solutions can be
done by the designer in order to decide how many
solutions to develop and begin the adaptation phase.
3) Adaptation: The retrieved solutions can rarely be
directly used as suitable solutions. The adaptation can
occur by inclusion, removal, substitution or
transformation of the variables values.



IV. CASE STUDY

1) Case base content: two solutions are capitalized
into the case base: Sol, and Sol,. The solution concepts are
coming from the ontology in Fig. 1.

TABLE I
CASE-BASE CONTENT

d,,=(25,50,75,100, 125,150,175, 200, 250,

Weight
cight (we) 300,350,400, 450,500,550 |

Conceptual | o,:1=20*w-> Xa,=[(900,45),(1000,50),(1100,55),

SOLUTION: Sol; Solution Concept SoC=

Constraints (1200,60),(1300,65), (1400,70),(1500,75) )
0,:w € [30.00,100.00] - Xa, =( 45,50, 55, 60,65, 70,75
Added| oo
variables + ateria d,,={Carbon Fiber, Metal |
domams| (@D
omains
Added

require- | O MtE{ Carbon Fiber | = Xa,
ments| o, | € {1000.00} = Xa,
constraints

“Single Slotted Flap”
Variables ( VSO“ ) length (1) weight(wg) | material (mt) X
Values (Vg™ ) | 1500 100 Metal 60
. SoC=
SOLUTION: Sol, “Differential Aileron”

Variables ( VSO‘Q) length (1) | width (w) | weight (wg) | Material (mt)

value

Values (Vgy™) | 1400 75 150 Metal

2) Customer Needs: they can be expressed as “The
aileron length should be equal to 1000 mm and its weight
should be light.”

3) Requirements: the choice of the concept Aileron
gives the following knowledge (Table II).

TABLE II
CONCEPTUAL MODELS WITHIN THE A/LERON CONCEPT (FROM THE ONTOLOGY)

Models of i .
conceptua] V pileron :*{ Lenght(L ), Width ( W), Welght ( Wg) ]

variables

Ay = |(900,1000,1100, 1200, 1300, 1400, 1500} ,
( 45,50,55, 60,65,70,75 ),
(25,50,75, 100,125, 150,175,200, 250, 300,350,400, 450,
500, 550} |

Models of
domains

Models of
conceptua] ZA\Ieron: [91 L=20xW s Qz ‘We [ 25,50, 75,100,125 }
constraints

The choice of the Requirements Concept Aileron leads
the designer to make copies of the conceptual variables L,
W and Wg and the constraints €2 and €2 (copies are
respectively /, w, wg and 91, ©2). The need about a
“light weight” leads to add the variable m¢ and to define
the constraint 93 . The need about the length (/ = 1000)
leads to add the constraint Ys. The constraints are
expressed by means of the allowed n-tuples of values X,
Xaz, Xa3 and Xa4.

TABLE III
REQUIREMENTS CONCEPT, VARIABLES, DOMAINS AND CONSTRAINTS

Requirements Concept: RC = “Aileron”

Conceptual |  length (1) d={900,1000,1100, 1200, 1300, 1400, 1500 |
variables +
domains | width (w) d,=(45,50,55,60,65,70,75

4) Designer preferences integration: the allowed
concepts with their preference degree are represented in
Fig. 4. The designer chooses to extend the retrieval with
the descendant concepts of RC and to add the concept
“Single Slotted Flap”. Their similarity with regard to
“Aileron” is used to define the preferences.

Waieron

0.8 0.8 0.8

0.33

-
T2

Ontology

Aileron Differential SingIéAction l_:l:ise Single
——— _Aileron Aileron  Aileron  Slotted

Flap
RC Descendants of RC

Fig. 4. Set of allowed concepts for retrieval

The allowed preferred n—tuples of values with regard
to the constraints o, and O, are represented in the table

IV with their respective preference degree.

TABLE IV
ALLOWED AND PREFERED N-TUPLES OF VALUES

Ti| To | Ts | Ta | Ts | Ts | T7 | Ts | To | Tio

90
I 0

1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1400 | 1300 | 1200

w |45 50| 55|60 | 65|70 | 75| 75| 75|75

wo(T) | 1] 1 1 1 1 1 1 108]07)05

T1 TZ
mt Carbon Fiber Metal
Wo, ( T‘ ) 1 02

The constraints o, ¢t g, are defined such that:
~ e, (T)=1 VT eXa,ue(T,)=0 Otherwise;
~ e, (T)=1 VTeXa,;uo(T,)=0 Otherwise-



5) Selection of compatible solutions: Sol, and Sol, are
taken into account and are confronted to the constraints
Oy to Oy .

Compatibilities of Sol, with regard to the constraints: the
variable w involved into the constraint ©1 is missing
within Sol, (Vg ={l,wg,mt}; Ve =[l,w};Vo,#Vg, ). Then,
following the equation 2), the compatibility is
Comp(Sol,, 0,) = Uy, (Single Slotted Flap)=0.33 . The
constraint Oz involves only the variable w which is
missing in the solution Sol;: Comp(Sol,, 0,) = 0.33 . The
constraint O3 involves one variable mt which belongs to
the solution Sol,. Its compatibility is:
Comp(Sol,, o,) = Moﬁ(metal):o.z . The constraint ©O4
involves one variable 1 which is defined within the
solution Sol;. Its value is 1500 and the compatibility is:
Comp(Sol,, 0,) = u, (1500)=0 .

Aggregation: the global compatibility of the solution Sol,
with regards to the four constraints X is defined by the
equation (4) with f=2 and M=4 .

4 1/2

Comp(Sol,, ) = | D" (1/4)x(Comp (Sol,,0,) |’ @)

= v0.25%(0.332+0.332+0.22+0)=0.253

Compatibilities of Sol, with regard to the constraints:
Both variables 1 and w involved into the constraint O

are defined within the solution Sol,. The compatibility is (

Comp(Sol,, o,) = u(,‘(1400,75) = 0.8). The variable w
takes the value 75 in Sol,. The compatibility with regard
to O, is: Comp(Sol,, 0,) = “02(75) = 1. The variable mt
takes the value “Metal” in Sol,. The compatibility with
regard to O, is: Comp(Sol,, o,) = MUS(MetaI) =0.2 . The
variable | takes the value 1400 in Sol,. The compatibility
with regard to O, is: Comp(Sol,, o,) = u, (1400) =0 .
Aggregation: the global compatibility of the solution Sol,
with regards to the whole set of flexible constraints =
(with $=2) is defined by the equation 5.

4 1/2

Comp(Sol;, =) = |3 (1/4)+(Comp(Sol, o) |

=1/0.25%(0.82+12+0.22+02)=0.648

In fine, the solution Sol, is not adapted with a global
compatibility equal to 0.253. Furthermore, the concept
“Single slotted flap” is pretty far from the requirements
concept “Aileron” (similarity = 0.33). The solution Sol, is
nearest to the requirements with a global compatibility
equal to 0.648, obtained taking into account the designer
preferences. Furthermore, the concept “Differential

Aileron” is near to the required concept “Aileron”
(similarity = 0.8). Therefore, Sol, is chosen by the
designer for adaptation. This adaptation has to be done
eliminating the non compatibilities with regard to the
constraints Oy to O4 .

V. CONCLUSION

The proposal described in this article deals with a
retrieval mechanism based on CBR methodology for
system design. It takes into account designer preferences
instead of similarities to evaluate the compatibility of
retrieved solutions that can be reused to fulfill new
requirements. This approach is suitable because it is
rather difficult to define a priori similarity measures
between systems' features within companies. An ontology
is used in order to capitalize knowledge about systems
and to guide designers. From the ontology, it is possible
to calculate automatically similarities between concepts.
Such similarities are used to calculate compatibilities
between solutions and requirements when some
information are missing. The perspectives concern the
integration of uncertainty/imprecision on solution models
and to take into account such characteristics to evaluate
compatibilities between solutions and requirements.
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