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In systems combining type-II superconductivity and magnetism the non-stationary magnetic field
of moving Abrikosov vortices may excite spin waves, or magnons. This effect leads to the appear-
ance of an additional damping force acting on the vortices. By solving the London and Landau-
Lifshitz-Gilbert equations we calculate the magnetic moment induced force acting on vortices in
ferromagnetic superconductors and superconductor/ferromagnet superlattices. If the vortices are
driven by a dc force, magnon generation due to the Cherenkov resonance starts as the vortex velocity
exceeds some threshold value. For an ideal vortex lattice this leads to an anisotropic contribution
to the resistivity and to the appearance of resonance peaks on the current voltage characteristics.
For a disordered vortex array the current will exhibit a step-like increase at some critical voltage.
If the vortices are driven by an ac force with a frequency ω, the interaction with magnetic moments
will lead to a frequency-dependent magnetic contribution ηM to the vortex viscosity. If ω is below
the ferromagnetic resonance frequency ωF , vortices acquire additional inertia. For ω > ωF dissipa-
tion is enhanced due to magnon generation. The viscosity ηM can be extracted from the surface
impedance of the ferromagnetic superconductor. Estimates of the magnetic force acting on vortices
for the U-based ferromagnetic superconductors and cuprate/manganite superlattices are given.

PACS numbers: 74.25.Uv, 75.30.Ds, 74.25.nn

I. INTRODUCTION

Within the last 13 years a number of fascinating com-
pounds has been discovered, revealing the coexistence
of ferromagnetism and superconductivity in the bulk.1–4

These compounds are U-based ferromagnets which be-
come superconducting at temperatures ∼1K under ap-
plied pressure, or even at atmospheric pressure. Experi-
mental investigation of magnetic properties of these ma-
terials in the superconducting state is hampered by the
Meissner effect, making static measurements inefficient.
However, important parameters can be extracted from
dynamical measurements of the spin-wave (magnon)
spectrum, which can be determined, e. g., by microwave
probing5,6 or using Abrikosov vortex motion.7,8

A number of papers has been devoted to theoreti-
cal investigation of the magnon spectrum in magnetic
superconductors.5,6,9–13 Buzdin9 determined the magnon
spectrum in a superconducting antiferromagnet with an
easy-axis anisotropy. Different types of spin waves in fer-
romagnetic superconductors in the Meissner state have
been studied by Braude, Sonin and Logoboy,5,6,10,11 in-
cluding surface waves and domain wall waves.

Experimental measurements of the ac magnetic sus-
ceptibility of superconducting ferromagnets revealed that
the screening of the magnetic field created by mag-
netic moments in these materials is incomplete.2,3 This
indicates that the superconducting transition in the
U-compounds occurs in the spontaneous vortex state.
Only two papers so far have addressed the influence of
Abrikosov vortices on the magnon spectrum in ferromag-
netic superconductors. In Ref. 12 coupled magnetic
moment-vortex dynamics has been studied in the limit

of long wavelength λw ≫ a, where a is the inter-vortex
distance. Later,13 this analysis has been extended to the
case λw . a. It has been demonstrated that in the pres-
ence of a vortex lattice the magnon spectrum acquires a
Bloch-like band structure.

To study the spin wave spectrum experimentally two
simple procedures have been proposed. The first method
consists in direct excitation of magnons by an electromag-
netic wave incident at the sample.5,6,13 Then, information
about the spin wave spectrum can be extracted from the
frequency dependent surface impedance Z. Note that
this procedure can be applied also to ordinary ferromag-
nets, but in all cases the high quality crystalline surface is
required. The surface impedance has been calculated for
a ferromagnetic superconductor in the Meissner state5,6

and in the mixed state13 for a static vortex lattice.

The second method is based on the indirect magnon
excitation: an external source of current sets in motion
the Abrikosov vortices, which start to radiate magnons
when the Cherenkov resonance condition is satisfied.7,8

Here, the current-voltage characteristics yield informa-
tion about the magnon spectrum. Since this method in-
volves Abrikosov vortices, it is specific for superconduct-
ing materials. Different phenomena arising from vortex-
magnetic moment interaction in magnetic superconduc-
tors have been studied by Bulaevskii et al.7,8,14–17 In
Refs. 7 and 14 the dissipation power due to magnon
generation by a moving with a constant velocity vortex
lattice in a superconducting antiferromagnet has been
calculated. In Ref. 8 this result has been generalized for
the case of a vortex lattice driven by a superposition of
ac and dc currents. In Refs. 15 and 16 a polaronic mech-
anism of self-induced vortex pinning in magnetic super-
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conductors is discussed. The motion of the vortex lattice
under the action of dc15 and ac currents16 has been stud-
ied. Finally, in Ref. 17 it has been predicted that the flux
flow should lead to the creation of domain walls in sys-
tems with slow relaxation of the magnetic moments.
In the present paper, by solving the phenomenological

London and Landau-Lifshitz equations, we analyze the
problem of magnon generation by moving Abrikosov vor-
tices in ferromagnetic superconductors and superconduc-
tor/ferromagnet (SF) multilayers. Theoretical investiga-
tion of the latter systems is relevant in view of the recent
success in fabrication and characterization of cuprate-
manganite superlattices.18–20 Also, recently an experi-
mental study of the flux-flow resistivity in Nb/PdNi/Nb
trilayers has been reported.21 Our consideration of bulk
ferromagnetic superconductors, on the other hand, is rel-
evant to the U-based compounds mentioned above. In
this aspect, the present work complements the preceding
papers,7,8,14–17 which concetrated mainly on antiferro-
magnetic materials. As we show, the presence of ferro-
magnetism introduces its own specifics, as the magnon
spectrum in ferromagnets differs from the antiferromag-
netic spectrum. Our results also include the comparison
of the cases of a disordered and regular vortex lattice.
The outline of the paper is as follows. In Sec. II we

give a model of the ferromagnetic superconductor and de-
rive a general equation for the magnetic moment induced
force fM acting on vortices in ferromagnetic supercon-
ductors. In Sec. III this force is calculated for a vortex
lattice and disordered vortex array moving under the ac-
tion of a dc transport current. Here, the differences in the
dependence of fM vs. vortex velocity for ferromagnetic
and antiferromagnetic materials are discussed. Section
IV is devoted to vortex motion under the action of an ac
driving force. The magnetic contributions to the vortex
viscosity and vortex mass are determined. In Sec. V it
is shown how the force fM can be estimated experimen-
tally by measuring the surface impedance. In Sec. VI the
generalization of our calculations for the SF multilayers
is discussed. In the conclusion a summary of our results
is given.

II. THE INTERACTION FORCE BETWEEN

VORTICES AND MAGNETIC MOMENTS:

GENERAL EQUATIONS

In the London approximation the free energy of the
ferromagnetic superconductor in the mixed state can be
taken in the form

F =
∫

[

1
8πλ2

(

A+ Φ0

2π∇θS
)2

+ (rotA−4πM)2

8π

+α
2

(

∂M
∂xi

∂M
∂xi

)

+
KM2

⊥

2 − BHe

4π

]

d3r. (1)

Here λ is the London penetration depth, A is the vector
potential, Φ0 is the flux quantum (Φ0 = π~c/ |e| > 0),
θS is the superconducting order parameter phase, M is
the magnetization, and α is a constant characterizing

Compound UGe2 UCoGe URhGe

λ, nm 1000 1200 3450

L, nm 13,6 45 900

Han, T ∼ 100 ∼ 10 ∼ 10

µU 1,4µB 0,07µB 0,3µB

ωF , Hz ∼ 1013 ∼ 1010 ∼ 1011

Vth, cm/s ∼ 107 ∼ 105 ∼ 107

K = Han/M ∼ 104 ∼ 104 ∼ 103 − 104

TABLE I. Parameters of some ferromagnetic superconduc-
tors. L =

√

α/K is the effective domain wall width, Han is
the anisotropy field, µU is the magnetic moment per U atom,
µB is the Bohr magneton, ωF is the ferromagnetic resonance
frequency, and Vth is the critical vortex velocity for magnon
radiation (see Sec. III). The data have been taken from Refs.
1, 22–24.

the exchange interaction. The U-based ferromagnetic su-
perconductors, listed in Table I, have a strong easy-axis
magnetocrystalline anisotropy, which is accounted for by
the term KM2

⊥/2, where K is an anisotropy constant,
M⊥ = M − (e · M)e, and e is a unit vector along the
anisotropy axis. The term BHe/4π in Eq. (1) accounts
for a uniform external field He. All terms in the right-
hand side of Eq. (1) are integrated over the whole space,
except for the first term, containing λ, which is integrated
over the sample volume. Certainly, outside the sample
M = 0. In the sample the magnetization modulus is
constant.

First, we determine the equilibrium state by minimiz-
ing F with respect to M, and then with respect to A

and θS . We note that anisotropy field Han = KM is
typically very large (see Table I): it is comparable to or
greater than the upper critical field. This means that the
inequality B ≪ Han holds for any internal field B that
does not suppress superconductivity. Then the trans-
verse component of the magnetization M⊥ can be esti-
mated as M⊥ . B/K ≪ M . Since K ≫ 1, in a zero
approximation with respect to K−1 we can neglect the
transverse magnetization (even in the anisotropy energy,
which appears to be proportional to K−1). Then

F (A, θS) ≈
∫

[

1
8πλ2

(

A+ Φ0

2π∇θS
)2

+B2

8π −BM0 − BHe

4π + 2πM2
]

d3r, (2)

whereM0 = Me. For an arbitrary shaped sample further
minimization can not be performed analytically. Here
we assume the ferromagnetic superconductor to be an
ellipsoid. The results derived below should be also valid
in the extreme cases of slabs and long cylinders. It is
reasonable to assume that the average internal magnetic
fieldB0 in an ellipsoidal sample will be uniform (compare
with a dielectric ellipsoid in a uniform external field - see
Ref. 25). Denoting the superconductor volume as V , we
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can rewrite the free energy as

F = V
(

fS(B0)−M0B0 − B0He

4π

)

+
∫

r/∈V

[

B2

8π − BHe

4π

]

d3r+ const, (3)

where the constant does not depend on the magnetic in-
duction B, and fS is the free energy density of the vortex
lattice:

fS(B0) =

〈

1

8πλ2

(

A+
Φ0

2π
∇θS

)2

+
B2

8π

〉

. (4)

Averaging is performed over a volume that is much larger
than the inter-vortex distance. The function fS(B0) can
be determined explicitly by solving the London equation
(11) with a given vortex lattice density, corresponding
to the average field B0. To transform the integral in
Eq. (3) we introduce several quantities: the self-field of
the sample BS = B − He, the magnetization MS due
to supercurrents, the effective full magnetization Meff =
M0+MS, and the effective H-field Heff = BS − 4πMeff.
Then the integral can be transformed as

∫

r/∈V

[

B2

8π − BHe

4π

]

d3r =
∫

r/∈V
B2

S

8π d3r−
∫

r/∈V
H2

e

8π d3r

=
∫ H2

eff

8π d3r−
∫

r∈V
H2

eff

8π d3r+ const

= V
2 Meff

(

N̂ − N̂2

4π

)

Meff + const.

Here N̂ is the demagnetizing tensor, connecting the effec-
tive magnetization and effective field inside the sample:
Heff = −N̂Meff . Analytical and numerical values of N̂
can be found in Ref. 26. Finally, if we eliminate Meff

using the relation

Meff = (4π − N̂)−1(B0 −He),

we obtain

F
V = fS(B0)−M0B0 − B0He

4π

+ 1
8π (B0 −He)N̂(4π − N̂)−1(B0 −He) + const. (5)

Here, the only variable is the internal field B0, which
should be determined from the equation

∂F

∂B0
= 0. (6)

Equations (5) and (6) completely define the equilibrium
state of the ferromagnetic superconductor.
Now we proceed from statics to coupled vortex and

magnetization dynamics. We focus on two systems, for
which the derivation of the force acting on vortices is
almost identical: a bulk ferromagnetic superconductor,
and an SF multilayer (see Fig. 1), where S is an or-
dinary type-II superconductor, and F is a ferromagnet
with a strong easy-axis anisotropy: K ≫ 1. For the
multilayer system the same expression (1) for the free
energy is used with M = 0 in the superconductor and

FIG. 1. A scheme of the SF multilayer system. The dashed
lines denote vortices.

λ = ∞ in the ferromagnet. We neglect the Joseph-
son coupling between neighboring S layers. This is jus-
tified for & 10 nm thick ferromagnets: in the case of
an ordinary (non-triplet) proximity effect, superconduct-
ing correlations decay exponentially on a scale of several
nanometers in the ferromagnet.27

Let the vortices be aligned along the z-axis (which is
perpendicular to the S/F interface in the multilayer sys-
tem). They may form a regular or disordered lattice.
When the vortices are set in motion by a dc or ac trans-
port current, their time-dependent positions are given by
the vector functions Ri(z, t), lying in the xy-plane, where
i = 1..Nv, and Nv is the number of vortices. In our cal-
culations we will assume the vortices to be straight, i. e.
Ri does not depend on z.
As vortices move, the magnetic moments start to fluc-

tuate. We describe the magnetization dynamics using
the Landau-Lifshitz-Gilbert equation28

∂M

∂t
= γ

(

M× δF

δM

)

+
ν

M2

(

M× ∂M

∂t

)

, (7)

where γ is the gyromagnetic ratio, ν is a dissipation con-
stant, and the free energy F is given by Eq. (1).
The force acting on a single vortex per unit length of

the vortex equals

fi = − 1

Lv

∂F

∂Ri
. (8)

where Lv is the vortex length. Averaging fi over all vor-
tices, we obtain the average force

f = − 1

LvNv

∑

i

∂F

∂Ri
, (9)

When we considered the equilibrium state, the mag-
netization component perpendicular to the easy axis e

has been neglected. Now we have to abandon this ap-
proximation, as it would lead to a vanishing force acting
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on the vortices from the side of the magnetic moments.
We put M = M0 +m, where m ≈ M⊥, |m| ≪ M , and
linearize Eq. (7) with respect to m:

∂m

∂t
= −γM0 ×

(

α∇2m−Km+B
)

+
ν

M2
M0 ×

∂m

∂t
.

(10)
From this equation it is evident that magnetization fluc-
tuations are excited if the vortex field is not parallel to
the magnetization easy-axis. In a ferromagnetic super-
conductor this may be achieved by applying an exter-
nal field at an angle to the magnetization easy axis or
by choosing an appropriate sample geometry (for exam-
ple, an ellipsoidal sample with the magnetization directed
along neither of the principal axes).
The magnetic induction inside the superconductor

should be determined from the London equation

δF
δA = 0, or

−∇2B+ B
λ2 = Φ0

λ2 z0
∑

i δ
(2)(ρ−Ri) +

4π
c rot rotm, (11)

where z0 is a unit vector along the z-axis. In the case of
the multilayer system (see Fig. 1), Maxwell’s equations
inside the F-layers read

rotB = 4π rotM, divB = 0. (12)

On the SF-interface appropriate boundary conditions
must be imposed:

Bz

∣

∣

∣

∣

F

= Bz

∣

∣

∣

∣

S

, Hx,y

∣

∣

∣

∣

F

= Hx,y

∣

∣

∣

∣

S

(13)

∂m
∂z

∣

∣

∣

∣

F

= 0. (14)

The last condition follows directly from Eq. (7), if no
surface term is present in the free energy (1).
We present the magnetic field as the sum of the vortex

field h and the magnetization field bM defined by

−∇2h+
h

λ2
=

Φ0

λ2
z0
∑

i

δ(2)(ρ−Ri), (15)

−∇2bM +
bM

λ2
= 4π rot rotm (16)

inside the superconductor, and

roth = 0, divh = 0, (17)

rotbM = 4π rotm, divbM = 0 (18)

in the ferromagnetic layers.
In Eqs. (11) - (18) we neglected the magnetic field in-

duced by normal currents. These are given by j = σE,
where σ is the normal conductivity, and E is the elet-
ric field. We will first estimate the contribution of the
normal currents flowing in the F-layers of the multilayer

system to the magnetic field. Using both Maxwell’s equa-
tions for rotB and rotE, we obtain

rot rotB =
4πσF

c
rotE = −4πσF

c2
∂B

∂t
,

or

∂2B

∂z2
+∇2

ρ
B− 4πσF

c2
∂B

∂t
= 0, (19)

where σF is the conductivity in the magnetic layers. As-
suming

∂B

∂t
≈ −(VL∇ρ)B,

where VL is the flux velocity, we can see that the in-
fluence of the normal currents on the magnetic field is
negligible, if the inequality

4πσF

c2
lVL ≪ 1

holds, where l is the characteristic in-plane length scale
of the problem. Similar arguments can be applied to the
S-layers. Then, for the multilayer system we find the
following constraint on the vortex velocity:

VL ≪ c2

4πmax(σn, σF )l
, (20)

where σn is the normal-state conductivity of the super-
conductor. In the case of a bulk ferromagnetic supercon-
ductor, we have to demand

VL ≪ c2

4πσnl.
(21)

As we will see, the main length scales of the problem are
the inter-vortex distance a and the length L =

√

α/K,
which is of the order of the domain wall width of the
ferromagnet (or ferromagnetic superconductor). Further
on we assume that Eqs. (20) and (21) with l = min(a, L)
are satisfied. Then, we may not take into account the
normal currents in Eqs. (11) - (18).
In the free energy (1) the interaction of the vortices

with magnetization originates from the Zeeman-like term
(a brief explanation is given in Appendix A)

FZ = −
∫

Mhd3r.

Then, the magnetic moment induced force fM acting on
the vortices is

fM = − 1

LvNv

∫

mz∇hzd
3r. (22)

Here it has been assumed that the perpendicular to the
z-axis component of the field h is negligible. In the case
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of SF multilayers, this is true for a sufficiently small pe-
riod of the structure. To draw a parallel with preced-
ing works,7,8,14–17 where the susceptibility formalism has
been used, we note that fM can be written in the form

fM = − 1

LvNv

∫

(χ̂zzhz)∇hzd
3r,

where χ̂zz is the susceptibility operator. If desired, the
explicit form of χ̂zz can be easily derived from Eq. (29),
given below.
All further calculations in this section and Secs. III, IV

and V are carried out for a ferromagnetic superconductor.
In Section VI we discuss how our results can be extended
to the case of the multilayer system.
In the Fourier representation Eq. (22) reads

fM =
4π2

Nv
i

∫

qmqzh
∗
qzd

2q, (23)

where for any function X(ρ) its Fourier transform is de-
fined as

Xq =
1

(2π)2

∫

X(ρ)e−iqρd2ρ.

By Fourier transforming Eqs. (10), (15), and (16), as-
suming that all quantities do not depend on z, we obtain

∂mq

∂t = −γM0 ×
(

−(K + αq2)mq + bMq + hq

)

+ ν
M2M0 × ∂mq

∂t , (24)

hqz =
Φ0

4π2(1 + λ2q2)

∑

i

e−iqRi(t). (25)

bMq = −4π
q× (q ×mq)

q2 + λ−2
. (26)

It can be seen that the absolute value of the term bMq

in Eq. (24) is much smaller than |Kmq|. Further on we
will neglect the magnetization field bMq.
Equation (24) is an inhomogeneous linear differential

equation with constant coefficients with respect tomq. It
can be solved using standard methods. We are interested
in the z-component of the magnetization, which equals

mqz = γMi
2 sin2 θ

∫ t

−∞
hqz(t

′)
{

(

1 + i ν
M

)−1

× exp
[

−
(

1 + i ν
M

)−1
iω(q)(t− t′)

]

−
(

1− i ν
M

)−1
exp

[

(

1− i ν
M

)−1
iω(q)(t− t′)

]}

dt′,(27)

where θ is the angle between e and z0, and

ω(q) = γM(K + αq2) = ωF (1 + L2q2) (28)

gives the magnon dispersion law in an ordinary ferro-
magnet, if the dipole-dipole interaction is not taken into

account (see Ref. 29). Here, ωF = γMK is the ferro-
magnetic resonance frequency. In the small dissipation
limit, ν ≪ M , we have

mqz = γMi
2 sin2 θ

∫ t

−∞
hqz(t

′)
{

exp
[(

−i− ν
M

)

ω(q)(t− t′)
]

×
(

1− i ν
M

)

− exp
[(

i− ν
M

)

ω(q)(t− t′)
] (

1 + i ν
M

)}

dt′.

(29)

Then, the force fM takes the form

fM = 2π2γM
Nv

sin2 θ
∫

d2q
∫ t

−∞
hqz(t

′)h∗
qz(t)

{

exp
[(

i− ν
M

)

ω(q)(t− t′)
] (

1 + i ν
M

)

− exp
[(

−i− ν
M

)

ω(q)(t− t′)
] (

1− i ν
M

)}

qdt′. (30)

III. MAGNON RADIATION BY VORTICES

MOVING WITH A CONSTANT VELOCITY

Let us consider the motion of vortices under the action
of a constant external force (e. g., spacially uniform and
time-independent transport current). Then the positions
of individual vortices are given by

Ri(t) = Ri0 +VLt+∆Ri(t). (31)

Here the vectorsRi0 denote the vortex positions in a reg-
ular lattice, VL is the average flux velocity, and ∆Ri(t)
is responsible for fluctuations of vortices due to interac-
tions with pinning cites (〈∆Ri(t)〉 = 0). It should be
stressed here that we do not take into account the influ-
ence of pinning on the flux velocity. The effect that is
important for us is the vortex lattice distortion caused
by impurities, which strongly influences the efficiency of
magnon generation.
The product of magnetic fields under the integral in

Eq. (30) is

hqz(t
′)h∗

qz(t) =

(

Φ0

4π2(1 + λ2q2)

)2

eiqVL(t−t′)K, (32)

K =
∑

i,j exp [iq(Rj0 −Ri0) + iq(∆Rj(t)−∆Ri(t
′))].

Below we consider the cases of a perfect vortex lattice
and a disordered vortex array.

A. A perfect vortex lattice.

The approximation used in this section is valid for suf-
ficiently weak pinning, when we can put

〈

eiq(∆Rj(t)−∆Ri(t
′))
〉

≈ 1,

where the averaging is over i. To ensure the fulfillment
of this condition it is sufficient to demand

∆Rq ≪ 1, (33)
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where ∆R is the characteristic displacement of vortices
from their positions in a perfect lattice. The inequality
(33) must hold for all q giving a considerable contribution
to the integral in Eq. (30). In the end of Sec. III B it
will be shown that this leads to the condition

∆R ≪ L. (34)

When (34) holds, we have

K =
4π2NvB0

Φ0

∑

G

δ(q−G), (35)

where G are the vectors of the lattice, reciprocal to the
vortex lattice. After integration over q and t′ the mag-
netic force takes the form

fM = Φ0B0γM sin2 θ
∑

G
G

(1+λ2G2)2

× iω(G)+ ν
M

GVL

ω2(G)−(VLG)2−2i ν
M

VLGω(G) .

When the terms corresponding to G and −G are com-
bined, this can be written as

fM = −γνB0Φ0 sin
2 θ
∑

G
G(GVL)
(1+λ2G2)2

× (GVL)2+ω2(G)

[ω2(G)−(GVL)2]2+4 ν2

M2
(GVL)2ω2(G)

, (36)

where small terms of the order of ν/M in the numerator
have been droped. From this it follows that the force has
local maxima when for some G = G0 the condition

ω(G0) ≈ VLG0 (37)

is satisfied. This relation presents the well-known
Cherenkov resonance condition. When Eq. (37) holds,
magnons with the wave vector G0 are effectively gener-
ated. When the vortex velocity is close to a resonance
value, in the sum in Eq. (36) we can drop all terms ex-
cept the two resonant terms corresponding to G0 and
−G0. Then

fM ≈ −γνB0Φ0 sin
2 θ G0

(1+λ2G2

0
)2

× ω(G0)

(ω(G0)−VLG0)2+
ν2

M2
ω2(G0).

(38)

It can be seen that the fM vs. VL dependence for a given
vortex velocity direction exhibits a Lorentzian-like peak
with the width

∆VL =
ν

M
ω(G0)

VL

G0VL
.

The maximum value of fM is

|fM |max =
γM2B0Φ0G0 sin

2 θ

(1 + λ2G2
0)

2νω(G0)
. (39)

Another remarkeable feature is that the force is directed
at some angle to the velocity of the vortices: fM is parallel
to G0, and not VL. The angle between fM and VL

may range from 0◦ to 90◦. This effect also follows from

Equation (3) in Ref. 15, though the authors did not
mention it, because it has been assumed that VL and fM
are always parallel.
Let us discuss how the Cherenkov resonances influence

the current-voltage characteristics. Abrikosov vortex mo-
tion in a superconductor is governed by the equation

Φ0

c
j× z0 = −f (40)

The term in the left-hand side represents the Lorentz
force with j being the macroscopic supercurrent density.
All other forces are represented by the term f . We take
into account two contributions to f : the viscous drag
force −ηVL and fM . Here, η is the viscosity due to order
parameter relaxation processes and normal current flow-
ing through the vortex core.30 Taking the cross product
of Eq. (40) and z0, we obtain the expression for the
current

j = − cη

Φ0
VL × z0 +

c

Φ0
fM (VL)× z0. (41)

The relation between j and E is the established via

E = −1

c
(VL ×B), (42)

which follows from Faraday’s law. According to Eq. (41),
the vortex-magnetic moment interaction leads to an in-
crease ∆j of the current density at a given electric field
E:

∆j =
c

Φ0
fM

(

c

B0
E× z0

)

× z0.

According to Eq. (38), near the Cherenkov resonance we
have

∆j = γνB0c sin
2 θ z0×G0

(1+λ2G2

0
)2

× ω(G0)
[

ω(G0)−
c

B0
(z0×G0)E

]

2

+ ν2

M2
ω2(G0)

. (43)

This relation indicates that the I-V curve exhibits a series
of peaks corresponding to the resonance electric fields
given by

ω(G)− c

B0
(z0 ×G)E ≈ 0 (44)

Moreover, close to the resonance the additional current
∆j is directed along the vector z0 ×G0 and not E. The
angle between ∆j and E may range from 0◦ to 90◦.
Thus, locally the resistance is anisotropic. Considering
macroscopic ferrromagnetic superconductors and multi-
layer systems, care should be taken when applying Eq.
(43) to the whole sample: it is known that even a small
concentration of pinning cites destroys the long-range or-
der in the vortex lattice.31 In fact, vortex lattice domains
are formed in large superconducting samples – see Ref.
32 and references therein. The vortex nearest-neighbor
directions are typically linked to crystal axes. Hence, in



7

monocrystalline samples there are only few energetically
favorable orientations of the vortex lattices. This fact
allows us to put forward a qualitative argument. Let us
denote as G the set of all reciprocal lattice vectors for all
vortex lattice domains. Since there are only few possible
orientations of the domains, the set G consists of isolated
points. We claim that when the applied electric field sat-
isfies Eq. (44) for some G ∈ G, the enhancement of the
current should be observable. Hence, even if there are
several vortex lattice domains, the peaks on the current-
voltage characteristics are present. The measurement of
the peak voltages at different applied magnetic fields al-
lows to probe the magnon spectrum ω(q).

B. A disordered vortex array

In this section we analyze the opposite extreme case of
chaotically placed vortices. This situation may be real-
ized in weak magnetic fields, B0 . Φ0/λ

2, when vortex-
vortex interaction is weak and the lattice is easily de-
stroyed by defects and thermal fluctuations.
We assume

〈

eiq(∆Rj(t)−∆Ri(t
′))
〉

≈ 0. (45)

where q is not too small, and the averaging is over i 6= j.
Note that the behavior of K at small q almost does not
influence the force fM , since K enters the integral in Eq.
(30) with a factor q. For i = j we have

〈

eiq(∆Ri(t)−∆Ri(t
′))
〉

= 1

when t = t′, and

〈

eiq(∆Ri(t)−∆Ri(t
′))
〉

=
∣

∣

∣

〈

eiq∆Ri(t)
〉∣

∣

∣

2

≪ 1

when |t− t′| → ∞. To derive some qualitative results,
we make the following assumption:

〈

eiq(∆Ri(t)−∆Ri(t
′))
〉

= e−|t−t′|/τ(q),

where the the time τ(q) is chosen so that
〈|q(∆Ri(t)−∆Ri(t

′))|〉 ∼ 1 at t− t′ = τ(q). Then

K = Nve
−|t−t′|/τ(q), (46)

and after integration over t′ Eq. (30) yields

fM =
γMΦ2

0
sin2 θ

8π2

∫

qd2q

(1+λ2q2)2

[

1+i ν
M

τ−1(q)+ ν
M

ω(q)−iω(q)−iqVL

− 1−i ν
M

τ−1(q)+ ν
M

ω(q)+iω(q)−iqVL

]

. (47)

It can be seen here that in the case of fast vortex fluc-
tuations, τ−1(q) ≫ ω(q), magnon generation is strongly
suppressed, as the integral is proportional to τ(q). We

will analyze in detail the opposite limiting case, τ−1(q) ≪
ω(q). Then

fM ≈ γMΦ2

0
sin2 θ

4π2

∫

qd2q

(1+λ2q2)2

× iω(q)

ω2(q)−(qVL)2−2i(qVL)τ−1

1
(q)

, (48)

where τ−1
1 (q) = τ−1(q)+νω(q)/M , and in the numerator

terms proportional to ν/M have been droped. The main
contribution to the integral comes from q lying in the
vicinity of two circles in the q-plane, given by ω(q) =
±qVL (this equation specifies the Cherenkov resonance
condition). Near the circle ω(q) = qVL we make the
following transformation:

ω2(q)− (qVL)
2 − 2i(qVL)τ

−1
1 (q)

≈ 2ω(q)(ω(q)− qVL − iτ−1
1 (q)).

For the circle ω(q) = −qVL the transformations are anal-
ogous. Then

fM ≈ γMΦ2
0 sin

2 θ

4π2

∫

qd2q

(1 + λ2q2)2
ℜ i

ω(q)− qVL − iτ−1
1 (q)

.

(49)
The last fraction in the right-hand side resembles the
expression

ℜ i

f(x)− iǫ
,

which reduces to δ(f(x)) when ǫ → +0. Hence, the last
factor in Eq. (49) also can be replaced by a δ-function,
when τ−1

1 (q) is sufficiently small. To derive the limitation
on τ−1

1 (q) we direct the qx-axis along VL and rewrite the
denominator of the large fraction in Eq. (49) as follows:

ωF (1 + L2q2)− qxVL − iτ−1
1 (q)

= ωF

(

1− V 2

L

V 2

th

)

− iτ−1
1 (q) + ωFL

2

[

(

qx − VL

2L2ωF

)2

+ q2y

]

,

where Vth = 2ωFL. Now it is evident that the δ-function
can be introduced in Eq. (49) when

τ−1
1 (q) ≪ ωF

∣

∣

∣

∣

V 2
L

V 2
th

− 1

∣

∣

∣

∣

.

Then

fM ≈ −γMΦ2
0 sin

2 θ

4π

∫

qd2q

(1 + λ2q2)2
δ(ω(q)−qVL). (50)

Here, two points should be noted: (i) the expression for
fM does not depend on the dissipation rate and on the
artificially introduced time τ(q); (ii) Equation (50) can
be derived from Eq. (36) in the limit of an extremely
sparse vortex lattice, when summation can be replaced
by integration.
Technical details of integration in Eq. (50) are given

in Appendix B. The final result is

fM = −γMΦ2
0 sin

2 θ

8λ4ω2
F

(

1 +

(

VL

λωF

)2
)−3/2

Θ(VL − Vth)VL

(51)
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for λ ≫ L. Equation (51) asserts that the quantity Vth is
the magnon generation threshold velocity. The maximal
value of fM is reached at VL = λωF

√
2 ≫ Vth:

|fM |max =
Φ2

0γM sin2 θ

8
√
2λ3ωF 33/2

. (52)

The influence of the magnetic force fM on the current-
voltage characteristics in general has been discussed in
the previous section. According to Eqs. (41) and (42),
at the electric field E = VthB0/c the average current
density should exhibit a stepwise increase by

∆j =
c

Φ0
fM (Vth) =

γMΦ0c sin
2 θ

8λ4ω2
F

(

1 +

(

Vth

λωF

)2
)−3/2

Vth.

The maximum enhancement of the current density due
to vortex-magnetic moment interaction is reached at E =√
2λωFB0/c and equals

∆jmax =
Φ0cγM sin2 θ

8
√
2λ3ωF33/2

.

In Ref. 14 it has been predicted that in antiferromag-
netic superconductors in the sparse lattice limit the cur-
rent enhancement ∆j is proportional to

√
VL − Vc (at

VL > Vc), where Vc is some critical velocity. This result
is in contrast with ours: we found that ∆j ∼ Θ(VL−Vth)
near the magnon generation threshold. This difference
is due to different magnon spectra in ferromagnets and
antiferromagnets – see Fig. 2. In an antiferromagnet
ω(q) =

√

ω2
0 + s2q2, where ω0 is a gap frequency, and s is

the short-wavelength magnon velocity. As the vortex ve-
locity is increased, the resonance condition ω(q) = VLq

is first satisfied at infinitely large q. However, at q ≫ ξ−1,
where ξ is the coherence length, the Fourier components
hqz are exponentially small. Magnon generation becomes
efficient at q ∼ ξ, which is reached at a critical velocity
that roughly equals Vc =

√

ω2
0ξ

2 + s2. In short, the gen-
eration threshold in antiferromagnetic superconductors
corresponds to an intersection of the curves ω = ω(q)
and ω = VLq at q ∼ ξ−1 (see Fig. 2a), yielding a ∆j ∼√
VL − Vc dependence. On the contrary, in ferromag-

netic superconductors at VL = Vth the curves ω = ω(q)
and ω = VLq touch each other at q = L−1 < ξ−1 (see
Fig. 2b). This fact leads to a stepwise increase of the
current at the threshold vortex velocity.

Finally, we need to make a remark concerning the con-
dition (33), providing that the ideal lattice approxima-
tion can be used. It follows from Fig. 2b that near
the generation threshold magnons with wave numbers
q ≈ L−1 are generated. This means that for VL & Vth

the main contribution to the integral in Eq. (30) comes
from q ∼ L−1. Thus, the condition (34) should be im-
posed to ensure the applicability of the perfect lattice
approximation.

q
-1

0

-1

 ( 2
0
+s2q2)1/2

 sq
 VLq

L-1
q

b

F

 F(1+L
2q2)

 VLq

a

FIG. 2. The magnon spectra in an (a) antiferromagnet and
(b) ferromagnet. The dash-dotted line is given by ω = VLq,
where VL is the vortex velocity at which magnon generation
becomes efficient (VL = Vc for antiferromagnetic supercon-
ductors and VL = Vth for ferromagnetic superconducors).

C. Estimates of the threshold vortex velocity in

ferromagnetic superconductors and SF multilayers.

Let us check whether it is possible to observe the
features connected with the Cherenkov resonances on
the current-voltage characteristics of ferromagnetic su-
perconductors and SF multilayers. To satisfy the condi-
tion (37) sufficiently large vortex velocities VL > Vth are
required. Estimates of the theshold velocity for known
ferromagnetic superconductors are given in Table I. One
can see that the values of Vth are very large. The question
arises if such velocities are compatible with superconduc-
tivity in the U-based superconductors. To investigate
this question we will estimate the supercurrent density
jth which is sufficient to accelerate the vortices up to the
velocity Vth. Equation (41) yields

jth ≈ cη

Φ0
Vth (53)

For the viscosity η we use the Bardeen and Stephen
expression33 (which is a good estimate for relatively slow
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processes)34

η = Φ0Hc2σn/c
2, (54)

where Hc2 = Φ0/(2πξ
2) is the upper critical field. For

the normal state conductivity we use Drude’s estimate

σn ∼ e2nℓ

mVF
.

Here n is the concentration of charge carriers, m is their
mass, ℓ is the mean free path, and VF is the Fermi veloc-
ity. Then

jth ∼ e2nℓHc2Vth

mcVF
. (55)

This value should be compared with the depairing cur-
rent density which is given within the BCS theory by

jcr ∼ en
∆

mVF
,

where ∆ is the superconducting gap. We demand jth ≪
jcr. Using the relation ∆ ∼ ~VF /ξ (valid for clean super-
conductors) we can rewrite the inequality above as

Vth ≪ ξ

ℓ
VF . (56)

In the U-based compounds the coexistence of supercon-
ductivity and ferromagnetism appears in clean samples
with ℓ & ξ. The Fermi velocities are of the order of
108cm/s in UGe2 and 105cm/s in UCoGe and URhGe –
see Refs. 35–37. Thus, the inequality (56) is satisfied in
neither of these compounds, and our model breaks down
at vortex velocities below Vth. This is a consequence
of the high magnetic anisotropy and large quasiparticle
mass in the U-compounds.
The situation seems to be more optimistic in SF su-

perlattices. Certainly, we should consider if Eq. (54) is
valid for multilayers. A study of the vortex viscosity in
superconductor/normal metal multilayers is presented in
Refs. 38 and 39. It has been shown the Bardeen-Stephen
viscosity (54) may be significantly modified for vortices
inclined with respect to the z-axis, or for strongly con-
ducting normal metal layers. Still, in our case Eq. (54)
is a good order-of magnitude estimate for dS ∼ dF and
σF . σn, where dS and dF are the thicknesses of the
superconducting and ferromagnetic layers (see Fig. 1),
respectively.
Recently, a number of experimental papers18–20

have reported successful fabrication of high-quality
YBa2Cu3O7/La2/3Ca1/3MnO3 superlattices. In Ref. 40
the value Han = 1200Oe for La0.7Ca0.3MnO3 is given,
though it is noted that the anisotropy is significantly in-
fluenced by strain. The measured domain wall width in
the same compound, denoted as δ in Ref. 41, is 12 nm.
Assuming γ ∼ µB/~, where µB is the Bohr magneton,
we obtain the following estimate for the vortex threshold
velocity:

Vth = 2γHanL ∼ 104cm/s. (57)

The Fermi velocity in YBa2Cu3O7 is of the order of or
greater than 107cm/s.42 Thus, the condition (56) can
surely be satisfied in the cuprate/manganite superlat-
tices.

IV. MAGNON RADIATION BY A

HARMONICALLY OSCILLATING VORTEX

LATTICE

As it has been shown in Sec. III C, magnon genera-
tion in U-based ferromagnetic superconductors by a vor-
tex array moving with constant velocity seems problem-
atic due to the extremely high required vortex veloci-
ties. In this section we study a more feasible approach
to magnon generation in magnetic superconductors, an-
alyzing the case of a harmonic external current acting on
the vortices. Experimentally, the oscillating current in
the superconductor can be created using the microwave
technique (for example, see Ref. 21). Then, the surface
impedance yields information about the high-frequency
properties of the sample – see Sec. V.
Subjected to the action of a harmonic force, in the

linear regime the vortices oscillate harmonically:

Ri(t) = R′
i0 +Re−iωt +R∗e−iωt. (58)

Here R′
i0 are the equilibrium positions of the vortices,

which are defined by vortex-vortex interaction as well as
pinning. The vectors R′

i0 do not necessarily form a reg-
ular lattice, unlike Ri0. R is the amplitude of vortex
oscillations. We will consider frequencies of the order of
the ferromagnetic resonance frequency in ferromagnetic
superconductors, ωF ∼ 100GHz. This frequency is sev-
eral orders of magnitude larger than the typical depin-
ning frequency.43 This fact allows to neglect the influence
of the pinning force on vortex motion and to assume that
the oscillation amplitudes of all vortices are equal to R.
The product of the magnetic fields in Eq. (30) equals

hqz(t
′)h∗

qz(t) =
(

Φ0

4π2(1+λ2q2)

)2

K′eiq(Ri(t)−Ri(t
′))

≈
(

Φ0

4π2(1+λ2q2)

)2

K′ [1 + iq(Ri(t)−Ri(t
′))] , (59)

where

K′ =
∑

i,j

e−iqR′

i0+iqR′

j0 = Nv

〈

∑

j

e−iqR′

i0+iqR′

j0

〉

.

(60)
Here, the averaging is over i. The linear with respect to
R contribution to the force takes the form

fM =
γMΦ2

0

8π2Nv
sin2 θ

∫

d2q
∫ t

−∞
iK′qR

(1+λ2q2)2 (e
−iωt − e−iωt′)

×
{

e[iω(q)− ν
M

ω(q)](t−t′) − e[−iω(q)− ν
M

ω(q)](t−t′)
}

qdt′ + c.c.

≈ γMΦ2

0

4π2Nv
sin2 θe−iωt

∫

d2q K′(q)qR
(1+λ2q2)2

×
[

ω(q)
ω2(q)−ω2−2i ν

M
ωω(q) − ω−1(q)

]

q+ c.c. (61)
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FIG. 3. The ℑ(ηM ) vs. magnetic field dependence at fre-
quencies below the ferromagnetic resonance frequency for
an ideal triangular vortex lattice (see Eq. (66)). η0 =
γMΦ2

0 sin
2 θ/(2λ4ω2

F ).

Here c.c. denotes the complex conjugate. Like before, we
neglected small terms of the order of ν/M .
To proceed further, the explicit form of K′(q) is re-

quired. Again, we will consider the cases of a pefect
vortex lattice and a disordered array.

A. A perfect vortex lattice.

Let us assume that pinning is sufficiently weak, so that

q∆R ≪ 1, (62)

where ∆R ∼ |R′
i0 −Ri0| is the characteristic deviation

of the vortices from their positions in a perfect lattice.
The inequality (62) should hold for all q giving a con-
siderable contribution to the integral in Eq. (61). The
characteristic value of q will be estimated below.
For q∆R ≪ 1 we have

K′ =
4π2NvB0

Φ0

∑

G

δ(q−G). (63)

Substituting Eq. (63) into Eq. (61), assuming that the
vortex lattice is either square or regular triangular, we
obtain

fM = iωηMRe−iωt + c.c., (64)

ηM = − iγMΦ0B0

2ω sin2 θ
∑

G
G2

(1+λ2G2)2

×
[

ω(G)
ω2(G)−ω2−2i ν

M
ωω(G) − ω−1(G)

]

. (65)

Here, we have introduced the complex quantity ηM , play-
ing the role of a generalized vortex viscosity. Indeed,
when ηM is purely real, the magnetic force is simply
fM = −ηMdRi/dt. In our system there is a phase shift

between the vortex velocity and fM , and the more gen-
eral expression (64) is valid. Further on we will call ηM
the magnetic viscosity.
The ideal vortex lattice is likely to form when vortex-

vortex interaction is sufficiently strong, or the inter-
vortex distance is suffiently small. Let this distance be
much smaller than the London penetration depth, which
means B0 ≫ Φ0/λ

2. Then λG ≫ 1 for all G 6= 0, and

ηM ≈ − iγMΦ0B0ω
2λ4 sin2 θ

∑

G 6=0 G
−2ω−1(G)

×
[

ω2(G)− ω2 − 2i ν
M ωω(G)

]−1
. (66)

Now we consider the behavior of ηM in different fre-
quency ranges. First, let the frequency be below the
ferromagnetic resonance frequency (ω < ωM ). Then
magnon generation is inefficient. However, if we put
ν = 0, the force fM will not vanish below the generation
threshold, unlike in the case of constant vortex velocity.
Instead, the magnetic viscosity will be purely imaginary,
signifying that there are no magnetic losses. In Fig. 3
we plot the imaginary part of η vs. magnetic field B0 de-
pendencies for different frequencies (below ωF ) and for a
fixed angle θ.
Returning to the condition (62), one can see that for

ω < ωF the characterisitic values of G in Eq. (66) are
of the order of L−1. Hence, ∆R ≪ L is required for Eq.
(66) to be valid.
At frequencies above the ferromagnetic resonance fre-

quency magnetic dissipation can not be neglected, and
the real part of ηM becomes significant. In Fig. 4 we
plot the ηM vs. B0 dependencies for different frequencies
and for a fixed angle θ and dissipation rate ν/M = 0.02.
The graphs exhibit a sequence of Lorentzian-like (ℜ(ηM ))
and N-shaped (ℑ(ηM )) features, located at some resonant
field values, BR, which are determined from the relation

ω(G) = ω. (67)

For small fields these features may overlap, but the reso-
nance corresponding to the highest field remains well dis-
tinguishable. For a triangular vortex lattice the largest
resonance field equals

BR =

√
3

8π2

Φ0

L2

(

ω

ωF
− 1

)

,

and for a square lattice

BR =
1

4π2

Φ0

L2

(

ω

ωF
− 1

)

.

Solving Eq. (67) with respect to G, we obtain

G = L−1

√

ω − ωF

ωF
. (68)

Hence, the peaks on the ηM vs. B0 dependences must
be observable if the characteristic deviation ∆R of the
vortices from their positions in an ideal lattice satisfies

∆R ≪ G−1 = L

√

ωF

ω − ωF
. (69)
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FIG. 4. The ηM vs. magnetic field dependencies for fre-
quencies above the ferromagnetic resonance frequency (see
Eq. (66)). η0 = γMΦ2

0 sin
2 θ/(2λ4ω2

F ). The vortices form an
ideal triangular lattice.

Note that for frequencies close to ωF this condition is
weaker than ∆R ≪ L.
We conclude this section by giving a numeric estimate

of the magnetic viscosity. When the resonance condition
(67) is satisfied, we obtain from Eq. (66)

ηM ∼ γMΦ0B0

λ4G2ω2

M

ν
.

Since B0G
−2 ∼ Φ0, and the lowest allowable value of ω

is ωF = γMK, we have

ηM .
Φ2

0

Kλ4ωF

M

ν
. (70)

Then, according to Eq. (54), the ratio of ηM to η is

ηM/η .
M

ν

ξ2c2

Kλ4ωFσn
. (71)

We will make the numeric estimate for UCoGe, the ferro-
magnetic superconductor with the lowest ferromagnetic
resonance frequency. In Ref. 3 we find the value 12µΩcm
for the normal resistivity, and the maximal value 200Å

0,0 0,5 1,0 1,5 2,0
-10

-5

0

5

10

0

F

 ( M)
 ( M)

FIG. 5. The frequency dependence of the magnetic vis-
cosity, ηM , for a disordered vortex array – see Eq. (76).
The value ln(λ/L) = 4.3 of UGe2 has been used. η0 =
γMΦ2

0 sin
2 θ/(2λ4ω2

F ).

for the coherence length. Using Table I, we obtain

ηM/η ∼ M

ν
3× 10−5. (72)

Data on the ratio M/ν are not available yet. The small
factor 10−5 in Eq. (72) appears due to the large magne-
tocrystalline anisotropy of UCoGe: it can be seen from
Eq. (71) that ηM/η is proportional to K−2, since ωF =
γMK. Hence, to increase the ratio of ηM to η, com-
pounds (or multilayer systems) with a lower anisotropy
are preferable.

B. A disordered vortex array.

Now let us assume that due to relatively strong pin-
ning the vortices are placed chaotically, i. e., there is no
correlation between R′

i0 and R′
j0 for i 6= j. Then

K′ = Nv

(

∫

B0

Φ0
e−iqR′

i0+iqR′

j0d2R′
j0 + 1

)

= Nv

(

4π2B0

Φ0
δ(q) + 1

)

. (73)

In a real vortex lattice there is a short-range order, which
leads to the smearing of the delta-function on a scale of
the order of the inverse inter-vortex distance. However,
the behavior of K′ at small q is not important, since K′

enters the integral in Eq. (61) with a factor q2. For
clarity, we stress here that the product hqz(t

′)h∗
qz(t) does

not decay with increasing t − t′, unlike in the case of a
constant driving force – see Eqs. (32) and (46). This is
explained by the fact that the vortices oscillate close to
their equilibrium positions and do not travel from one
pinning cite to another. Thus, the positions Ri(t) and
Ri(t

′) of a single vortex are always well correlated, cor-
responding to an infinite correlation time τ(q).
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With K′ given by Eq. (73) the magnetic viscosity takes
the form

ηM = − iγMΦ2

0

4πω sin2 θ
∫∞

0
q3dq

(1+q2λ2)2

×
[

ω(q)
ω2(q)−ω2−iǫ − ω−1(q)

]

. (74)

Here, like in Sec. III B, we assume that the imaginary
term −iǫ (ǫ > 0) in the denominator is an infinitesimal.
To simplify the expression in the right-hand side of Eq.
(74), we note that the contribution to the integral from
small q (q . λ−1) can be neglected in the λ ≫ L limit.
Then we can put 1 + λ2q2 ≈ λ2q2, and cut the integral
off at q = λ−1:

ηM = − iγMΦ2

0

4πωλ4

∫∞

λ−1

dq
q

×
[

ω(q)
(ω+ω(q))(ω(q)−ω−iǫ) − ω−1(q)

]

. (75)

Further integration should not present difficulties. For
λ ≫ L we obtain

ηM =
γMΦ2

0
sin2 θ

8πωωFλ4

{

πωF

2(ω−ωF )Θ(ω − ωF )− i
[

2ω2

ω2

F
−ω2 ln

λ
L

+ ωF

2(ω+ωF ) ln
ω+ωF

ωF
+ ωF

2(ωF−ω) ln
∣

∣

∣

ωF−ω
ωF

∣

∣

∣

]}

. (76)

Like in the previous section, below the ferromagnetic res-
onance frequency the magnetic viscosity is purely imagi-
nary. However, unlike in the case of a perfect fortex lat-
tice, now the viscosity does not depend on the magnetic
field. It should be also noted that in the limit B0 → 0
Eq. (65) after summation transforms into (76), i. e., the
cases of isolated vortices and chaotically placed vortices
are equivalent, like in Sec. III. The ηM vs. ω dependence
is depicted in Fig. 5.

C. Vortex mass.

As we have seen, at ω < ωF the magnetic viscosity is
imaginary. Moreover, at ω ≪ ωF the viscosity is propor-
tional to ω. This signifies that the vortex can be ascribed
a mass per unit length, Mv, so that the equation of mo-
tion becomes

Mv
d2Ri

dt2
= fext, (77)

where fext includes all forces, except for the force fM .
The mass is defined by

Mv =
iηM
ω

∣

∣

∣

∣

ω=0

. (78)

Before we give explicit expressions for Mv, we should
comment on the connection between the vortex mass en-
hancement and the self-induced polaronic pinning mech-
anism, studied in Refs. 15 and 16. In the mentioned
papers it has been assumed that the magnetization dy-
namics is purely dissipative, i. e., ν/M ≫ 1, which is
in contrast to our case. In fact, ν/M ≫ 1 is a necessary

condition for the formation of polaronlike vortices. Thus,
the polaronic pinning mechanism contributes rather to
the real part of ηM than to its imaginary part, an it is
not related to the vortex mass enhancement discussed
here.
Using Eq. (66), we find that the magnetic contribution

to the vortex mass for a perfect lattice is

Mv =
γMΦ0B0

2λ4
sin2 θ

∑

G 6=0

G−2ω−3(G) (79)

when B0 ≫ Φ0/λ
2. For a disordered array we obtain

from Eq. (74)

Mv =
γMΦ2

0

4πω3

F

sin2 θ
∫∞

0
q3dq

(1+q2λ2)2(1+L2q2)3

≈ γMΦ2

0
sin2 θ

16πω3

F
λ4

(

4 ln λ
L − 5

)

(λ ≫ L). (80)

Let us estimate the characteristic magnetic contribution
Mv to the vortex mass and compare it with the electronic
contribution (see, for example, Ref. 44), which is present
in any superconductor:

Me =
2

π3

m2VF

~
. (81)

We give estimates for the ferromagnetic superconductor
URhGe. The values of ωF = γMK and λ can be found in
Table I. The electron mass and Fermi velocity for one of
the Fermi surface pockets of URhGe have been measured
in Ref. 37. The values given there are m = 22me and
VF = 4.4× 105cm/s, where me is the free electron mass.
Then

Mv ∼ γMΦ2
0

16πω3
Fλ

4
≈ 10−24g/cm, Me ∼ 10−20g/cm.

It can be seen that the magnetic contribution to the vor-
tex mass is negligible for URhGe. Estimates for UGe2
and UCoGe yield the same result. This happens due to
the very large ferromagnetic resonance frequency ωF in
these compounds: note that the right-hand side of Eq.
(80) contains ω−3

F . The situation is the same as for the
magnetic viscosity – see Eqs. (71) and (72). Thus, the
magnetic massMv should be detectable in materials with
a smaller ferromagnetic resonance frequency.

V. DISCUSSION OF THE MAGNETIC

VISCOSITY MEASUREMENT

A simple experimental method to study vortex dynam-
ics in type-II superconductors consists in the measure-
ment of the surface impedance. A possible geometry for
such experiment is depicted in Fig. 6. We consider the
simplest situation, when the vortices are perpendicular to
the sample surface, and the probing electromagnetic wave
with the amplitude he is normally incident on this sur-
face. Then, for a non-magnetic superconductor (M0 = 0)
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he

He

B0

M0

Lx

Ly
Lz

x

y

z

Ferromagnetic

superconductor

FIG. 6. The geometry for the measurement of the surface
impedance of a ferromagnetic superconductor. The dashed
lines denote vortices.

theory30,45 predicts that in a wide range of parameters
the surface impedance Z(ω) equals

Z(ω) =

(−iωµρf
4π

)1/2

, (82)

where µ is the static differential magnetic permeability,

µ =
dB0z

dHez
,

and ρf is the flux-flow resistance,

ρf =
BΦ0

c2η
.

Thus, the experimental value of the surface impedance
provides information about the viscosity coefficient η.
We will prove that for a ferromagnetic superconductor

a range of parameters exists, where Eq. (82) can be ap-
plied, if the magnetic viscosity is taken into account: η
should be replaced by η + ηM .
First, we outline the applicability conditions of Eq.

(82) for an ordinary superconductor. Within the con-
tinuous medium approximation used in Ref. 45 an alter-
nating external field he excites a long-wavelength and a
short-wavelength mode in the superconductor. For con-
venience, we will call these modes type-1 and type-2, and
denote the z-projections of their wave vectors as k1 and
k2, respectively. These quantities are explicitly defined
by Equation (24) in Ref. 45. To use the simple expression
(82) for the impedance, three conditions must be fulfilled:
(i) |k1|λ ≪ 1, (ii) |k1| ≪ |k2|, and (iii) |k2|Lz ≫ 1 (Lz

is the sample thickness – see Fig. 6). According to Ref.
45, the conditions (i) and (ii) are satisfied, if

ω ≪ ωC =
Φ0C

∗
44

B0λ2η
, (83)

where C∗
44 is an elastic modulus of the vortex lattice.

This inequality presents a limitation on the frequency.
We would like to note that in the limit Hc1 ≪ B0 ≪ Hc2,
where Hc1 is the lower critical field, the condition (83)
can be weakened, namely

ω ≪ ωB =
Φ0B0

4πλ2η
(ωB ≫ ωC). (84)

This follows directly from Equation (22) in Ref. 45.
Let us turn to the case of a ferromagnetic superconduc-

tor. We assume the sample is a slab with dimensions Lx,
Ly and Lz, where Lz ≪ Lx, Ly – see Fig. 6. The x-axis,
parallel to the large surface of the sample, is the magne-
tization easy-axis. In fact, the slab geometry is not a key
point for us, but the equilibrium magnetization must be
parallel to one of the sample surfaces. By applying an
external field we can provide that the internal field B0 is
parallel to the z-axis. In the slab geometry the compo-
nents of the demagnetizing tensor are Nxx ≈ 0, Nyy ≈ 0,
Nzz ≈ 4π. Then, according to Eq. (5), if the external
field is He = (−4πM, 0, Hez), the internal field equals
B0 = (0, 0, Hez).
Now we discuss the surface impedance of a ferromag-

netic superconductor. Compared to the case of a conven-
tional superconductor, an additional complication arises
due to the presence of new degrees of freedom. These
are connected with magnetization dynamics and lead to
the appearance of new magnon-like modes. Such modes
can be directly excited by an electromagnetic wave even
in the absence of vortices,5,6 and they may significantly
influence the surface impedance. However, in our geome-
try the excitation of these modes can be avoided, as will
be demonstrated below.
If the frequency is not too close to the ferromag-

netic resonance frequency (|ω − ωF | /ωF ≫ K−1) we
can neglect the magnetostatic interaction in the Landau-
Lifshitz equation when analyzing the additional magnon-
like modes, as we have done in Sec. II (where the term
bMq has been dropped). Then, in the limit of small dis-
sipation, Eq. (10) takes the form

∂m

∂t
= −γM0 ×

(

α
∂2m

∂z2
−Km

)

. (85)

This yields two modes, which we label as type-3 and 4:

m = (z0 ∓ iy0)m3,4e
ik3,4z,

k3 = L−1
√

ω
ωF

− 1, k4 = iL−1
√

ω
ωF

+ 1, (86)

where m3 and m4 are scalar amplitudes. Now suppose
that the magnetic field he in the probing electromagnetic
wave oscillates along the x-axis, i. e., along the equilib-
rium magnetization (see Fig. 6). We assume that inside
the sample the alternating magnetic induction 〈b〉, aver-
aged over the xy-plane, is also parallel to the x-axis. It
will be shown that this statement is self-consistent. In-
deed, for 〈b〉 parallel to M0 we see from Eqs. (10) and
(14) that ∂〈m〉/∂t = 0. This means that the magnon-
like type-3 and 4 modes are not excited. In the type-1
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and 2 modes 〈m〉 = 0, but 〈b〉 6= 0. Hence, these modes
differ from their analogues in non-magnetic superconduc-
tors only by the presence of the magnetic contribution to
the viscosity, ηM , which is due to the Fourier-components
mq with q 6= 0. Then, according to Ref. 45, the internal
field 〈b〉 will be parallel to the probing field he (which
follows from the London equation (11), if the deforma-
tion of the vortex lattice is taken into account). Thus,
we have proved the validity of our assumption, having
shown in addition that only the type-1 and 2 modes are
excited.
Strictly speaking, the effective viscosity for the long-

wavelength type-1 mode differs from η+ηM , because the
vortices are not straight. However, since |k1| ≪ λ−1, the
radius of curvature of the vortices is sufficiently large to
make this difference negligible.
An electromagnetic wave polarized in the y-direction

(he = heyy0) requires separate treatement, which is out-
side the scope of this paper. Here, the magnon-like modes
of type 3 and 4 must be taken into account. For a study
of the surface impedance in the case he⊥M0 (in a differ-
ent geometry) see Ref. 13.

VI. MAGNON EXCITATION IN SF

MULTILAYERS.

In this section it is shown how our results can be ex-
tended to the case of SF multilayers with S and F be-
ing an ordinary type-II superconductor and ordinary fer-
romagnet, respectively. We consider structures with a
sufficiently small period d (see below) and with vortices
oriented perpendicular to the layer surfaces – see Fig. 1.
Then, the generalization of the results from Secs. II - IV
is straightforward, if two points are taken into account:

(i) Since the magnetic moments now occupy only a frac-
tion of the sample, the force fM is reduced by a factor of
d/d′F , where d

′
F ≤ dF is the effective thickness of the fer-

romagnetic layer. Formally, all expressions for fM , start-
ing with Eq. (23), should be multiplied by d′F /d. The
quantities d′F and dF coincide, if the mutual influence
of the superconducting and magnetic orders is negligi-
ble. However, this is not the case for cuprate/manganite
superlattices. Experimental papers report giant super-
conductivity induced modulation of the magnetization19

and the suppression of magnetic order in the mangan-
ite layer close to the SF interface.20 In the latter case,
d′F < dF , but both quantities are of the same order of
magnitude.

(ii) Due to the fact that the structure is only partially
superconducting, the in-plane London penetration depth
now equals λeff = λ(d/dS)

1/2 – see Ref. 46, for example.
The expression for the single vortex field

hqz ≈ Φ0

4π2(1 + q2λ2
eff)

(87)

can be used if the period d of the structure is much

smaller than the characteristic in-plane length scale of
the problem. To apply our results for the case of a
constant driving force, we have to demand d ≪ L, ac-
cording to Sec. III. The constraint is somewhat weaker
in the case of the harmonic driving current. Indeed,
for ω > ωF the main contribution to fM comes from
q ≈ L−1

√

ω/ωF − 1, hence, the limitation on the period
of the structure is

d ≪ L

√

ωF

ω − ωF
.

Thus, for (ω − ωF )/ωF ≪ 1 the thickness d may be of
the order of or larger than the domain wall width.
Finally, we will discuss briefly a recent paper by

Torokhtii et al.,21 where the flux-flow resistivity in
Nb/PdNi/Nb trilayers has been measured. It has been
reported that in the presence of the magnetic PdNi
layer the flux-flow resistivity in Nb exceeds the Bardeen-
Stephen estimate,33 as if the vortex viscosity is reduced
by the interaction with magnetic moments. At first sight,
this seems to contradict our prediction. However, this
experiment can not be interpreted in the framework of
the model used here, since the ferromagnetic alloy PdNi
does not posess a well-defined magnetic anisotropy, and
the magnon modes can not be characterized by a wave
vector q due to the lack of translational symmetry. More-
over, the dependence of the critical temperature of Nb on
the PdNi layer thickness signifies strong influence of the
magnetic order on superconductivity. We suppose that
the explanation of the viscosity reduction in the men-
tioned experiment requires a more complicated micro-
scopic treatment.

VII. CONCLUSION

We have calculated the magnetic moment in-
duced force fM acting on moving Abrikosov vor-
tices in ferromagnetic superconductors and supercon-
ductor/ferromagnet multilayers. When the vortices are
driven by a dc transport current, magnons are efficiently
generated when the vortex velocity exceeds the value
Vth = 2ωFL. As a result, narrow peaks appear on the
current-voltage characteristics of the superconductor, if
the vortices form a regular lattice. Within a vortex lat-
tice domain the current may be not parallel to the elec-
tric field. For a disordered vortex array a step-like fea-
ture should appear on the current-voltage characteristics.
This behavior is in contrast with antiferromagnetic su-
perconductors, where the increase of the current at the
magnon generation threshold is proportional to

√
U − Uc,

where U is the voltage, and Uc is some threshold value.14

According to our estimates, the transport current re-
quired to reach the vortex velocity Vth in the U-based
ferromagnetic superconductors is of the order the depair-
ing current due to the large magnetic anisotropy of these
compounds. On the other hand, in cuprate/manganite
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multilayers18–20 the required current is well below the de-
pairing current, so the mentioned features may be observ-
able on the current-voltage characteristics of such sys-
tems.
If the vortices are driven by an ac current, the interac-

tion with magnetic moments results in the appearance of
a complex magnetic contribution ηM to the vortex viscos-
ity. We determined this quantity for the cases of an ideal
vortex lattice and a disordered vortex array. For low fre-
quencies, ω ≪ ωF , the magnetic contribution to the vor-
tex mass has been estimated. From the ηM vs. magnetic
field and frequency dependencies the magnon spectrum
in the ferromagnetic superconductor can be extracted.
Experimentally, ηM can be determined by measuring the
surface impedance of the sample in the geometry, where
the equlibrium magnetization is parallel to the oscillating
external magnetic field.
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Appendix A

In this appendix we will prove that the magnetic mo-
ment induced force acting on vortices can be written as
(22). We have to calculate the variation of the free energy
when all vortices are shifted by an equal vector, and the
magnetization is kept fixed. To simplify the calculations
we use the fact that the free energy acquires the same
variation if the vortices are kept fixed, and the magneti-
zation is shifted in the opposite direction. Then

δF =

∫
(

δF

δA
δA+

δF

δM
δM

)

d3r.

According to the London equation δF/δA = 0 the first
term in the right-hand side vanishes. Also, the terms in
Eq. (1) which depend only on M (e. g., the exchange en-
ergy) are not affected by the magnetization shift. Hence,
only the term

δF = −
∫

BδMd3r, (A1)

remains, and the force acting on a vortex is

(fM )xi
=

1

NvLv

∫

B
∂M

∂xi
d3r = − 1

NvLv

∫

∂B

∂xi
Md3r

Presenting the magnetic field as B = h+ bM , we have

fM = fM1 + fM2. (A2)

(fM1)xi
= − 1

NvLv

∫

∂bM

∂xi
Md3r,

(fM2)xi
= − 1

NvLv

∫

∂h
∂xi

Md3r.

Note that the term fM1 does not depend on the vortex
positions. Hence, to calculate this term we can place the
vortices anywhere in the superconductor. Let us posi-
tion the vortices in an area with uniform magnetization
(M = const). Then, fM2 vanishes, and fM = fM1. On
the other hand, in the area with homogenous magneti-
zation bM = 0 inside the superconductor (in the fer-
romagnetic superconductor this happens due to London
screening, and in the SF multilayer system the field bM

is simply confined to the ferromagnetic layers). Hence,
the magnetization has no influence on the magnetic field
and supercurrent in the vortex region, and the force fM
vanishes. Then, fM1 = 0, and for any vortex positions
fM = fM2. From this follows Eq. (22).

Appendix B

In this appendix we show how the integral in Eq. (50)
can be evaluated. We introduce the dimensionless quan-
tities l = L/λ, lv = VL/(ωFλ) and g = λq, and direct
the gx-axis along VL. Then fMy = 0, and

fMx = − γMΦ2

0
sin2 θ

4πλ3ωF

∫

gxd
2g

(1+g2)2 δ(1 + l2g2 − lvgx)

= − γMΦ2

0
sin2 θ

4πλ2VL

∫ (1+l2g2)δ(1+l2g2−lvgx)
(1+g2)2 d2g

= − γMΦ2

0
sin2 θ

4πλ2VL

[

l2
∫ δ(1+l2g2−lvgx)

1+g2 d2g

+(1− l2)
∫ δ(1+l2g2−lvgx)

(1+g2)2 d2g
]

. (B1)

Now we make a coordinate shift, redesignating gx −
lv/(2l

2) by gx:

fMx = − γMΦ2

0
sin2 θ

4πλ2VL

{

∫ δ(g2−g2

0
)d2g

1+g2
y+(gx+

lv

2l2
)2

+(l−2 − 1)
∫ δ(g2−g2

0
)d2g

[

1+g2
y+(gx+

lv
2l2

)
2
]

2

}

, (B2)

where

g20 = l−2

(

l2v
4l2

− 1

)

.

Further we assume that VL > Vth, so that g20 > 0 (at
VL < Vth fM = 0). Integration over the modulus of g is
now straightforward. Then

fMx = − γMΦ2

0
sin2 θ

8πλ2VL

[

∫ 2π

0
dϕ

1+g2

0
+

l2v

4l4
+ lv

l2
g0 cosϕ

+
∫ 2π

0
(l−2−1)dϕ

(

1+g2

0
+

l2v

4l4
+ lv

l2
g0 cosϕ

)

2



 , (B3)

where ϕ is the polar angle in the g-plane. Integration
can be completed using standard methods or a table of
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integrals. The result is

fMx = −γMΦ2
0 sin

2 θ

8λ2VL
(l−2 + 1)

l2v
l4

[

(1− l−2)2 +
l2v
l4

]−3/2

.

(B4)

If we return to dimensional variables and recall that L ≪
λ, we obtain Eq. (51).
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