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1. INTRODUCTION

France)

In this paper we present a fast and accurate method for

computing unsteady two-dimensional incompressible flows.

The

method makes use of the vorticity and the stream functicn as
dependent variables approximated by means of Chebyshev

polynomial expansions. When using these variables the delicate

question is the derivation of proper pboundary conditions for

the vorticity. The +reatment of these conditions must preserve

accuracy, stability and should avoid the use of

solution procedure. The method developed here makes use O

an iterative

influence matrix technigue. This technigque which has been
found successful for the velocity-pressure equations (Kleiser
and Schumann, 1980; Le Quéré and Alziary de Rogquefort, 198%Z)
has been applied until now to vorticity-stream function
equations only in cases which reduce to one-dimensional
problems (Tuckerman, 1983; Dennis and puartapelle, 1383).
Oour purpose is to give a two-dimensional formulation of the

method, to point out the theoretical and numerical difficulties

associated with it, and finally to present numerical results

illustrating the properties of the method.

2. EQUATIONS AND NUMERICAL APPROXIMATION

The Navier-Stokes eguations within the vorticity-stream

functiocn formulation are

2 .
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where the stream function ¥ and the vorticity w are cocnnected

to the velocity 5 by
< _ {3y _ 3y _9v _3du
v = (u,v) = (;y i 5;) S 5; » {2.3)

These equations are solved in D (-1< x,y<l ) with the
poundary conditions on I' = 3D.

v=g, %\":— =h (v = unit normal to I). (2.4a,b)

The initial condition at t =0 is

-
v o= Go’ then w = mo. (2.5)

In (2.1), Re is the Reynolds number and £ is a given forcing
term.

The time-discretization is a combination of the 2nd-orxder
Backward Euler scheme for the wviscous term with an Adams-
Bashforth type evaluation of the convective term, i.e:

1 n+l n n~-1 e I =y R . n-1
2At(3m - 4w tw ) - e Vw "= 2F F (2.6)
v2wn+l S wn+l il (2.7)

where n refers to the time tn = nAt. This second order scheme
is preferred to the usual Crank-Nicolson/Adams-Bashforth
scheme for its better stability properties:

(1) the higher Fourier or Chebyshev modes are better damped,

(2) for moderate Re the critical time-step is larger, and for
small Re the scheme is uncenditionally stable, as found by
Zakaria (1985) for the advection-diffusion equation solved with
a Collocation-Chebyshev method.

So, at each time-step the following Stokes-type problem has to
be solved:

Vzw - Aw = G 1 {2.8)

2 in D
Vg +w=0 J (2.9)
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.. ™
V=90 3y ¥ i0i.T {2.1l0a,b)

+1 +
where W and Y are written for w" . and wn l, respectively.

The approximation of (2.8) - (2.10) makes use of the
Chebyshev polynomial expansion:

[
w N M n,m
= I L & Tn{x)Tm(y) {2.11)
] n=0 m=o\ ¥
n,m

The Chebyshev coefficients of G in (2.8) are calculated by the
pseudo-spectral technique which consists in performing the
products in the physical space and derivations in the spectral
space, these two spaces being connected through a FFT
algorithm.

- $n,m are obtained through the Tau-Method

(see Gottlieb-Orszag, 1977) associated with the matrix
diagonalization technique of Haidvogel and Zang (1979) for the
solution of the systems.

The unknowns &

The classical difficulty associated with the formulation
lies in the determination of boundary conditions for the

vorticity. The tectmigue which consists in using w = - ?2$ on
the boundary has been employed in association with a Tau-
Chebyshev method by Elie et al. (1983). We present here another
solution to this problem which makes use of the influence matrix
method. The advantage of this method lies in the strong
coupling at the same time-level (n + 1) between w and y§ on the
boundary, leading to good accuracy in time and stability
without requiring any iterative procedure.

3. INFLUENCE MATRIX METHOD
3.1 Description of the Method

Thanks to the linearity of the problem, the solution of (2.8)-
(2.10) can be written as

E!

w
(3.1.1)

<1
-
=

=

v
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In this formula, (@,)) is the solution of Problem A:

v?a-Ao = G in D
I (3.1.2)
w =g (arbitrary) on T

(3.1.3)

In the summation in the equation (3.1.1) the number J is
connected with the number of collocation points [Ej, nj} on I'.
These {mi, wi} are solutions of Problem B:

7w, -Aw, =0 inD [ vzmi =-w, inD
- (3.1.4)

= & . on T 1 wi =0 on T

where j refers to the points (Ej,nj) and 61j is the Kronecker
symbol . Then the J coefficients Ty Be8 determined such that

¢ satisfies the boundary conditions (2.10b), i.e.

s ~ J Y.

ay - _ (3¢\ 4:

=) = b, ={55] * ‘): v \55 ). (3.1.5)
] v /1 1=l 3

This equation, written for all j, yields an algebraic system
for the y,'s. The matrix A = [(awi/av)j] of this system is the

"influence matrix".
Note that: (1) Problem B is independent of the time-
level considered. Consequently, the calculation of wi,wi, A

and its inverse Afl can be done once and for all before starting
the time-integration. (2) It is mcre economical to define the
boundary values of w

w, =w _ +7Yy, onTl (3.1.6)
] oj ]
and to solve a problem A [with (3.l1.6) as poundary condition
for w] rather than to store the J fields (w ,¥,) and to perform

the linear combination in (3.1.1).

A
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3.2 Problem of corners and determination of J

The presence of corners in the domain D leads to
difficulties. Two methods have been considered to surmount

these.

Firstly, we assume that £,g and h are such that ¥ € czso
that w at a corner C can be expressed by:

2
mlc = -V wic (3.2.1)
which is known from the condition (2.10a).

So, in Method 1, we prescribe

~ L
w’ =W = v wic (3.2.2)

c o|C

= e
wilc o] (3 3)
and the equation {3.1.5) is written at each collocation point
on I' except the corners; hence J = 2(N + M -2).

In Method 2, f£,g and h are assumed such that qu € c® so
that the equation (2.8) is satisfied up to the corner C. Now,
together with (3.2.2) and (3.2.3), we can prescribe

vzélc = - szwic + GIC (3.2.4)

2
Vw le =0 (3.2.5)
Because of these additional conditions, the equation (3.1.5)
must be written at J = 2(N + M - 4) collocation points only.
At the four remaining points, the values of w = Wy and d,. wrs

determined so that (3.2.4) and (3.2.5) are satisfied. BHere,

we have chosen these special points S adjacent to the corners
(Fig. 1), that is to say in the regions where the density of

collocation points is high.
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3.3 Difficulty associated with the Tau-Method

The use of the Tau-Method to solve problem B for wi leads

to a difficulty arising because the last weighted residuals,

corresponding to the higher modes, are not considered (they are
replaced by the boundary conditions). So it appears that there
exists a linear combination w of the w, such that the only non-

zero coefficients have indices n =N - 1 or N, oxr m = M- 1or
M, precisely those coefficients which are not taken into
account in the calculation of the corresponding stream function.
Consequently we have a numerical solution ¥ = O and the matrix
A is not invertible. This difficulty can be surmounted if the
whole spectrum of the vorticity w, is considered when solving
the equation for V.. This is doné by increasing the number of
polynomials in the expansion (2.1l1l) for y, which goes up to

N +2, M+ 2 now.

We are thus led to the problem of expressing 9y/dx and
3y/3y, defined by (N + 3)(M + 3) coefficients, at the usual
(N + D (M + 1) collocation points (cos nm/N,cos mn/M). The
evaluation of G is done by simply neglecting the last two
coefficients in either direction. On the boundary, two
variants have been considered:

Method 1, 2: all the coefficients of Jw/3v are taken into
account. :
Method 1',2': the two last modes of 3y/dv are neglected.

The numerical results have shown that 1 is much more accurate
than 1', and that 2' is slightly better than 2.
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4. NUMERICAL RESULTS
All the calculations reported here have been made with N = M.
4.1 rxact unsteady solution
We consider the solution
21 - 1 + sin 27t 22 ex(y—l)

_ - 202
wex = o lpo, QJO (l-x) (l-y )

(4.1.1)

which defines £, g and h. Here we compare the accuracy of
various time-discretization schemes:

(1) 15t—order Backward Euler/adams-Bashforth

(2) an-order Backward Euler/Adams-Bashforth type [ Egs.
(2.6) - 2.711.

(3) Crank—Nicolson/ndams-aashforth.

The calculations have been made with Re = 1, N = 20 and
0.15A t€ 0.005. With these values of N and At, the leading part
of the error comes from the time-discretization. Fig. 2 shows
the normalized mean guadratic error:

E = Max{lw - w_1__/1 | S (4.1.2)

w |
w = ex L2 ex L2

The presence of three jevels in time in the schemes
necessitates starting-up procedures with modified schemes
which, in the present calculations, are first order only.
Hence, the maximum in (4.1.2) is taken when the effect of the

initialization has disappeared: the error Ew is then periodic

in time. From Fig. 2, it can be seen that scheme (2) is
slightly more accurate than scheme (3), at least for the
special solution computed here.
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Fig. 2 Error E
w
4.2 Exact steady solution

In order to compare the accuracy of methods 1 and 2' we
have considered the steady solution ‘pex = wc, using the scheme

(2.6) - (2.7) with Re = 1. From Table 1, it is seen that
method 2' is more accurate than method 1 for small N. The
accuracy is comparable with some advantage for Method 1 when
N is larger.

N 1o 12 16 20

Method 1 1.223xlo'4 5.328x10'6 9.179x10 ** 4.045):10'11

10

wethod 2'  2.928x10 " 3.507x10 | 1.723x10° 3.573x10 0

Table 1: Exxror Em
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4.3 Steady Cavity flow

Finally, the method has been used to calculate the steady
solution of (2.1) - (2.2) with £ = O, Re = 50 and with the
poundary conditions: ¥ = O on the whole boundary; 3%/3y =

-1 - x2]2 at y = 1, 3y/3v = O elsewhere; and with the initial

condition Gﬂ = 0 and therefore wo = 0.

Fig. 3, which shows the critical time-step,makes clear the
good stability properties of the method.

0.50
0.45
0.401 N
0.35F

0.30 \

0.25} N

0.20 Y

0.15F \Q\

0.10 1 i 1 L
16 20 24 32

Fig. 3 Critical time-step

Table 2 gives some results. Here, the variables have been
redefined by using the side L of the square as reference
length, so that 0 X,"Y £ 1,¥ = ¢/2. 0 = 2w and ReL = 100.

refer to (Peyret and Taylor, 1983) for results given by other
methods. Because of the strong variation of R on the upper
side ¥ = 1, the consideration of the maximum on collocation
points conly gives a bad idea of the convergence of the method
with respect to N. Since the spectral approximation gives the
solution at every X € [0,1], we have also listed in the last
column of Table 2 the maximum value of R(X,1) on 201 equally
spaced points.
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Table 2. Results for cavity flow, ReL = 100

Method N Max]wl(e) Maxln(x.lii(e’ Maxlﬂ(x.l)ltf)

pseudo-spectral 16 0.083139 13,4235 13,5108

1 20 0.082692 13.1519 13.4357

24 0.083315 13.4149 13.4357

32 0.083403 13.3418 13.4462

pseudo-spectral 16 ©0.083158 13.3475 13.4527

2° 20 0.082695 13.1790 13.4506

24 0.083315 13.4260 13.449%0

32 0.083403 13.3441 13.4441

pseudo-spectral 16 0.083057 13,3574 13.4485

{a) 20 0.082545 13.1810 13.4453

24 0.083201 13.4315 13.4522

32 0.083265 13.3496 13.4517

Collocation (V,p) 16 0.083686 13.3574 13.4428

(b) 32 0.083685 13.3422 13.4445
Hermitian (c) 20 0.0835 13.31 -
Finite-Diff. (d) 20 0.0829 13.14 -

(a) Elie et al. (1983),

(b) ODuazzani and Peyret (1983},

(¢} 4th-order, Bontoux et al. (1978),

(d) 2nd-order, Peyret and Taylor (1983), p- 205, run 16,

(e) taken on collocation points,

(£} ‘taken on 20l equally spaced points and obtained at X=0.62.
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Fig. 4 shows the evolution of f(%X,1). On the scale of the
figure the difference between N = 16 and N = 32 cannot be
distinguished. Fig. 5 is a blow-up of a very small region near
X = 0. This provides an illustration of the high accuracy of
Chebyshev approximation near the boundaries. Also, it is
interesting to note the good agreement of the present results
with those obtained by a Collocation - Chebyshev - Artificial
compressibility methed (Ouazzani and Peyret, 1983) for the
velocity-pressure equations, the latter method needing no
special treatment at a cormer.

The CPU time (CRAY 1S) is 0.03s/time-step for N = 20 and
0.078s/time-step for N = 32. The preprocessing is roughly
equivalent to 4N time-steps.

14
£2(x,1)
12+
L — Method 2’
N=16-32
10~ © o 4thord. Hermitian
B meth. 21x21
= — 2nd ord. finite-
B diff. meth. 21x21
5 =
4
2
0
\-‘I
-2 1 | 1 1 L | L |
0.00 0.25 0.50 0.75 1.00

Fig. 4 Vorticity Q(X, 1)
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0.010
Q2ix1)
P Re, =100
Ty
0.005 ;’./-\E N=32
A
I/
1)

0.00 p=2®

—-0.005+
-0.010+

-o= Method |

—o— Method Il
-0.015— 4 Collocation

(V.F)

-0.0201— ;
-0.025 | ' ' Esecad

0.00 0005 0010 0015 0020 0.025
X

Fig. 5 Vorticity Q(X, 1) near X = 0O
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