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BAYESIAN TEXTURE AND INSTRUMENT PARAMETER ESTIMATION

FROM BLURRED AND NOISY IMAGES USING MCMC

Cornelia VACAR, Jean-François GIOVANNELLI, Yannick BERTHOUMIEU

ABSTRACT

The paper addresses an estimation problem based on blurred

and noisy observations of textured images. The goal is jointly

estimating the (1) image model parameters, (2) parametric

point spread function (semi-blind deconvolution) and (3)

signal and noise levels. It is an intricate problem due to the

data model non-linearity w.r.t. these parameters. We resort to

an optimal estimation strategy based on Mean Square Error,

yielding the best (non-linear) estimate, namely the Posterior

Mean. It is numerically computed using a Monte Carlo

Markov Chain algorithm: Gibbs loop including a Random

Walk Metropolis-Hastings sampler. The novelty is double:

(i) addressing this fully parametric threefold problem never

tackled before through an optimal strategy and (ii) providing

a theoretical Fisher information-based analysis to anticipate

estimation accuracy and compare with numerical results.

Index Terms— Texture, Bayes, myopic deconvolution,

parameter estimation, sampling.

I. INTRODUCTION

The paper proposes an advance in image deconvolution,

by extending the conventional estimation capabilities to

textured images in a semi-blind and unsupervised context.

Deconvolution is a problem of major interest in image

processing and has been widely explored (see the [1, 2]

overviews). The vast majority of the previous works regu-

larize the problem through stochastic image models, such as

Markov, Simultaneous Auto-Regression, Student’s t, or de-

terministic penalties such as L2, L2-L1, L1, Total Variation

(TV). These approaches use different representations: spatial

domain [3, 4], wavelet domain [5, 6] or Fourier [7] and are

essentially appropriate for piecewise-smooth and piecewise-

constant images. This limitation can be addressed using more

adapted image models, this being one of our objectives.

The proposed approach considers a textured image model,

based on stationary Gaussian Random Fields (GRF) [8, 9].
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Fig. 1: Observation system and corresponding hierarchical model

This model is described by a parametric power spectral den-

sity (PSD), driven by the unknown set θ (shape parameters)

and γx (scale parameter). This model successfully describes

various texture patterns and encodes the image information

in a reduced number of variables, whose estimation however

is not trivial due to the cumbersome dependency.

From the instrument response viewpoint, the literature

is mostly oriented towards the non-parametric point spread

function (PSF), i.e., blind deconvolution [2–6, 10].

Nevertheless, in numerous applications, for instance as-

tronomy or microscopy, the PSF is parametric, driven by

the parameters η (myopic or semi-blind deconvolution). The

paper [7] and the contributions in astronomy [11, 12] tackle

this problem based on a low frequency model for the image,

as opposed to our textural content preserving model. The

myopic deconvolution has also been applied to microscopy

[13, 14], however, in a noiseless case, and in [15] using a TV

regularization for the image, thus being primarily adapted for

piecewise-smooth images.

Let us formalize our problem as:

y = Hη · xγx,θ + nγ
n

(1)

where y is the data and Hη is the parametric PSF. xγx,θ and

nγn are the unknown image and noise, both with parametric

PSDs. The PSF and the image PSD are driven by η and

θ, respectively and γx and γn are the hyperparameters.

Fig.1 shows the corresponding observation system and the

hierarchical dependency.

A threefold problem is tackled, by jointly estimating:

1. image model parameters, θ,

2. instrument parameters, η, (myopic or semi-blind),

3. signal and noise levels, γx, γn, (unsupervised),

in addition to the original image x. The difficulty is due to

the non-linear, very intricate dependency of the data w.r.t.

θ and η, this leading to a challenging estimation problem.

To the best of our knowledge, no other method to solve this

threefold deconvolution problem exists in the literature.

Moreover, for certain parameter values, the data may

contain very little information, augmenting the problem dif-



ficulty. Based on the Fisher information, a detailed analysis

of the available information for each unknown is provided.

The paper is structured as follows: Section II gives the

models, Section III analyses the Fisher information and Sec-

tion IV details our method. Sections V and VI are devoted

to the numerical results and conclusions, respectively.

II. NOISE, TEXTURE AND PSF MODELS

Let N ×N be the image size and P = N2 the number of

pixels. y,x,n ∈ C
P from (1) are the vectorized data, image

and noise. Ψ = {θ,η, γx,γn} are the unknown parameters.

The original image and the noise, x and n, are modeled by

independent zero-mean, stationary GRFs, with covariances

γxRx(θ) and Rn(γn). The fields are stationary, thus the

matrices have Toeplitz-block-Toeplitz structure. Moreover,

for computational efficiency, a Whittle approximation is

made, i.e., Circulant-block-Circulant covariance matrices,

diagonalizable by Discrete Fourier Transform (DFT), com-

putable by Fast Fourier Transform (FFT). Using a simi-

lar approximation, Hη is also considered Circulant-block-

Circulant. Hence, the convolution is circulant, separable in

the Fourier domain:
◦

yp =
◦

hp ·
◦

xp +
◦

np (2)

where
◦

y,
◦

h,
◦

x and
◦

n ∈ C
P are the DFT of the data, the PSF,

i.e., the Transfer Function (TF), the image and the noise. Let

p = 1...P be the index of the vectorized Fourier coefficients,

so that index p indicates the 2D position (m,n). To exploit

the separability in the mathematical developments, the PSF,

image and noise PSDs are written in the frequency domain.

From (2) and the noise law Gaussianity, it follows:

f(
◦

yp|
◦

xp,η,γn) ∝ µp(γn) · exp

[

−µp(γn)
∣

∣

∣

◦

yp −
◦

hp(η)
◦

xp

∣

∣

∣

2
]

(3)

f(
◦

xp|θ) ∝ γxλp(θ) · exp
[

−γxλp(θ)|
◦

xp|
2
]

(4)

where µp(γn), λp(θ) and
◦

hp(η) are the eigenvalues of Rn,

Rx and Hη .

An important point is the method adaptedness to any TF

and any PSD for image and noise. However, for the mathe-

matical illustration and numerical evaluation, we chose:

• TF – low pass filter (Dirichlet kernel), of width η:

◦

h(νx, νy,η) =
1

2η

sin
(

2πη
√

ν2x + ν2y

)

sin
(

π
√

ν2x + ν2y

) (5)

• noise – white noise of covariance Rn(γn) = γ−1
n I,

with γn precision parameter.

• image – exponential model for the PSD:

λ−1(νx, νy,θ) = exp

[

−
|νx − ν0x|

ux
−

|νy − ν0y |

uy

]

(6)

with θ =
[

ν0x, ν
0
y , ux, uy

]

∈ R
4. The parameters ν0x, ν

0
y

are the central frequencies, ux, uy are the PSD widths.

The variables νx, νy ∈ [−0.5, 0.5]
2

are the continuous

reduced frequencies, while (νm, νn) are the discretized re-

duced frequencies. We associate the frequency pair (νm, νn)
to coefficient p. Then λp(θ) = λ−1(νm, νn,θ).

In (5) and (6), the dependency of
◦

hp and λp w.r.t. the

unknown parameters η and θ is highly non-linear and

intricate, this representing the main problem difficulty.

III. INFORMATION QUANTITATIVE ASSESSMENT

The data may carry different amounts of information, this

affecting directly the estimation performance, depending on

the Signal to Noise Ratio (SNR = γn/γx) and the parameter

values. The mean available information on Ψ is quantified by

the Fisher information matrix. We focus on each parameter

ψ (any one of Ψ elements), through its diagonal elements,

i.e., the expectation of the log-likelihood second derivative:

I(ψ) = −Ey|Ψ

[

∂2

∂ψ2
log f(y|Ψ)

]

(7)

f(y|Ψ) is obtained from (1), (3) and (4) and writes: y|Ψ ∼
N (0,Ry(Ψ)), with Ry(Ψ) = γxHηRx(θ)H

t
η +Rn(γn).

The matrix Ry(Ψ) is Circulant-block-Circulant, due to the

form of Hη , Rx(θ) and Rn(γn). Thus, it is diagonalizable

by DFT, with entries rp(Ψ), namely the variance of
◦

yp|Ψ:

rp(Ψ) = gp(η)γ
−1
x λ−1

p (θ) + γ−1
n (8)

where gp(η) = |
◦

hp(η)|
2.

In (7), since Ey|ψ

[

|
◦

yp|
2
]

= rp(Ψ), the second order

derivatives cancel out when taking the expectation. Thus:

I(ψ) =
∑

p

[

1

rp(Ψ)
· r′p(Ψ)

]2

(9)

r′p being the derivative of rp w.r.t. ψ. Then, regarding γn:

I(γn) = γ−2
n

∑

p

[

1 + γn/γx · gp(η)λ
−1
p (θ)

]−2
(10)

It is a decreasing function, hence, the smaller the γn (the

higher the noise level), the easier its estimation. Similarly,

I(γx) is also a decreasing function.

For a texture parameters θ, element of θ:

I(θ) =
∑

p

{

gp(η) · λ
′
p(θ)

λp(θ) [γx/γn · λp(θ) + gp(η)]

}2

(11)

As expected, the lower the SNR, the smaller each term, thus,

the less information on θ. For a central frequency θ = ν0,

the information is higher when:

• ν0 is close to 0, due to the low-pass filter,

• the corresponding width is small.

For a width θ = u, I(u) is higher when:

• u is smaller,

• the corresponding ν0 is closer to 0.

Another interesting case is the noiseless one (γn = ∞):

I(θ) =
∑

p

[

λ′p(θ)/λp(θ)
]2

. The information on θ depends
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Fig. 2: Fisher information, in logarithmic scale, for the noise level
γn, a PSD central frequency ν

0 and a PSD width u.

only on the texture model and its parameters, but not at all

on the TF (when the TF is known).

The same considerations hold for the TF parameter η:

I(η) =
∑

p

[

g′p(η)

γx/γn · λp(θ) + gp(η)

]2

(12)

For low SNR, I(η) is small and, in the noiseless case, I(η)

only depends on the TF, with I(η) =
∑

p

[

g′p(η)/gp(η)
]2

(when the PSD is known).

Fig.2 illustrates the evolution of the Fisher information

for γn, ν0 and u, for four SNR levels. A more quantitative

analysis of I(γn) from (10), for instance, can be done from

Fig.2a: we observe that I(10−2) = 4 ·107, while I(10−1) =
4 · 105, meaning that the gain of an order of magnitude for

the noise level implies the gain of two orders of magnitude

in information amount. Consequently, we should expect the

same trend in the numerical results.

Different scenarios are illustrated by Fig.3, as 1D cross-

sections of the 2D frequency domain:

(a) for narrow TFs (small η) and high frequency PSDs

(large (ν0x, ν
0
y)), the spectral contents cancel each other,

i.e., the data is informative on γn, but not on η and θ;

(b) for wide TFs and narrow PSDs, the input stimulus is

incapable to induce an adequate system perturbation,

i.e., the information is insufficient to estimate η;

(c) ideal situation information-wise, i.e., partial overlap.

The information available for the estimation depends

on this overlap.

Section V provides a numerical evaluation of the method

performances, related to the Fisher information study.
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Fig. 3: Different relative positioning and widths for TF and PSD.
On the abscissa, the reduced frequency domain is represented.

IV. BAYESIAN FORMULATION

The addressed problem is challenging since it consists in

jointly estimating the PSD and TF parameters, the hyperpa-

rameters and, in addition, the image. This problem is tackled

in a Bayesian approach, all the unknowns being probabilized

and assigned a prior. Let us denote π(Ψ) the prior for Ψ.

From Bayes rule and Fig.1, the joint law writes:

π(y,x,Ψ) = f(y|x,η, γn) · f(x|θ) · π(Ψ) (13)

and the posterior law is proportional to the joint law:

π(x,Ψ|y) ∝ γPn exp

[

−γn
∑

p

∣

∣

∣

◦

yp −
◦

xp
◦

hp(η)
∣

∣

∣

2
]

· γPx ·
∏

p

λp(θ) · exp−

[

γx
∑

p

λp(θ)|
◦

xp|
2

]

· π(Ψ)

(14)

We are considering a situation of poor available informa-

tion about the parameters, not indicating prior dependency

between the unknowns. We thus use a separable prior, i.e.,

π(Ψ) = π(θ)·π(η)·π(γx)·π(γn), each factor being diffuse.

The forms for the prior laws can be judiciously chosen

by analyzing (14). It can thus be noticed that γx and γn
intervene as inverse variance parameters in a Gaussian law,

hence the Gamma law is a conjugate form:

π(γ|α, β) ∝ γα−1 exp−βγ (15)

Furthermore, since we have very little prior information on

these parameters, uninformative Jeffreys priors is used, by

setting (α, β) → (0, 0).
For θ and η, the dependency of the likelihood w.r.t. the

parameters is very complicated, meaning that there is no

conjugate form. Moreover, the lack of prior information

suggests the use of the uniform law:

π(θ) = U[θm,θM ](θ) π(η) = U[η
m
,η

M
](η) (16)

Remark: The uninformative priors might give the wrong

impression that our ill-posed problem is not regularized. In

fact, this is done through highly structured models for the

TF and image and not through the priors on Ψ.

The Posterior Mean (PM) estimator is chosen due to

its mean square error (MSE) optimality. It consists in cal-

culating the integral
∫

Ψ|y
Ψπ(Ψ|y)dΨ. The complicated

parameter dependency makes it intractable, thus numerical

methods are required. Among the various options, we chose

stochastic sampling, more specifically expectation approxi-

mation by empirical mean of posterior samples. Since direct

joint sampling is impossible, we use a Gibbs loop consisting

in iterative conditional sampling.

Remark: In this context, x could be marginalized to avoid

its sampling, but this would lead to complicated laws for the

other parameters and thus to increased sampling complexity.

The conditional law for the image is Gaussian and sepa-

rable in the Fourier domain, a key feature of the proposed



SNR TF γn γx ν
0
x

ν
0
y

ux uy η

20 dB
Narrow 1.2 3.2 4 4.2 8.5 8 4.3

Wide 2.5 1.9 3 3.1 6.3 6.5 12
Overlap 1.5 1.1 1.2 1.3 3.4 3.5 3

15 dB
Overlap

3.2 10.8 12.5 11.8 15.9 17.3 14.5
25 dB 1.9 1.6 1.1 0.9 3.1 3 2.7

Table I: Parameter estimation MSE – performance in various
scenarios, such as those in Fig.3, and for various SNR levels.

method, since it allows fast parallel sampling of the image

Fourier coefficients. The hyperparameters have Gamma con-

ditional laws, thus sampling is straightforward. However, θ

and η have non-standard laws, thus more complex sampling

strategies must be used. We chose to include a Random-Walk

Metropolis-Hastings (RWMH) step within the Gibbs loop.

This strategy is convergent since i) the Metropolis within

Gibbs sampler provides samples from the posterior law [16]

and ii) the empirical mean of these samples converges to the

posterior expectation. The RWMH jump amplitude is tuned

so that the acceptance rate is approximately 24% [17].

Our algorithm then consists of:

1. Initialization phase: θ(1), η(1), γ
(1)
x , γ

(1)
n , i = 1

2. For i = 2, 3...
◦

x
(i)

p ∼ N
(

γ(i−1)
n

◦

hp(η
(i−1))

◦

yp · σp, σ2
p

)

in parallel ∀p

with σp =
[

γ(i−1)
n gp(η

(i−1)) + γ(i−1)
x λp(θ

(i−1))
]−1

γ(i)n ∼ G
(

α+ P, βpost
n

)

γ(i)x ∼ G
(

α+ P, βpost
x

)

with βpost
n = β +

∑

p

∣

∣

∣

◦

yp −
◦

x
(i)

p

◦

hp(η
(i−1))

∣

∣

∣

2

βpost
x = β +

∑

p

λp(θ
(i−1))

∣

∣

∣

◦

x
(i)

p

∣

∣

∣

2

θ(i) ∼ RWMH step with target π(θ) ∝ f
(

x(i)|γ(i)x ,θ
)

η(i) ∼ RWMH step with target π(η) ∝ f
(

y|x(i),η, γ(i)n

)

Remark: The conditional law of the image has as max-

imizer the image obtained through Wiener filtering. In the

noiseless case, the maximizer is obtained by inverse filtering.

The stopping condition is that the variations of the recur-

sive empirical mean from one iteration to the next are less

than 0.1% for all the parameters.

The algorithm requires only two Fourier transforms, at the

beginning and at the end, all the intermediary computations

being done in the Fourier domain, in parallel. This makes

the algorithm very efficient, the running time being less than

one minute for 256×256 size images, for the roughly 2 ·103

iterations needed to reach convergence and compute the PM.

V. RESULTS

The tests were performed on 20 realizations of each

scenario (narrow TF, wide TF, partial overlap) for different

parameter values. The SNR quantifies the original signal to
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Fig. 4: Examples of original image, corresponding blurred and
noisy observations and the deconvolution results.

noise ratio, nevertheless, the Blurred SNR (used in [3] to

quantify the problem difficulty) is significantly smaller and

depends on the relative positioning of the TF and PSD.

Table I lists the mean relative error (%). The data is

more or less informative depending on the parameter (see

Section III), and this explains the estimation error differ-

ence. As anticipated by the Fisher information in Fig.2, the
{

ν0x, ν
0
y

}

are better estimated as compared to {ux, uy} and

η. Moreover, the estimation accuracy increases with the SNR

for all the parameters, except γn. However, for too low SNR,

even the γn error is high, due to the higher estimation errors

for the other parameters. We have also tested the method in

a partial overlap configuration and SNR = 25 dB, when

γ∗n = 10−1 and γ∗n = 10−2. The estimation errors for

γn were 2.3% and 1.9%, respectively, coherent with the

considerations on the available information in Section III.

Moreover, we must stress that, despite the problem dif-

ficulty, overall, the method yields small errors in all cases.

This is a direct consequence of the approach’s reliability and

the MSE estimator optimality.

In addition, Fig.4 presents visual results concerning our

method performance on two textured images by showing the

original, observed and reconstructed images. The blur and

noise were eliminated, these results illustrating the method’s

ability to restore a significantly degraded textured image.

VI. CONCLUSION

A fully Bayesian method for the threefold problem of esti-

mating the textured image parameters, instrument parameters

and hyperparameters has been presented. It also provides

the deconvolved textured image, accurately restoring both

textural content and intensity scale. To the best of our knowl-

edge, no other method tackles this difficult problem. The

Metropolis within Gibbs strategy provides posterior samples

and their mean converges to the expectation. Moreover, the

PM estimator guarantees that, at least from the MSE view-

point, it cannot be outperformed by any concurrent method.

In addition, to aid in the comprehension of the problem

and of the numerical results, we also presented a detailed

analysis of the Fisher information.
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