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Abstract

This paper draws a parallel between the economic and financial points of view in the
modeling of long term yield curves. The Ramsey rule, which is the reference equation in
the economic literature to compute long term discount rates, links endogenous discount rate
and marginal utility of aggregate optimal consumption at equilibrium. This paper provides
a financial interpretation of the economic discount rate given by the Ramsey rule, using
marginal utility indifference prices for non-replicable zero-coupon bonds. For such a long
term modeling, the possibility of calibrating the utility to a learning set and adjusting the
preferences to new economic information is crucial. This is achieved here by means of con-
sistent progressive utility, which is also a convenient and flexible framework to take into
account the heterogeneity of the economic investors. Contrary to the standard backward
approach, this forward approach leads to time-coherent optimal processes that do not de-
pend on a fixed time-horizon related to the optimization problem. We then discuss the
dependency of the interest rates on the wealth of the economy. Finally, the dynamics and
the long term behavior of the marginal utility yield curve is studied.

Keywords: Ramsey rule, Yields curves, Marginal indifference pricing, Market-consistent
progressive utility of investment and consumption, Forward/backward portfolio optimiza-
tion.

JEL 2018: C54, C61, D52, E43, G12

Introduction

This paper focuses on the modeling of long term yield curves with different viewpoints.
Modeling accurately long term interest rates is a crucial challenge in many financial topics,
such as the financing of ecological projects, or the pricing of longevity-linked securities
or any other investment with long term impact. The bond market is highly illiquid for
longer maturities and standard financial interest rates models cannot be easily extended as
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observed in Hulley and Platen [HP12]. Besides, as mentioned by Piazzesi [Pia10], "in most
industrialized countries, the central bank seems to be able to move the short term of the
yield curve. What matters for aggregate demand, however, are long-term yields".

Our approach, which is inspired by the economic literature on long-term policy-making,
has been nourished by fruitful discussions with members of the French State Planning Com-
mission "Finance Stratégie", who is in charge of evaluating public policies. Based on the
equilibrium theory, an extensive literature has been developed to propose an endogenous
definition of the economic discount rate in order to evaluate the future value of an invest-
ment by giving a current equivalent value.
The Ramsey rule, introduced in 1928 by Ramsey in his seminal work [Ram28], is the ref-
erence equation to compute the discount rate. It has been further discussed by numerous
economists such as Gollier [Gol10, Gol12] and Weitzman [Wei98, Wei07]. The issue is ad-
dressed at a macroeconomic level, where long run interest rates have not necessarily the
same meaning as in financial markets. We call them “economic” interest rates because they
are affected mainly by structural characteristics of the economy. The Ramsey rule links the
discount rate with the marginal utility of aggregate consumption at the economic equilib-
rium. Even if this rule is very simple, there is no consensus among economists about the
parameter values that should be considered. In particular, economic rates are very sensitive
to the rate of preference for the present, which can be viewed as the intensity of an indepen-
dent exponential random horizon. Besides, economists are unanimous in the necessity of a
sequential decision scheme that allows to revise the first decisions and preferences in the light
of new knowledge and direct experiences. At equilibrium, it is also important to take into
account the heterogeneity of the economic agents. Doing so calls for stochastic approaches
for modeling agents’ aggregate preference. Therefore the utility criterion must be adaptive
and adjusted to the information flow, and it obviously must be consistent with respect to
a given investment universe. Musiela and Zariphopoulou [MZ07, MZ10] were the first to
suggest to use instead of the classic criterion the concept of progressive dynamic utility, that
gives an adaptive way to model possible changes over the time of individual preferences of
an agent. Progressive utilities of investment and consumption were considered at first by
Berrier and Tehranchi [BT11]. The questions of the existence and the characterization of
market-consistent progressive utilities has been studied in a general setting in El Karoui and
Mrad [EKM13], using a PDE point of view. As pointed out in El Karoui, Hillairet and Mrad
[EKHM18], the optimal processes in the standard approach are computed through a back-
ward analysis, emphasizing their dependency on the horizon of the optimization problem,
and leading to intertemporality issues; while the progressive approach relies on a calibration
viewpoint, given a learning set. The problem is then posed forward, leading to time-coherent
optimal processes and putting emphasis on their monotonicity with respect to their initial
values.

Whereas the economic framework relies on the theory of general equilibrium, the financial
framework is based on a no-arbitrage condition and links yield curves and zero-coupon bonds
prices. However the pricing issue in incomplete market is complex. Utility functions are also
the cornerstone in the utility indifference pricing method, for the pricing of non-replicable
contingent claims. For a small amount of transaction, this pricing methods lead to a linear
pricing rule (see Davis [Dav98]) called the Davis price or the marginal utility price. As the
zero-coupon bond market is highly illiquid for long maturities, it is relevant to study utility
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indifference pricing method for progressive utility with consumption. The economic and
financial frameworks are actually very closed: both rely on a similar optimization problem
that determines the optimal discounted pricing kernel used to evaluate claims under the
historical (also called physical) probability measure. The discounted pricing kernels are
the key processes for the yield curve modeling and provide an unifying approach for the
economic and financial viewpoints. The main difference is that in the economic framework,
this is the spot interest rate r (which is the drift term of the optimal discounted pricing
kernel) that is determined endogenously by the market clearing condition at the equilibrium,
while in the financial framework, r is exogenous and this is the orthogonal risk premium
that is determined at the optimum. Therefore, according to the Ramsey rule, we show
that equilibrium interest rates and marginal utility interest rates coincide, being careful
that marginal utility prices are robust only for small trades. To account of the size of the
transaction, this paper also provides a second order expansion of the utility indifference price.
We then study the dynamics of the yield curve and its long term behavior. Special attention
is paid on the dependency of the interest rates on the global wealth of the economy, and
in the backward setting, on the impact of the time-horizon of the underlying optimization
problem. In particular, in the case of backward power utilities and non replicable zero-
coupon bonds, the time-horizon dependency of the discounted pricing kernel process implies
infinite maturity yield curves that are not necessarily monotonous.

The paper is organized as follows. Section 1 introduces the economic equilibrium and
financial no-arbitrage frameworks, emphasizing their similarities and their differences. The
related optimization problem, that determines the discounted pricing kernel, is presented.
To help for a clear understanding of the main ideas without too much technicalities, the
equilibrium framework is first developed in a simplified model. We then introduce a more
general model as well as the financial viewpoint. We discuss the relevance and the flexibility
of consistent progressive utilities for the modeling of the representative agent preferences,
in this context of long term decision making. Section 2 presents the Ramsey rule, as stated
in the seminal paper [Ram28], as well as a pathwise version, written in terms of the optimal
discounted pricing kernel. Section 3 provides a financial interpretation of the Ramsey rule
and of the economic discount rates, using marginal utility indifference pricing. The yield
curve dynamics, its long term behavior and its dependency on different parameters (such as
the wealth of the economy, or the time-horizon for the backward approach) are studied in
Section 4.

1 The discounted pricing kernel : an unifying approach
for discount rates

1.1 The economic and financial view points for interest rates

For the financing of ecological projects reducing global warming and for longevity issues or
any other investment with a long term impact, it is necessary to model accurately long run
interest rates. The answer is not to be found in financial market, since for longer maturities
(30 years and more), the bond market becomes highly illiquid and standard financial interest
rates models cannot be easily extended. In general, these issues are addressed at macroeco-
nomic level, where long-run interest rates have not necessarily the same interpretation as in
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financial market. To avoid confusion, we refer to it as socially efficient or economic interest
rates, because they would be mainly affected by structural characteristics of the economy,
and be low-sensitive to monetary policy. Nevertheless, correct estimates of these rates are
useful for long term decisions and understanding their determinants is important.
The economic interest rate process (rt) is determined endogenously at equilibrium. Most
of general equilibrium macroeconomic models are simplified by assuming that consumers
and/or firms could be described as a representative agent. That is agents may differ and
act differently, but at equilibrium the sum of their choices is mathematically equivalent to
the decision of one individual or many identical individuals. The way that preferences of
multiple agents are aggregated at equilibrium is a difficult task, and even if each individual
preference is modeled by a simple function, it is unlikely that the aggregate utility could
be reduced into a simple expression (unless all agents are identical). In particular, it is
shown in El Karoui et al. [EKHM17] that taking a power utility for the representative
agent assumes actually that all agents have a power utility with the same risk aversion.
Cvitanic, Jouini et al. [CJMN11] propose an equilibrium model dealing with three types
of heterogeneity: investors may differ in their beliefs, in their level of risk aversion and in
their time-preference rate. Computing the equilibrium requires the resolution of an opti-
mization problem, in which each agent derives his optimal strategy and the optimal Pareto
allocation is computed (that is the optimal allocation among each agent, such that there is
no possible allocations whose realization would increase the global satisfaction). The theory
of the representative agent summarizes this step by assigning to the representative agent
a utility and a strategy. Since this utility and this strategy are solution of an underlying
optimization problem, they actually should satisfy intrinsic properties, such that a dynamic
programming principle. The dynamic programming principle is deeply related to the notion
of market-consistency in the context of dynamic utilities (see Musiela and Zariphopoulou
[MZ07, MZ10] and also El Karoui et al. [EKHM18] in a consumption framework). As the
utility of the representative agent is solution of an optimization problem, his utility at time
t can not be constant nor deterministic and should be the value function of the underlying
optimization problem, which is an example of market-consistent dynamic utilities. This
motivates the use of market-consistent progressive utilities to model the preference of the
representative agent at equilibrium.

In modern dynamic macroeconomics, it is standard to represent intertemporal behavior
by a time separable intertemporal utility function with a constant relative risk aversion and
infinite time horizon. Indeed one can show (see [EKHM18]) that time separable market-
consistent utilities are necessarily power utilities, which partly explains the importance of
power utilities in the economic modeling. The time component is often taken as a discount
rate of the form e−λt where the time preference rate λ is a difficult parameter to calibrate
(see the discussion of Lecocq and Hourcade [HL04]). In his seminal paper [Ram28], Ramsey
prefers not to discount later enjoyments in comparison with earlier ones, ”a practice which
is ethically indefensible and arises merely from the weakness of the imagination". Then, to
overcome the problem of well-posedness of the underlying optimization problem, he intro-
duces a "maximum obtainable rate of enjoyment or utility " called "Bliss". We will see in
this paper that market-consistent dynamic utilities are another way to get rid off the time
preference parameter and to provide time-coherent strategies.
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1.2 The underlying optimization problems

We draw hereafter some parallels and comparisons between the economic and the financial
frameworks for the modeling of interest rates. Overall, an agent is concerned with an
optimization problem. His choice variables are how much to consume or save at each point
in time, how much to invest in each security, under the constraint that no bankruptcy is
permitted. His optimization problem is to maximize the expected utility over the class of
admissible wealth-consumption process subject to a continuous time budget constraint to
be written down.
As usual, a utility function u is a strictly concave, increasing, and non-negative function on
R+, with continuous marginal utility ux, satisfying the Inada conditions, lim

x 7→∞
ux(x) = 0

and lim
x 7→0

ux(x) = +∞ to prevent 0 consumption at optimum. The risk aversion is measured
by the ratio RA(u)(x) = −uxx(x)/ux(x) and the relative risk aversion by Rr

A(u)(x) =

xRA(u)(x).

1.2.1 An economic and financial model setup

We consider here a model setup as in Merton (1969) with consumption and budget constraint
(a general model with more details will be introduced in Section 1.4). The financial universe
consists in d long-lived securities (also called technology in economics) with prices (St), and
a riskless security with price (S0

t ). This bank account (S0
t ) yields instantaneously riskless

rate (rt) (dS0
t = S0

t rtdt). To characterize the portfolio strategies and consumption plan, the
trades are assumed to occur continuously in time without any friction: no transaction costs
and no taxes, and securities are infinitely divisible.
The investor strategy consists in investing a proportion π ∈ Rd of his wealth in the securities
S (or a physical production technology) and in consuming at a rate c, his remaining wealth
being invested in the riskless security S0. The pair (π, c) is called a wealth-consumption
plan, when the dynamic budget constraint, also called self-financing constraint is satisfied
by the positive wealth Xπ,c

t ,

dXπ,c
t = πt.dSt + (Xπ,c

t − πtSt)
dS0

t

S0
t

− ctdt, Xπ,c
t > 0. (1.1)

The set of admissible wealth-consumption plans (π, c) is denoted A, also called the oppor-
tunity set.
The following optimization program has to be solved in both financial and economic frames;
in the usual setting it is formulated on a given horizon TH .

sup
(π,c)∈A

E
( ∫ TH

0

v(t, ct)dt+ u(TH , X
π,c
TH

)
)
. (1.2)

In the financial point of view, assets, bank account, time-horizon, and utility functions
are given exogenously, and the problem is to characterize the optimal wealth-consumption
plan. In the economic point of view, at the equilibrium, the optimal investment strategy
πe is given, and the problem is to find (if they exist), two utility functions (u, v) and a
consumption rate ce such that the pair (πe, ce) is optimal. In general, the dynamics of the
technology as well as the short rate are endogenously determined.
Similarly at any time t ≤ TH we associate the value function U(t, x) (also called ”indirect”
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utility) given that Xt = x :

U(t, x) = ” sup ”
(π,c)∈A

E
(
u(TH , X

π,c
TH

(t, x)) +

∫ TH

t

v(s, cs)ds|Xt = x
)
, a.s. (1.3)

with terminal value U(TH , .) = u(TH , .). The time horizon TH is either a fixed date, or the
hitting time of a given level of satisfaction (such as the "Bliss" in Ramsey [Ram28]), or a an
exogenous independent exponential random variable with mean 1/λ, where λ is known as
the rate of time preference. In general, in this last situation, it is optimal to have a vanishing
wealth at the time horizon TH and the criterion becomes E(

∫∞
0
e−λtv(t, ct)λdt). Thus the

dependency of the optimal processes (and consequently of the equilibrium discount rate) on
the time horizon TH is analog to the dependency on the time preference parameter λ.

HJB Backward Equation To derive the optimal wealth-consumption plan, we need
to specify the dynamics of the securities. To ease the presentation, we provide here some
results in a one dimensional setting; higher dimension and a more general setting will be
considered in Section 1.4. In early works, the risky security is assumed to satisfy a geometric
Brownian motion driven by a one-dimensional Brownian motion W

dSt = St
(
µtdt+ σtdWt

)
where the deterministic functions σ and µ represent respectively the instantaneous volatility
and the security return. Without loss of generality, we normalize the initial condition to
S0 = 1. Using the wealth dynamic (1.1), the corresponding HJB equation is given by Ut(t, x) + sup

(π,c)∈A

{
v(t, c) + xπt(µt − ct)Ux(t, x) + (rtx− ct)Ux(t, x) +

1

2
σ2
t x

2π2
tUxx(t, x)

}
= 0,

U(TH , x) = u(TH , x) (1.4)

whose concave solution, if it exists, turns out to be the value function (1.3). By concavity,
it is easy to deduce that the maximum is achieved at the optimal consumption and optimal
portfolio given by

π∗t (x) = − (µt − rt)
σ2
t

Ux(t, x)

xUxx(t, x)
, vc(t, c

∗(t, x)) = Ux(t, x). (1.5)

The first order condition vc(t, c∗(t, x)) = Ux(t, x) says that the marginal utility of current
consumption must be equal, at any time, to the marginal utility of wealth. Plugging the
expression of π∗ into (1.4) yields the following HJB equation

Ut(t, x) + v(t, c∗(t, x)) + (rtx− c∗(t, x))Ux(t, x) +
1

2

(µt − rt)2U2
x(t, x)

σ2
tUxx(t, x)

= 0. (1.6)

The optimal consumption process (c∗t ) depends on the initial wealth x through the optimal
wealth process X∗t : c∗t (x) = c∗(t,X∗t (x)) where c∗(t, x) = v−1

c (t,Ux(t, x)).

The optimization problem (1.2) consists in optimizing jointly the consumption rate c and
the investment π. The equilibrium market clearing condition for the risk free asset implies
that the optimal investment π∗ of the representative agent is fixed at equilibrium and equal
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to 1. This equilibrium constraint (π∗ = 1) determines endogenously the risk free rate r∗.
This differs from the no-arbitrage financial framework in which the risk free rate is fixed
exogenously and the agent optimizes his investment strategy π. In turn, when the market
is incomplete, the excesses of return of some less basic assets, such as some bonds, are the
one that are endogenously determined in the arbitrage approach.

1.2.2 The discounted pricing kernels and the dual problem

The discounted pricing kernels are the cornerstone of the Ramsey rule, since they are used
for evaluating contingent claims under the historical probability measure P. Note that a
discounted pricing kernel involves both a discounted factor exp(−

∫ t
0
rsds) (with the process

r that may be stochastic) and a martingale density process corresponding to a change of
probability measure. It is also called stochastic discount factor in the economic literature or
state price density process in the financial literature. A discounted pricing kernel is a dual
process of the risky assets (or the production technology) S. Its drift is thus necessarily the
opposite of the interest rate r and its diffusion process is the opposite of the risk premium
of the risky assets (denoted ηR in the sequel) plus an orthogonal risk premium (denoted
ν) in the case of incomplete markets. A discounted pricing kernel will be indexed by the
orthogonal risk premium ν and denoted by Y ν . In a complete market in which all risks
could be hedged, the set of orthogonal risk premium ν is trivial and reduced to ν = 0.
This is the standard economic framework. In the economic framework, this is the interest
rate r and thus the drift term of the optimal discounted pricing kernel that is determined
at the optimum (at the equilibrium). Whereas in the financial framework, r is exogenous
and this is the orthogonal risk premium ν that is determined at the optimum. Both r and
the risk premium are crucial for determining discount rates, that is why it is natural to
focus on the discounted pricing kernel in this study. The choice of the discounted pricing
kernel is achieved by solving the dual optimization problem of (1.2). The dual problem is
based on the Fenchel-Legendre convex conjugate transformation ũ(y) of a utility function
u, where ũ(y) = supx>0

(
u(x) − yx). In particular, ũ(y) ≥ u(x) − yx and the maximum

is attained at ux(x) = y. Under Inada conditions, ũ is twice continuously differentiable,
strictly convex, strictly decreasing, with ũ(0+) = u(+∞), ũ(+∞) = u(0+), a.s.. Moreover,
the marginal utility ux is the inverse of the opposite of the marginal conjugate utility ũy;
that is u−1

x (y) = −ũy(y); ũ(y) = u
(
− ũ(y)

)
+ ũy(y) y, and u(x) = ũ

(
ux(x)

)
+ xux(x).

The conjugate system (Ũ(t, y), ṽ(t, y)) is associated with the following dual optimization
problem (with initial condition Yt = y)

Ũ(t, y) = ”inf
Y

”E
(
ũ(TH , YTH ) +

∫ TH

t

ṽ(s, Ys)ds|Yt = y
)
, a.s. (1.7)

The link between the primal wealth process (X∗t ) and the optimal discounted pricing kernel
(Y ∗t ) is given by the first order relation

Ux(t,X∗t ) = Y ∗t , −Ũy(t, Y ∗t ) = X∗t .
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1.3 Determining the equilibrium spot rate

For evaluating public policies, the economy is usually assumed to be at equilibrium. Nev-
ertheless, it must be borne in mind that this assumption puts strong constraints on the
economic framework that could be considered (see He and Leland [HL93] and El Karoui
and Mrad [EKM18]). The equilibrium relies on the market clearing condition for the risk
free asset, therefore the investment in the technology π is identical to 1, and the terms
with the risk free rate r cancels in the self-financing dynamics (1.1). Then the equilibrium
constraint (that is π = 1 is optimal) determines endogenously the risk free rate r∗t . In what
follows, we assume the existence of an equilibrium, that is the existence of utility processes
U and v that are compatible with the equilibrium constraints. A power utility function,
together with a geometric Brownian motion for the discounted pricing kernel Y ∗, provides
a classic example of such an equilibrium. Let us first recall the definition of an equilibrium
(see Dumas [DL17]).

Definition 1.1. At time t, an equilibrium is an allocation π∗t , a consumption level c∗t , a
rate of interest r∗t , such that the representative investor is at the optimum and the market
(for the risky security/technology as well as for the riskless security) clears. Market-clearing
conditions are as follows:

• The supply-equals-demand condition for risky security: π∗ = 1.

• The zero-net supply condition for the riskless security.

The optimal consumption/investment problem (1.2) is solved, either using a dynamic pro-
gramming principle when the parameters µ and σ are deterministic or through a martingale
(dual) approach. The equilibrium is then expressed in terms of the representative agent’s
value function U(t, x) = E(

∫ TH
t

v(s, c∗s)ds+ u(TH , X
∗
TH

)|X∗t = x). Since the optimal invest-
ment π∗t (x) = − (µt−rt(x))Ux(t,x)

σ2
txUxx(t,x)

(see (1.5)) should be equal to π∗t (x) = 1 at equilibrium,
this market clearing condition determines endogenously the equilibrium rate, as function of
(t, x),

r∗t (x) = r(t,X∗t (x)) with r(t, x) = µt + σ2
t x
Uxx(t, x)

Ux(t, x)
. (1.8)

Power (CRRA) utility functions u(x) = x1−α

1−α and deterministic coefficients σ, µ is the stan-
dard model used in economy; it is an important case in which computations simplify and
the existence of an equilibrium can be stated. It notably implies, using (1.8), that the
equilibrium rate does not depend on the wealth process (X∗t ). Nevertheless this case hides
some important features on the dependency of the optimal processes and rates on initial
conditions, as we will see in what follows.
For a general utility function u that is not necessarily of power type, then the existence of an
equilibrium is not guaranteed and the relations given here are conditioned to its existence.
Remark that the no-arbitrage assumption implies the existence of a risk premium η, which
is given by ηt = σ−1

t (µt − rt) in a complete market framework. Thus (1.8) implies that the
risk premium is linked to the relative risk aversion of the utility process U :

η(t,X∗t ) = −σt
X∗t Uxx(t,X∗t )

Ux(t,X∗t )
= σtR

r
A(U)(t,X∗t ). (1.9)

As explained in Section 1.2.2, we will prefer in this work to express the equilibrium in
terms of the discounted pricing kernel Y and the dual conjugate functions Ũ (see (1.7))
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and ṽ. The relation at time 0 ux(x) = y propagates into the following dynamic relation
between optimal processes Y ∗t = Ux(t,X∗t ). In this dual formulation, the optimal processes
are expressed as functions of the dual variable Y : c∗t = v−1

c (t, Y ∗t ), X∗TH = u−1
x (TH , Y

∗
TH

),
X∗t = (Ux)−1(t, Y ∗t ) = −Ũy(t, Y ∗t ) where Ũ(t, y) is the dual conjugate of U(t, x). Identifying
the martingale part of X∗t and of −Ũy(t, Y ∗t ) leads to the equilibrium interest rate

r∗t (y) = r̃(t, Y ∗t (y)) with r̃(t, y) = µt + σ2
t

Ũy(t, y)

yŨyy(t, y)
. (1.10)

Note that shifting from relation (1.8) to (1.10) is straightforward using the duality relations
between the utility function U and its dual utility Ũ . (1.10) gives the one to one correspon-
dence between the equilibrium rate r∗ and the discounted pricing kernel Y ∗.

This simple equilibrium model has numerous extensions, as the famous one proposed
by Cox-Ingersoll-Ross in [CIR85]. Taking into account the presence of a financial market,
[CIR85] adopts an equilibrium approach to endogenously determine the term structure of
interest rates. In their model, the dynamics of the production process and the utility func-
tion depend on an exogenous stochastic factor which in some way influences the economy.
At equilibrium, all financial assets are in zero net supply. The risk-free rate and the fi-
nancial assets prices are determined endogenously such that the representative agent is not
better off by trading in the money market, i.e. he is indifferent between an investment in
the production opportunity and the risk-free instrument. This is related to the theory of
indifference pricing, that we will use in the sequel (see Section 3). Then assuming a CIR
dynamic for the exogenous stochastic factor implies also a CIR dynamics for the equilibrium
short rate.

To summarize, in the equilibrium approach, the interest rate is determined endogenously.
Replacing the expression of the equilibrium rate (1.8) into the HJB equation (1.6) yields
the following HJB equation1, that does not involve the interest rate

Ut(t, x)+v(t, c∗(t, x))+(µtx−c∗(t, x))Ux(t, x)+
1

2
σ2
t x

2Uxx(t, x) = 0, U(TH , x) = u(TH , x)

with the following dynamics dX∗t = (µtX
∗
t − c∗t )dt + X∗t σtdWt for the equilibrium optimal

wealth process, in which the terms in the interest rate r cancel due to the market clearing
conditions. In fact, the utility function u at time TH should not be given and is part of the
processes that should be determined at equilibrium. Thus the dependency of the rate on
the time-horizon TH of the optimization problem is artificial. Besides, the expression for
the interest rate (1.8), together with the dynamics of the wealth process (X∗t ) shows that
the problem is naturally posed forward in the equilibrium setting. This forward approach
is typically market-consistent and emphasizes the dependency of the rate on the initial
condition x which represents the initial wealth of the economy (or equivalently its dual
quantity y = ux(x)). The forward approach is developed hereafter in the financial viewpoint.

1When the time horizon TH is an exponential variable, the terminal condition disappears and is replaced by
a linear term in the HJB equation

Ut(t, x) + v(t, c∗(t, x)) + (µtx− c∗(t, x))Ux(t, x) +
1

2
σ2
t x

2Uxx(t, x)− λ U(t, x) = 0.
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1.4 Primal and dual progressive utilities in financial markets

We first describe a general setting of a financial market.

1.4.1 The financial no-arbitrage framework in incomplete markets

The financial viewpoint is based on a no-arbitrage approach with exogenously given interest
rate, instead of an equilibrium approach that determines them endogenously. We generalize
hereafter the one-dimensional setting presented in Section 1.2. The financial investment
universe is now assumed to be an incomplete Itô market, defined on a filtered probability
space (Ω, (Ft),P) driven by a n-standard Brownian motion W (see for example Karatzas et
al. [KLS87], Karatzas and Shreve [KS01] or Skiadas [Ski07]).
The market is characterized by the short rate (rt), the n-dimensional risk premium vector
(ηt), and by the d×n volatility matrix (σt) of the risky assets (d ≤ n). As usual in finance,
the processes r, η and σ are taken exogenous. We assume that

∫ T
0

(|rt|+ ‖ηt‖2)dt <∞, for
any T > 0, a.s. We specify here the class of admissible strategies in terms of (κt, ρt) where2

κt = σtrt πt, ct = ρtXt: πt is Rd-valued and corresponds to the proportion of wealth invested
in the risky assets, while ρt is the wealth-proportional consumption rate. The incomplete-
ness of the market is expressed by restrictions on the risky portfolios κt constrained to live
in a given progressive vector space Rt. For example, if the incompleteness follows only from
the fact that the number of assets is less than the dimension n of the Brownian motion,
then typically Rt = σtrt (Rd).
To avoid technicalities, we assume throughout the paper that all the processes satisfy the
necessary measurability and integrability conditions such that the following formal manip-
ulations and statements are meaningful. The following short notations will be used ex-
tensively: let R be a vector subspace of Rn, then for any x ∈ Rn, xR is the orthogonal
projection of the vector x onto R and x⊥ is the orthogonal projection onto R⊥.
In the line with (1.1), the self-financing dynamics of a positive wealth process with risky
portfolio κ and wealth consumption rate ρ is given by

dXκ,ρ
t = Xκ,ρ

t [(rt − ρt) dt+ κt(dWt + ηtdt)] Xκ,ρ
0 = x (1.11)

where (ρt) is a non negative progressive process associated with the consumption process
ct = ρtXt, (κt) is a n-dimensional vector measuring the multivariate volatility process of
the wealth (Xκ,ρ

t ). A self-financing strategy (κ, ρ) is admissible (we denote (κ, ρ) ∈ Ac) if
the portfolio κt lives in a given progressive family of vector spaces Rt a.s.
The set of the admissible wealth processes with admissible (κt, ρt) is a convex cone denoted
by X c. The existence of a multivariate risk premium η formulates the absence of arbitrage
opportunity. Since from (1.11), the impact of the risk premium on the wealth dynamics
only appears through the term κt.ηt for κt ∈ Rt, there is a "minimal" risk premium (ηRt ),
the projection of ηt on the space Rt (κt.ηt = κt.η

R
t ), to which we refer in the sequel.

The class Y of the discounted pricing kernels Y ν plays the role of "orthogonal cone" of the
cone of admissible wealth processes X c in the "martingale" sense. Note that Y does not
depend on the presence of the consumption process, and is uniquely characterized by the
financial market.

2the upperscript tr denotes the matrix transpose
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1. The discounted pricing kernel : an unifying approach for discount rates

Definition 1.2 (Discounted pricing kernel).
A non negative Itô semimartingale Y ν is called an admissible discounted pricing kernel if
its dynamics is given by

dY νt = Y νt [−rtdt+ (νt − ηRt ).dWt], νt ∈ R⊥t , Y ν0 = y. (1.12)

The minimal discounted pricing kernel Y 0 corresponds to ν ≡ 0

yY 0
t = y exp

(
−
∫ t

0

rsds−
∫ t

0

ηRs .dWs −
1

2

∫ t

0

||ηRs ||2ds
)
. (1.13)

Observe that any discounted pricing kernel Y νt (y), starting from y at time 0 is the prod-
uct Y 0

t by the exponential local martingale L⊥,νt = exp
( ∫ t

0
νs.dWs − 1

2

∫ t
0
||νs||2ds

)
, since

ηRs .νs ≡ 0.
The inverse of the minimal discounted pricing kernel, 1

Y 0 , is the admissible market nu-
meraire, also called GOP (growth optimal portfolio) (see Geman, El Karoui, Rochet [EKGR95],
Heath, Platen [PH06], or Filipovic, Platen [FP09]). The discounted pricing kernels are the
cornerstone of the financial interpretation of the Ramsey rule.

1.4.2 Primal and dual progressive utility processes

As explained in Section 1.3, the economic equilibrium framework with a representative agent
is well suited to a forward approach, and writes conveniently in a dual formulation. Thus we
detail below the dual progressive approach. Progressive utilities are particularly useful for
long term decision schemes. Indeed, in the presence of generalized long term uncertainty,
the decision scheme must evolve: economists agree on the necessity of a sequential decision
scheme that allows to revise the first decisions according to the evolution of the knowledge
and to direct experiences, see Lecocq and Hourcade [HL04]. Besides, a sequential decision
allows to cope with situations in which it is important to find the core of an agreement
between partners having different views or anticipations, in order to give time for solving
their controversy. Progressive utilities give also time-coherence in the optimal choices and
allow to get rid off the sensitivity of economic discount rate in the pure time preference
parameter λ (which can be interpreted as a random horizon TH).

Since the preference criterion of the representative agent results from an equilibrium (in
which each agent optimizes his own preference), we model it as a pair of progressive utilities
(U,V), satisfying a dynamic programming principle called market-consistency. (U,V) is
defined as a family of stochastic utility processes, that is for any t, (U(t, x), V (t, c)) are some
utility functions. To express that the adaptive criterion (U,V) is market-consistent, given
the investment universe X c, we introduce the following supermartingale condition.

Definition 1.3 (Consistent primal progressive utility system).
Let (U,V) be a progressive utility system and X c a test family of portfolio with consumption.
(U,V) is said to be X c-consistent, if
(i) for any admissible wealth process Xκ,ρ ∈ X c, with consumption rate c = ρXκ,ρ, the
value process

Gκ,ρt = U(t,Xκ,ρ
t ) +

∫ t
0
V (s, cs)ds is a positive supermartingale.
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(ii) there exists an optimal strategy such that the value process

G∗t = U(t,Xκ∗,ρ∗

t ) +
∫ t

0
V (s, c∗s)ds is a martingale.

As the discounted pricing kernels Y ν have a major role in evaluating discount rate, we
rather concentrate on the progressive dual problem. We consider the dual progressive util-
ities (Ũ, Ṽ), defined as the family of stochastic dual utility processes such that for any
t, (Ũ(t, y), Ṽ (t, y)) are the Fenchel-Transforms of (U(t, x), V (t, c)). The market-consistency
property on the primal progressive utility system (U,V) translates into a market-consistency
property on the dual progressive utilities (Ũ, Ṽ), given the learning set Y .

Definition 1.4 (Consistent dual progressive utility system).
Let (Ũ, Ṽ) be a progressive utility system with learning set Y . The dual utility system
(Ũ, Ṽ) is said to be Y - consistent, if
(i) for any admissible test process Y ν ∈ Y (with ν ∈ R⊥)

J̃νt = Ũ(t, Y νt ) +

∫ t

0

Ṽ (s, Y νs )ds is a submartingale. (1.14)

(ii) there exists an optimal process Y ∗ in Y such that

the optimal preference process J̃∗t = Ũ(t, Y ∗t ) +

∫ t

0

Ṽ (s, Y ∗s )ds is a martingale. (1.15)

In what follows, the deterministic initial utilities U(0, .) and V (0, .) are denoted u(.) and
v(.). The following result is showed in [EKHM18].

Proposition 1.1. Let (U,V) be a X c-consistent progressive utility system satisfying reg-
ularities conditions. Then the optimal processes are linked by the first order relation

Y ∗t (y) = Ux(t,X∗t (x)) = Vc(t, c
∗
t (c)) with y = ux(x) = vc(c)

or equivalently in terms of the dual utilities

X∗t (x) = −Ũy(t, Y ∗t (y)) and c∗t (c) = −Ṽy(t, Y ∗t (y)).

The dual value function system (Ũ(t, y), ṽ(t, y)) of the classic consumption optimization
problem is an example of strongly consistent system (with respect to Y ), defined from its
terminal condition Ũ(TH , y) = ũ(y). Conversely, given Y , and given an initial utility sys-
tem (ũ(x), ṽ(c)), a strongly consistent system (Ũ, Ṽ) is the dual value function system of
some investment-consumption problem, with stochastic terminal condition Ũ(TH , y) for any
time horizon TH . In this backward approach, the optimal processes are denoted respectively
(c∗,H , X∗,H) and Y ∗,H , the additional symbol H underlining the dependency of the optimal
processes on the optimization horizon TH . In the forward approach, the dual utility process
Ũ is an horizon unbiased utility function since the value function is the same for any time
horizon TH .
The forward and backward settings differ by their boundary conditions, the terminal util-
ity is given in the standard case and the initial one in the progressive case. Although the
Y -consistency constraints are the same, this point induces major differences in the interpre-
tation and in the mathematical treatment of the utility’s characterization, apart from the
issue of time-coherence. In the standard (backward) framework, the initial value of the value
function U is usually not explicit and is computed through a backward analysis, starting
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2. The Ramsey rule

from its given terminal utility (possibly random) U(x) at time TH . From a "practical" point
of view, the Markov property is strategic for the resolution in the backward framework and
sometimes additional regularity assumption are needed to use stochastic calculus for the
value function. This point is not an issue for forward utility, that is taken as a "regular" Itô
random field with differential decomposition

dU(t, x) = β(t, x)dt+ γ(t, x).dWt.

But in return it is not easy to read directly on its local characteristics β and γ that U is
a utility random field (increasing and concave), in absence of general comparison results
for stochastic integrals. This can be done by using similar arguments as the ones that
show that the solution of stochastic differential equation (SDE) is monotone with respect to
the initial condition as soon as sufficient regularity assumption are put on the coefficients.
Therefore for consistent progressive utilities, the initial value is given and the problem is
solved forward, and the emphasis is placed on the monotonicity of optimal processes with
respect to the initial condition. We refer to [EKHM18] for discussion about those issues and
for explicit regularity conditions and characterization of the consistent pairs of consistent
utilities of investment and consumption and the optimal policies.
Compared to equation (1.5) for the deterministic case, the optimal portfolio is then given
by

xκ∗t (x) = xσtrt π
∗
t (x) = − Ux(t, x)

Uxx(t, x)

(
ηRt +

γRx (t, x)

Ux(t, x)

)
(1.16)

with the additional term risk premium term γRx (t,x)
Ux(t,x) coming from the diffusion term of the

progressive utility U. The market-consistency implies the following HJB constraint

β(t, x) = −Ux(t, x)xrt +
1

2
Uxx(t, x)‖xκ∗t (x)‖2 − Ṽ (t, Ux(t, x)) (1.17)

which is similar to the HJB constraint (1.6).

2 The Ramsey rule

The macroeconomics literature typically relates the economic equilibrium rate to the time
preference rate and to the average rate of productivity growth. A typical example is the
Ramsey rule proposed in the seminal paper of Ramsey [Ram28] in 1928 where economic
interest rates are linked with the marginal utility of the aggregate consumption at the
economic equilibrium. More precisely, the economy is represented by the strategy of a risk-
averse representative agent, whose utility function on consumption rate at date t is the
function v(t, c). Using an equilibrium point of view, the Ramsey rule at time 0 connects
the equilibrium rate for maturity θ with the marginal utility vc(t, c) of the random optimal
consumption rate (c∗t ) by

Re0(δ) = −1

δ
ln

E[vc(δ, c
∗
δ)]

vc(0, c∗0)
. (2.1)

Indeed, reducing the consumption at time 0 of a marginal amount ε induces a loss equal (at
the first order) to εvc(c∗0). This amount is then invested and rises the consumption at time
δ to cδεeδR

e
0(δ). At equilibrium, at the first order, the gain εeδR

e
0(δ)vc(δ, c

∗
δ) should offset the

loss at time 0, which implies (2.1).
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2.1 Historical Ramsey rule

In the optimization problem (1.2), an exponential random horizon TH with rate λ is similar
to the usual setting of a time separable utility function with exponential decay at rate
λ > 0. For example, λ = 0.1 corresponds to a random horizon TH with mean of 10 years.
λ is the pure time preference parameter, i.e. λ quantifies the agent preference of immediate
goods versus future ones. But as mentioned by Lecocq and Hourcade [HL04], it can also
be interpreted as a preference of no sacrifice for the present. This parameter gives a lower
bound for the Ramsey rule ((2.1) implies that Re0(T ) ≥ λ). Since λ is an intrinsic data, it
may be questionable especially in a context of low interest rate, and fixing this value is a
strong normative choice. Thus the choice of this pure time preference parameter λ is likely
to continue to be a controversial issue.
In the meantime, as explained in Section 1.3, time separable power utility functions (with
constant relative risk aversion θ, 0 < θ < 1) are often used

v(t, c) = Ke−λt
c1−θ

1− θ
.

In the seminal paper of Ramsey [Ram28], the optimal consumption is a deterministic func-
tion c∗t = c∗0 exp(gt) (with g being the growth rate of the economy) and the Ramsey rule
(2.1) writes as

Re0(T ) = λ+ θg. (2.2)

Although equation (2.2) is very simple, there is no consensus on the parameter values. In
the Stern review on the climate change [SS07] in 2006, θ = 0.1, g = 1.3% λ = 0.1% , which
leads to a discount rate of 1.4%, whereas the UK-treasury uses a discount rate of 2.5%.
Thus 1 million of dollars in 100 years is equivalent today either on 250 000 dollars or 82 000
dollars, depending on which rate is taken.
In order to add some randomness in the future optimal consumption, the consumption
process is also typically modeled as a geometric Brownian motion

c∗t = c∗0 exp(gt+ ϕWt). (2.3)

In fact, assuming power utilities and a geometric Brownian motion for the optimal consump-
tion is quite natural in the light of the previous discussion on the existence of an equilibrium
(see Section 1.3). The dynamics (2.3) can be linked to the previous equilibrium setting in
the case of constant parameters: g = 1

θ (r + ϕ2 θ
2 ) and ϕ = µ−r

θσ . The Ramsey rule still
induces a flat curve

Re0(T ) = λ+ θg − 1

2
θ(θ + 1)ϕ2. (2.4)

The same model holds true at any date in the future, by using conditional expectation.
When the parameters of the model are homogeneous, the yields curve at any date in the
future is still given by Ret (T − t) = λ+ θg − θ2ϕ2.

The Ramsey rule is still the reference equation in macroeconomics and it was discussed by
numerous economists, such as Gollier [Gol10, Gol12] and Weitzman [Wei98, Wei07]. Relax-
ing the assumption of a power utility and of modeling the consumption with a geometric
Brownian motion as in (2.3), a second order expansion of vc(c∗t ) in relation (2.1) leads
to a decomposition of the yield curve in three terms (impatience effect, wealth effect and
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precautionary effect) as follows (see Gollier [Gol07])

Re0(T ) = λ+ Rr
A(v)(c∗0)

E(c∗T )− c∗0
Tc∗0

− 1

2
Rr

A(v)(c∗0)PR(v)(c∗0)
Var(c∗T /c

∗
0)

T
+ o((E(c∗T )− c∗0)2)

(2.5)
with Rr

A(v)(x) = −xvxx(x)/vx(x) the relative risk aversion and PR(v)(x) = −xvxxx(x)/vxx(x)

the relative prudence. This leads to an increasing (resp. decreasing) yield curve if the wealth
effect becomes more (resp. less) compared to the precautionary effect. Remark that for
power utilities, Rr

A(v)(x) = θ, PR(v)(x) = (θ + 1), which gives the analogy between (2.4)
and (2.5). Gollier also investigates in [Gol07] the effects of changes on the consumption on
the yield curve computed at time 0.
In what follows, the equilibrium yield curve is computed at any date t in a general setting,
using a "pathwise" Ramsey rule, but without questioning the existence of an equilibrium.

2.2 A pathwise Ramsey Rule

In the sequel, the upperscript .∗ denotes interchangeably optimal process of the forward and
backward formulation, keeping in mind that, for the backward formulation, the statements
are valid up to time TH . We focus on the optimality relations given by Proposition 1.1{

c∗t (c) = −Ṽy(t, Y ∗t (y)) i.e. Vc(t, c
∗
t (c)) = Y ∗t (y), t ≥ 0

c = −ṽy(y) i.e. vc(c) = y.
(2.6)

Remark that a parametrization in y is equivalent to a parametrization in the initial wealth x
or in the initial consumption rate c, based on the one to one correspondence vc(c) = ux(x) =

y. The forward point of view emphasizes the key role played by the monotonicity of Y with
respect to the initial condition y (under regularity conditions of the progressive utilities).
Then as function of y, c is decreasing, and c∗t (c) is an increasing function of c. This question
of monotonicity is frequently avoided, maybe because with power utility functions Y ∗t (y) is
linear in y.
Equation (2.6) may be interpreted as a pathwise Ramsey rule, between the marginal
utility of the optimal consumption and the optimal discounted pricing kernel:

Vc(t, c
∗
t (c))

vc(c)
=
Y ∗t (y)

y
, t ≥ 0 with vc(c) = y. (2.7)

This one to one correspondence between the optimal consumption and the optimal dis-
counted pricing kernel holds at any date t, that is why we called it a "pathwise Ramsey
rule". Remark that formulating this pathwise relation (2.7) in terms of the optimal con-
sumption leads to an expression that only involves the utility process V of the consumption,
which contrary to U, is a given process. Formulating the pathwise relation (2.7) in terms
of the wealth would have involve the utility U which is complex to compute, U being the
value function of the optimization problem.
The Ramsey rule leads to a description of the equilibrium yield curve as a function of the
optimal discounted pricing kernel Y ∗, Re0(T )(y) = − 1

T lnE[Y ∗T (y)/y] which allows to give a
financial interpretation in terms of zero-coupon bonds. More dynamically in time, we define
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for t < T

Ret (T − t)(y) := − 1

T − t
lnE

[
Vc(T, c

∗
T (c))

Vc(t, c∗t (c))

∣∣Ft] = − 1

T − t
lnE

[
Y ∗T (y)

Y ∗t (y)

∣∣Ft] . (2.8)

The Ramsey rule brings us to study the quantity E
[
Y ∗T (y)
Y ∗t (y)

∣∣Ft]. In the context of a financial
complete market, it is well-known that this quantity corresponds to the price of zero-coupon
bonds (maturing at time T ). Nevertheless, its interpretation for incomplete market is less
trivial and will be investigated in the next section. Before going on with the financial
interpretation of this equilibrium yield curve given in terms of the discounted pricing kernel,
we recall that in the equilibrium framework the short term interest rate rt is endogenous
and fixed at equilibrium to satisfy the market clearing condition of the aggregate demands.
On the contrary, in the financial no-arbitrage framework, the short rate is exogenous and
the discounted pricing kernel is optimized not through its drift rt but through its volatility
νt. In the financial no-arbitrage context, the optimization procedure impacts only the form
on the yield curve (through the risk premium), and not the beginning of the curve. This
helps to understand how yield curve movements of the short end (monitored by a central
bank) translate into long-term yield.
For this financial interpretation purpose, it is natural to link zero-coupon bonds and the
equilibrium yield curve.

3 Indifference pricing interpretation of the Ramsey rule

In this section, we investigate the financial interpretation of the Ramsey rule. The financial
point of view focuses more on the financial products than the rates, namely in this context
on the zero-coupon bonds, which is a contract that pays 1 at a given date T . We thus
want to interpret, in terms of price of zero-coupon bonds, the quantities E

[
Y ∗T (y)
Y ∗t (y)

∣∣Ft] for
all t < T . This question is related to a more general issue in finance, that consists in the
pricing of a bounded contingent claim ζT , paid at date T , T ≤ TH (ζT = 1 in the case
of zero-coupon bond). We thus address this pricing issue for replicable and non replicable
claims, with both backward and forward approaches. The pricing procedure we consider
(marginal utility indifference pricing) consists in choosing an optimal discount pricing kernel
Y ∗ among the set Y of all admissible pricing kernels Y ν .

3.1 Valuation in incomplete markets

When all risks are replicable, then the price is uniquely determined as the value of the
replicating portfolio (by no-arbitrage arguments). When some risks remain not replicable,
several valuation methodologies exist (such as super-replicating prices or indifference prices),
leading to different prices (or bid-ask prices).

3.1.1 Valuation of replicable payoffs

The valuation of a (bounded) contingent claim ζT (paid at date T ) is done through the choice
of a discounted pricing kernel Y ν , the price at time t being then given by the expectation
E
[Y νT (y)
Y νt (y)ζT

∣∣Ft]. The question that arises is the choice of this discounted pricing kernel Y ν .
As mentioned in Definition 1.2, any discounted pricing kernel Y νt is written as the product
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of the so-called minimal discounted pricing kernel Y 0
t (y) = yY 0

t = y exp
(
−
∫ t

0
rsds −∫ t

0
ηRs .dWs− 1

2

∫ t
0
||ηRs ||2ds

)
and an orthogonal local martingale L⊥,νt (y) = exp

( ∫ t
0
νs.dWs−

1
2

∫ t
0
||νs||2ds

)
. In finance (rt) and (ηRt ) are exogenous, while νt ∈ R⊥t is endogenous and

may depend on y. The minimal discounted pricing kernel Y 0 plays a "universal" rule
and any Y ν differs only in the orthogonal part L⊥,ν. (y). Y 0 includes both the short term
interest rate r and the risk premium ηR, it can be decomposed as Y 0

t = e−
∫ T
0
rsdsLRT with

LRT = exp
(
−
∫ t

0
ηRs .dWs − 1

2

∫ t
0
||ηRs ||2ds

)
an exponential martingale which corresponds to

the density process of a change of probability.
If the bounded contingent claim ζT is replicable by an admissible self-financing portfolio, its
market price pm(ζT ) (pm when it is not ambiguous) is the value of the replicating portfolio
(by no-arbitrage). Thus pmt is a bounded process such that Y νt (y)pmt is a martingale for any
discounted pricing kernel Y ν(y), and in particular for yY 0

t . This leads to the classic pricing
formula of a replicable contigent claim

pmt (ζT ) = E
[Y 0

T

Y 0
t

ζT
∣∣Ft] = E

[Y νT (y)

Y νt (y)
ζT
∣∣Ft]. (3.1)

Therefore, for replicable payoff, the price is uniquely given by E
[Y νT (y)
Y νt (y)ζT

∣∣Ft], whatever the
discounted pricing kernel Y ν . In finance, it is interpreted as the risk neutral conditional
expectation of the discounted claim between t and T ,

pmt (ζT ) = E
[Y 0

T

Y 0
t

ζT
∣∣Ft] = EQ[e− ∫ T

t
rsdsζT

∣∣Ft]
where Q is the minimal risk-neutral probability with density LRT with respect to P (on
FT ). Under the risk neutral probability Q, all assets and admissible self-financing portfolios
have the same return (rt). Remark also that in a complete market (which is the natural
framework of equilibrium modeling), any contingent claim is replicable, and Y 0 is the only
discounted pricing kernel.
In conclusion, for replicable zero-coupon bonds, equilibrium yield curve (2.8) and market
yield curve, have the same expression in terms of the discounted pricing kernel.
However, for long maturities, this replicable assumption seems very strong (even if the
payoff of the zero coupon is constant, the short term interest rate and the risk premium are
stochastic). If the contingent claim is not replicable, the price is not uniquely determined
and different discounted pricing kernel Y ν may lead to different prices E

[Y νT (y)
Y νt (y)ζT

∣∣Ft]. What
is the financial interpretation of the Ramsey rule in this context? It is important to point out
that the Ramsey rule is a marginal linear pricing rule, that is computed for relative small
amounts. The following section relates it with the marginal utility indifference pricing.
Indeed, similarly to the heuristic of the Ramsey rule recalled in (2.1), the marginal utility
indifference price is also a linear price that corresponds to a small perturbation of first order
around an equilibrium.

3.1.2 Utility indifference pricing

When the payoff ζT is not replicable in incomplete market, there are different ways to eval-
uate the risk coming from the non-replicable part, leading to a bid-ask spread. A way is the
pricing by indifference.
When hedging strategies cannot be implemented, the nominal amount of the transaction
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becomes an important risk factor and one can use utility based indifference pricing method-
ology. The utility indifference price is the price at which the investor is indifferent from
investing or not in the contingent claim. We consider the two following maximization prob-
lems3 stated at time t = 0 to simplify the notations (this can be easily extended to any time
t ≤ T ). The first one without the claim ζT has already been introduced previously

UT (x) := sup
(κ,ρ)∈Ac

E[U(T,Xκ,ρ
T ) +

∫ T

0

V (s, cs)ds]. (3.2)

The terminal utility U(T, .) is then perturbed by the random payment qζT , leading to the
second maximization problem

Uζ,T (x, q) := sup
(κ,ρ)∈Ac

E[U(T,Xκ,ρ
T − q ζT ) +

∫ T

0

V (s, cs)ds]. (3.3)

The utility indifference price4 is the cash amount p̂q0,T (x, ζT , q) determined by the relation-
ship

Uζ,T (x+ p̂q0,T (x, ζT , q), q) = UT (x). (3.4)

As in (2.1), (3.4) provides the additional initial wealth p̂q that offsets the loss of providing
a q-quantity of the claim ζT at time T .
Remark: The formulation of the utility indifference pricing problem is the same for forward
and backward utilities, with the appropriate utility process U that should be considered in
the definitions (3.2) and (3.3). In both cases, the utility indifference pricing problem is
posed backward, with the natural maturity T which is the date of payment of the claims,
and the associated optimal processes depend on T . The literature usually considers the
utility indifference pricing problem in the backward framework (that is with U(TH , .) a
given deterministic function, and T ≤ TH ), see for example Davis [Dav98], the survey
of Hobson [HH09] or Carmona [CN90]. If T < TH , thanks to the dynamic programming
principle, the stochastic utility U(T, .) that should be considered in (3.2) and (3.3) is the
value function at time T of the backward optimization problem with utility U(TH , .) at time
TH . In the forward framework, U(T, .) is the forward utility itself at time T (and T is not
restricted to be less than TH). In what follows, we study the marginal indifference pricing
in the forward and backward settings and we comment the differences when needed. We
use the index H (such as Y ∗,H. ) to emphasize the time horizon dependency in the backward
optimization problem.

3.2 Marginal indifference pricing

When the investors are aware of their sensitivity to the non-replicable risk, they can try
to transact for only a little amount in the risky contract, which corresponds to the zero
marginal rate of substitution puT (u for utility), also called Davis price [Dav98] or marginal
indifference price. This is a classic pricing approach in economics, less frequently used in

3To ease the notations, we will often rather write Uζ and U rather than Uζ,T and UT .
4If q > 0 (resp. q < 0) it is a selling (resp. a buying) indifference price
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3. Indifference pricing interpretation of the Ramsey rule

option pricing. The marginal utility indifference price is determined by the relationship

pu0,T (x, ζT ) := lim
q→0

∂p̂q0,T
∂q

(x, ζT , q). (3.5)

The marginal utility price is a linear pricing rule. Using this pricing rule means that there
exists a consensus on this price for a small amount, but investors are not sure to have
liquidity at this price.

Proposition 3.1. Let (Y ∗t (y)) be the optimal discounted pricing kernel associated with a
(forward or backward) consumption optimization problem.
For any non negative contingent claim ζT delivered at time T , the marginal utility price
(also called Davis-price) is given via the dual parametrization

puT (x, ζ0,T ) = E
[
ζT
Y ∗T (y)

y

]
, y = Ux(0, x). (3.6)

It is defined for any maturity T ∈ [0,+∞[ in the forward case and for any T ≤ TH in the
backward case.

Proof. To simplify the notation, the indifference price is denoted p̂q := p̂q0,T (x, ζT , q). Fol-
lowing Davis [Dav98], we compute the marginal indifference price of any contingent claim
as follows. Denote by (X∗,q(x), c∗,q(x)) the optimal strategy of the optimization program
(3.3) (q-quantity of the claim ζT ), such that

E
[
U(T,X∗,qT (x)− qζT ) +

∫ T
0
V (s, c∗,qs (x))ds

]
= Uζ(0, x, q).

Thanks to the envelope theorem we can invert optimization and differentiation along the
optimal paths (see Milgrom [MS02]); in our setting, the q-derivative concerns the random
variables U(T,Xκ,c

T (x)− qζT ) +
∫ T
t
V (s, cs(x))ds. Then

∂q Uζ(0, x, q) = −E
(
Ux(T,X∗,qT (x)− qζT )ζT

)
.

On the other hand, since by definition Uζ(0, x, q) = U(0, x− p̂q)

∂qUζ(0, x, q) = ∂q U(0, x− p̂q) = −∂p̂
q

∂q
Ux(0, x− p̂q)

thus, we obtain the sensitivity in q of the indifference price

∂p̂q

∂q
=

E
(
Ux(T,X∗,qT (x)− qζT )ζT

)
Ux(0, x− p̂q)

. (3.7)

This quantity depends on the optimal process X∗,qT (x) which is not easy to compute, but at
the limit in q = 0, this quantity becomes, since lim

q→0
X∗,qT = X∗T

pu0,T (x, ζT ) = lim
q→0

∂p̂q

∂q
(x, ζT ) =

E
[
ζTUx(T,X∗T (x))

]
Ux(0, x)

.

The marginal pricing rule is linear, and associated with the pricing kernel

Ux(T,X∗T (x))

Ux(0, x)
=
Y ∗T (Ux(0, x))

Ux(0, x)
.
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3. Indifference pricing interpretation of the Ramsey rule

In the backward case, the utility U(T, .) depends on the horizon TH . In particular, if the
contingent claim ζT is delivered at time T ≤ TH , then ζT can be invested between time T
and TH into any admissible portfolio X.(T, ζT ) (martingale under Y ∗,H) and computing the
marginal utility price with terminal payoff ζTH = XTH (T, ζT ) leads to the same price, as
explained in the following corollary.

Corollary 3.2. Let (Y ∗t (y)) be the optimal discounted pricing kernel associated with a (for-
ward or backward) consumption optimization problem. For any non negative contingent
claim ζT delivered at time T , the marginal utility price is given at any time t ≤ T by

put,T (x, ζT ) = E
[
ζT
Y ∗T (y)

Y ∗t (y)
|Ft
]
, y = Ux(0, x). (3.8)

(i) In the forward case, the pricing rule is time-coherent :
for all T and T ′, with T ≤ T ′

put,T ′(x, ζT ′) = put,T (x, ζT (t, x)) with ζT (t, x) = puT,T ′(X
∗
T (t, x), ζT ′). (3.9)

(ii) In the backward case, the time-coherence property (3.9) is satisfied
• for T ≤ T ′ ≤ TH with ζT (t, x) = ζHT (t, x) = pu,HT,T ′(X

∗,H
T (t, x), ζT ′).

• for T ≤ T ′ with T ′ > TH if the utility function U(T ′, .) at the horizon T ′ is the consistent
progressive utility starting from u(TH , .) at time TH .

Proof. To simplify the notations, the proof is given for t = 0, the dynamic version can be
proved in the same way.
(i) In the forward case, for any maturity T ′, we have

pu0,T ′(x, ζT ′) =
1

ux(x)
E
[
Ux(T ′, X∗T ′(x)) ζT ′

]
= E

[
ζT ′

Y ∗T ′(y)

y

]
.

In particular, for any T ≤ T ′, one can easily prove (3.9):

pu0,T ′(x, ζT ′) =
1

ux(x)
E
[
Ux(T ′, X∗T ′(x)) ζT ′

]
=

1

ux(x)
E
[ 1

Ux(T,X∗T (x))
E
[
Ux(T ′, X∗T ′(x)) ζT ′ |FT

]
Ux(T,X∗T (x))

]
=

1

ux(x)
E
[
puT,T ′(X

∗
T (x), ζT ′)Ux(T,X∗T (x))

]
= pu0,T (x, puT,T ′(X

∗
T (t, x), ζT ′)).

(ii) In the backward case, if the maturity of the claim is T ≤ TH , then the amount ζT
may be invested in any admissible portfolio X.(T, ζT ) such that (Xt(T, ζT )Y ∗,Ht (y))T≤t≤TH
is a martingale and taking ζT ′ = XT ′(T, ζT ), T ′ ∈ [T, TH ]. Then the proof of (3.9) in the
backward case is identical to the one of the forward case as soon as T ≤ T ′ ≤ TH :

pu,H0,T ′(x, ζT ′) = E
[
E(XT ′(T, ζT )

Y ∗,HT ′ (y)

y
|FT

]
= E

[
ζT
Y ∗,HT (y)

y

]
= pu,H0,T (x, ζT ), y = ux(x). (3.10)
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3. Indifference pricing interpretation of the Ramsey rule

The backward marginal utility pricing is a well-posed pricing rule only for T ≤ TH . Nev-
ertheless, for T ′ > TH , in order to still have (3.9), the utility function should be extended
between TH and T ′ in a time-coherent way in order to get the optimal Y ∗ until T ′.

The marginal utility indifference pricing allows to price contingent claim as the expectation
under a pricing measure. This corresponds to the "local expectations hypothesis" of Piazzesi
[Pia10]. For marginal utility prices, the transition from the data-generating measure P to
the pricing measure (Y ∗T P) is tied to preference parameters. Nevertheless, this linear pricing
rule may not be well adapted for larger nominal amount of transaction and highly illiquid
market. Hereafter we provide a second order development of the utility indifference price,
for small q. This is a first attempt to develop a correcting term extending the Davis’ price.

Second order extension of the marginal utility price The following results
provide a second order expansion of the utility indifference price, for small quantity q of the
claim ζT .

Theorem 3.3. Suppose the optimal strategy (X∗,q(x), c∗,q(x)) of the optimization program
(3.3) to be regular5. The utility indifference price at time t of a q-quantity of the claim ζT

delivered at time T admits the following second order expansion in the neighborhood of q = 0

p̂qt,T (x, ζT ) = qput,T (x, ζT )
(

1 + q
Uxx(t, x)

Ux(t, x)
put,T (x, ζT )

)
+ q2E

(
Uxx(T,X∗T (x))(∂qX

∗,q
T (x)|q=0 − ζT )ζT

)
Ux(t, x)

+ o(q2). (3.11)

recalling the Davis price put,T (x, ζT ) = E
[
ζT

Y ∗T (y)
Y ∗t (y) |Ft

]
, y = ux(x) = Ux(0, x).

Remark that the term RA(u) = −Uxx(t,x)
Ux(t,x) is the absolute risk aversion coefficient. Besides,

the term ∂qX
∗,q
T (x)|q=0 makes it difficult to compute explicitly this second order term.

Proof. We prove the result at time t = 0, the dynamic version is obtained in the same way.
From (3.7),

Ux(0, x− p̂q)(∂qp̂q) = E
(
Ux(T,X∗,qT (x)− qζT )ζT

)
.

Differentiating again with respect to q, it follows under regularity assumptions

Ux(0, x− p̂q)(∂2
q p̂
q)−Uxx(0, x− p̂q)(∂qp̂q)2 = E

(
Uxx(T,X∗,qT (x)− qζT )(∂qX

∗,q
T (x)− ζT )ζT

)
.

Then, since p̂q → 0 and (∂qp̂
q)→ pu when q → 0

∂2
q p̂
q|q=0 =

E
(
Uxx(T,X∗T (x))(∂qX

∗,q
T (x)|q=0 − ζT )ζT

)
+ Uxx(0, x)(pu)2

Ux(0, x)
.

Therefore the second order expansion of p̂q in the neighborhood of q = 0 is

p̂q = qpu(1 + qpu
Uxx(0, x)

Ux(0, x)
) + q2E

(
Uxx(T,X∗T (x))(∂qX

∗,q
T (x)|q=0 − ζT )ζT

)
Ux(0, x)

+ o(q2).

5Ux(T,X
∗,q
T (x)) continuously differentiable with respect to q, with integrable derivative
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3. Indifference pricing interpretation of the Ramsey rule

To sum up, the utility indifference pricing provides a (bid/ask) price for non-replicable
claims. Remark that it relies on the disturbance of a partial equilibrium by adding a new
contingent claim/asset that should be financed. A complete market can not be disturbed by
a new asset because any contingent claim/asset can be hedged. But in incomplete markets
the equilibrium is not perfect and the new claims to be financed have an impact on it. In the
case of new claims whose size are small, the disturbance is marginal, leading to a marginal
utility indifference price. This indicates similarities between the marginal utility indifference
price and the Ramsey rule. We now interpret the previous results on the marginal utility
pricing of zero-coupon bonds in terms of the yield curve

3.3 Marginal utility yield curve

As usual, we use the generic notation
(
B(t, T ), t ≤ T

)
for the price at time t of a zero-coupon

bond paying one unit of cash at maturity T . In finance, the market yield curve (δ → Rt(δ))
is defined through the price of a zero-coupon bonds by B(t, T ) = exp(−(T − t)Rt(T − t)).
We use the previous results of Sections 3.1.1 and 3.2 concerning the pricing of contingent
claims: the case of a zero-coupon bond corresponds to a contract delivery 1 at maturity T ,
i.e. ζT = 1.
(i) If the zero-coupon bonds are replicable, then there is no ambiguity about their prices,
as any discounted pricing kernel Y leads to the same price (see (3.1.1))

B0(t, T ) = E
[YT
Yt
|Ft
]

= E
[Y 0

T

Y 0
t

∣∣Ft].
In practice, this pricing rule B0(t, T ) = E

(Y 0
T

Y 0
t

∣∣Ft), using the minimal pricing kernel Y 0, is
often used as a benchmark, even if the bonds are not replicable. In these case, the price
does not depend on y (for exogenous r, ηR).
(ii) For non hedgeable zero-coupon bond, we can apply the marginal indifference pricing rule
(with consumption) based on the u-optimal pricing kernel Y ∗t (y). Although it is important
to emphasize the dependence of the optimal pricing kernel Y ∗(y) on the utility, we avoid
this dependence to simplify the notations. Similarly, the marginal utility price at time t
of a zero-coupon bond depends on the utility only through the optimal discounted pricing
kernel Y ∗(y), so we denote it by B∗(t, T )(y) (note that this price depends on y):

B∗(t, T )(y) = E
[Y ∗T (y)

Y ∗t (y)

∣∣Ft].
Based on the link between optimal discounted pricing kernel and optimal consumption, we
see that

B∗(t, T )(y) = E
[Y ∗T (y)

Y ∗t (y)

∣∣Ft] = E
[Vc(T, c∗T (c0))

Vc(t, c∗t (c0))

∣∣Ft], y = vc(c0) = ux(x). (3.12)

According to the Ramsey rule (2.8), equilibrium interest rates and marginal utility interest
rates are the same, in terms of the discounted pricing kernel. One should keep in mind
that in the equilibrium framework the discounted pricing kernel is determined at equilibrium
through the spot rate rt endogenously, while it is optimized through its orthogonal volatility
νt in the financial setting. Besides, it is worth emphasizing that the marginal utility prices
are only valid for small trades. Indeed for non replicable claims, the size of the transactions
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3. Indifference pricing interpretation of the Ramsey rule

is an important source of risk; for larger trades, we cannot use the first order approximation
given by the marginal utility price, and we should add a correcting second order term or
use indifference pricing.

3.4 Aggregation and wealth dependency

As explained in Section 1.3, power utility functions is an important case of utility functions,
in which computations are tractable and the existence of an equilibrium can be stated. Nev-
ertheless this case implies that the equilibrium rates do not depend on the wealth process
of the economy, and thus does not allow to capture some important features concerning the
impact of the wealth of the economy on the rates. A more flexible model consists in ag-
gregating power utilities, which turns out to aggregating discounted pricing kernels. Indeed
[EKM18] proved that the utility functions that are compatible with an equilibrium can be
written as mixtures of power utility. Besides, aggregation of utility is particularly relevant
to take into account the heterogeneity of the investors in the economy. It is a natural setting
in which the yield curves may depend on the wealth of the economy.
To illustrate this, let us consider an economy composed of N investors, any of them being
endowed at time 0 with a proportion αi of the initial global wealth x (

∑N
i=1 αi = 1). As-

sume that the agents’ preferences are modeled by consistent power utilities characterized by
(constant) relative risk aversion parameters θ1 < · · · < θN . Then, their optimal discounted
pricing kernels Y ∗,θit (y) are linear in y with coefficient Ȳ ∗,θit (see [EKHM18]), and the indi-
vidual price of zero-coupon bonds with maturity T does not depend on y and is given by

B∗,θi(t, T ) = E
( Ȳ ∗,θiT

Ȳ
∗,θi
t

|Ft
)
.

The preference of the representative agent is the aggregation of the preferences of these het-
erogeneous investors, so that the aggregate indifference zero-coupon bond price B∗(0, T )(y),
computed at time 0 for simplicity, is given by

B∗(0, T )(y) =

∑N
i=1 y

θi(y)B∗,θi(0, T )

y
=

∑N
i=1(αix)−θiB∗,θi(0, T )∑N

i=1(αix)−θi

with y =
∑N
i=1 y

θi(y) = ux(x) and for power utilities, yθi(y) = uθix (αix) = (αix)−θi . The
aggregate indifference zero-coupon bond price thus depends on the initial wealth x, although
it is not the case of each individual investor’s price.

Asymptotic behavior for small and large wealth. Using the linearity of the optimal
discounted pricing kernel Y ∗,θt (yθi) in yθi and the form of the marginal initial power utilities
uθix , the asymptotic behavior of the aggregate zero-coupon price, for y around 0 (respectively

∞), is a direct consequence of the convergence of the discrete random measure
∑N
i=1 y

θi (y) δθi
y

towards a Dirac measure that charges the agent with the smallest (respectively the largest)
risk aversion θi. Indeed, scaling the initial wealth x with a factor λ ∈ R+, we have the
following asymptotics (for λ→ 0 or ∞)

lim
y→0

B∗(0, T )(y) = Bθ10 (T ) and lim
y→+∞

B∗(0, T )(y) = BθN0 (T ).

This means that, when the wealth tends to infinity, the aggregate zero-coupon price con-
verges to the one priced by the less risk averse agent, whereas when the wealth tends to
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zero, it converges to the one priced by the more risk averse agent. This is a similar result
as in Cvitanic, Jouini et al. [CJMN11].
The framework can be generalized into a continuum of heterogeneous investors indexed by θ,
with any utility function (not necessarily power) and having different weights m(dθ) in the
economy. Then the aggregate discounted pricing kernel Y ∗t (ux(x)) is defined as a mixture
of individual discounted pricing kernels (see [EKHM17])

Y ∗t (ux(x)) :=

∫
Y ∗,θt (uθx(αθx))m(dθ) =

∫
Y ∗,θt (yθ(ux(x)))m(dθ). (3.13)

Therefore the marginal utility bond curve B∗(t, T )(y) is a normalized mixture of individual
bond curves, based on the orthogonal martingales L⊥,∗,θt ,

B∗(t, T )(y) =

∫
B∗,θ(t, T )(yθ)

L⊥,∗,θt (yθ)∫
L⊥,∗,θt (yθ)m(dθ)

m(dθ). (3.14)

Similarly, the marginal utility spot forward rate f∗(t, T )(y) = ∂T lnB∗(t, T )(y) is a normal-
ized mixture of individual spot forward rates curve based on the martingales Y ∗,θt (yθ)B∗,θ(t, T )(yθ)

f∗(t, T )(y) =

∫
f∗,θ(t, T )(yθ)

Y ∗,θt (yθ)B∗,θ(t, T )(yθ)∫
Y ∗,θt (yθ)B∗,θ(t, T )(yθ)m(dθ)

m(dθ).

4 Yield curves dynamics

The increase of the fixed income market in size and number of products has transformed
the way of considering the links between rates of different maturities, leading to leave the
economic theory of rational expectation for the principle of no-arbitrage between bonds
of different terms. Initiated by Vasicek in 1977, this evolution has matured with Heath-
Jarrow-Morton theory [HJM92], and the theory of bond as a numeraire in El Karoui et al.
[EKGR95]. Note that this point of view, that follows from the no-arbitrage principle, is
relevant for a day by day management of the rate fluctuations, but does not replace the
analysis of the economic fundamentals that explain the broad patterns of the fluctuations.
This section revisits the previous results on the yield curve, using Heath-Jarrow-Morton
(HJM) theory in incomplete market.
The notion of forward contracts will be used, such as the forward zero-coupon bonds, whose
price Bt(T0, T ) is the price at time t of a bond starting at time T0 and paying one unit of
cash at time T > T0. By non arbitrage, Bt(T0, T ) = B(t, T )/B(t, T0). The family of forward
instantaneous rates (f(t, T0) = −∂T ln(Bt(T0, T )T=T0) takes also a large place in the HJM
theory.

4.1 Yield curve dynamics and their volatilities

Instead of starting with a given dynamic for the short rate r and deducing the zero-coupon
bonds and their volatilities (as it is the case for example for the Vasicek model), the Heath-
Jarrow-Morton framework adopts the reverse approach and starts with a given volatility
process. It is worth emphasizing that in the HJM approach the spot rate is not given
and is deduced from the volatility process, and of the initial conditions of the forward
rates (f(0, T )). Thus in what follows, we focus on the volatility family of the zero-coupon
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bonds, that characterizes the dynamics of the yield curve. It is important to highlight
that this characteristic is determined directly by the martingale property of the process
(Y ∗t (y)B∗(t, T )(y))t∈[0,T ], in both the economic and the financial viewpoints. The subtle
difference consists of the endogeneity for the economic viewpoint (resp. exogeneity for the
financial viewpoint) of the spot rate r, that may depend (or not) on y ; we will discuss this
point in Proposition 4.2.
Recall that any discounted pricing kernel Y ∗(y) is characterized by its volatility process
S∗(y) := ν∗(y)− ηR(y) (resp. −ηR(y) for Y 0), where ν∗(y) is the orthogonal risk premium
and ηR(y) is the minimal risk premium. In the economic framework ηR(y) is endoge-
nous, while in the financial setting it is exogenous and usually taken independent of y.
The dynamics of the associated bonds B∗(t, T )(y) differ by their volatilities, denoted by
Γ∗(t, T )(y). In the sequel, to shorten the notations, we use the usual short notation for ex-
ponential martingale, Et(φ) := exp

( ∫ t
0
φs.dWs − 1

2

∫ t
0
‖φs‖2ds

)
. The study is based on the

martingale property of the process Y ∗t (y)B∗(t, T )(y) (resp. Y 0
t B

0(t, T )), whose volatility(
S∗t (y) +Γ∗(t, T )(y)

)
is the sum of the volatilities of each term, and whose terminal value is

Y ∗T (y). Thus, the exponential martingale Y ∗t (y)B∗(t, T )(y) has the following representation:

Y ∗t (y)B∗(t, T )(y) = yB∗(0, T )(y)Et
(
S∗(y) + Γ∗(., T )(y)

)
. (4.1)

The same formula holds for Y 0
t B

0(t, T ) (ν∗ ≡ 0).

4.1.1 Heath Jarrow Morton framework for forward rates

The spot forward rates are defined by f∗(t, T )(y) = −∂T lnB∗(t, T )(y). They represent the
spot rate of the forward zero-coupon bond defined at time t from the starting date T . The
limit of the spot forward rate, when the maturity T tends to the current date t, is the spot
rate r of no-arbitrage:

lim
T→t

f∗(t, T )(y) = rt(y).

The spot forward rates are easier to compute than the rates R∗(t, T )(y) themselves: indeed
they are computed directly from (4.1) by taking the logarithmic derivative of the product
Y ∗t (y)B∗(t, T )(y) with respect to the maturity T .

Proposition 4.1. Assume that the volatility vectors Γ∗(t, T )(y) are differentiable with re-
spect to T with locally bounded derivative γ∗(t, T )(y) := ∂TΓ∗(t, T )(y).
Then the integral equation of the spot forward rates is

f∗(t, T )(y) = f∗(0, T )(y)−
∫ t

0

γ∗(s, T )(y).
(
dWs + (S∗s(y)− Γ∗(s, T )(y))ds

)
. (4.2)

The yield curve δ 7→ Rut (δ)(y) is obtained as the primitive of the forward rate:

R∗t (δ)(y) =
1

δ

∫ δ

0

f∗(t, t+ s)(y)ds. (4.3)

Dynamics of the error f∗(t, T )− f0(t, T ).
The market practice, that uses the minimal pricing kernel Y 0 as benchmark, induces a spot
forward rate f0(t, T ) instead of f∗(t, T ). The difference between the spot forward rates
∆f(t, T )(y) := f∗(t, T )(y) − f0(t, T )(y) (∆f(T, T ) = 0), has the following dynamics (with
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similar notations for ∆γ and ∆Γ)

∂t(∆f(t, T ))(y) = ∂tf
∗(t, T )(y)− ∂tf0(t, T )(y)

= ∆γ(t, T )(y).(dWt + ηRt (y)dt) + γ∗(t, T )(y).ν∗t (y)dt

+ < γ∗(t, T )(y),Γ∗(t, T )(y) > dt− < γ0(t, T ),Γ0(t, T )(y) > dt

= ∆γ(t, T )(y).(dWt + S∗t (y)dt)+ < ∆γ(t, T )(y),Γ∗(t, T )(y) > dt

+ < γ0(t, T )(y),∆Γ(t, T )(y) + ν∗t (y) > dt.

The dynamics of the "error" of using the minimal discounted pricing kernel Y 0 instead of
Y ∗(y) is similar to the dynamics of a forward rate (equation (4.2)), plus the additional
source term < γ0(t, T )(y),∆Γ(t, T )(y) + ν∗t (y) > dt.

4.1.2 Exogenous spot rate

Writing (4.2) in a backward formulation,

f∗(t, T )(y) = rT (y) +

∫ T

t

γ∗(s, T )(y).(dWs + (S∗s(y)− Γ∗(s, T )(y))ds).

It appears that the spot rate seems to depend on y, even for an exogenous spot rate. This
dependency is conveyed by the orthogonal risk premium ν∗(y). Nevertheless, it is usual in
the financial modeling to take the spot rate rt and the minimal risk premium ηR independent
of the initial parameter y, on the contrary to the economic framework in which they are
endogenous and thus naturally depend on y. But this assumption implies a constraint on
the initial slope of the spot forward rates. The dynamics of the spot rate and the condition
under which r does not depend on y are given in the following proposition.

Proposition 4.2 (Properties of the spot rate). The spot rate is given by

rt(y) = f∗(0, t)(y)−
∫ t

0

γ∗(s, t)(y).(dWs + (S∗s(y)− Γ∗(s, t)(y))ds), (4.4)

and its dynamics is given by

drt(y) = ∂2f
∗(t, t)(y)dt− γ∗(t, t)(y).

(
dWt + S∗t (y)dt

)
. (4.5)

This implies that for exogenous spot rate r that does not depend on y, γ∗(t, t) and ∂2f
∗(t, t)+

γ∗(t, t).ν∗t (y) do not depend on y.

Proof. Note that Equation (4.4) is a backward formulation of (4.2). For the ease of the
computations, we denote r(t, δ)(y) := f∗(t, t+ δ)(y), which we differentiate with respect to
t using (4.2):

dr(t, δ)(y) = ∂2r(t, δ)(y)dt+ γ∗(t, t+ δ)(y).Γ∗(t, t+ δ)(y)dt

− γ∗(t, t+ δ)(y).
(
dWt + S∗t (y)dt

)
.

When δ goes to zero, using the relation rt = f∗(t, t) and the fact that Γ∗(t, t)(y) = 0, the
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dynamics of the spot rate is given by

drt(y) = ∂2f
∗(t, t)(y)dt− γ∗(t, t)(y).

(
dWt + S∗t (y)dt

)
.

This implies that for exogenous spot rate r, γ∗ does not depend on y on the diagonal and
∂2f
∗(t, t)(y) + γ∗(t, t)(y).ν∗t (y) does not depend on y .

Remark that the initial slope of the spot forward rate ∂2f
∗(t, t)(y) can be interpreted using

the initial slope of the yield curve : ∂2f
∗(t, t)(y) = 2∂δR

∗
t (0)(y). Indeed using equation

(4.3), one gets

∂δR
∗
t (δ) = −R

∗
t (δ)

δ
+
f∗(t, t+ δ)

δ
= −(

R∗t (δ)− rt
δ

) +
f∗(t, t+ δ)− rt

δ
.

Since rt = R∗t (0) = f∗(t, t), passing to the limits when δ → 0, yields ∂2f
∗(t, t)(y) =

2∂δR
∗
t (0)(y).

We now illustrate these constraints of exogenous spot rates in a Gaussian framework with
deterministic volatilities.

A Gaussian framework The Vasicek model is the typical example of Gaussian model for
interest rate; it is stated in a complete market. We provide here a similar Gaussian frame-
work, but in incomplete market: we assume that the coefficients S∗(y) and Γ(., T )(y), that
appear in the exponential representation of the martingale (Y ∗t (y)B∗(t, T ))t (see equation
(4.1)), are deterministic. We assume that the volatility Γ(., T )(y) is given by

Γ∗(t, T )(y) = Γ∗(T − t)(y) = σ(y)
(1− e−a(y)(T−t))

a(y)
, γ∗(t, T ) = σ(y)e−a(y)(T−t)

where σ(y) is the n-dimensional diffusion vector and a(y) is the (one-dimensional) mean re-
version speed. A direct computation from the spot forward rate equation (4.2) and equation
(4.5) implies the following dynamics for the spot rate r

drt(y) = a(y)(bt(y)− rt(y))dt+ σ(y).(dWt + S∗t (y)dt)

with bt(y) = ∂2f
∗(0,t)(y)
a(y) + f∗(0, t)(y) + ||σ(y)||2

2a(y)2 (1− e−2a(y)t). This is known as the Hull and
White model. If the spot rate r does not depend on y, then the condition established in
Proposition 4.2 implies that the diffusion parameter σ is independent of y, and the drift
parameter a(y)(bt(y)− rt) is equal to σ.S∗(y) plus a term that does not depend on y.
The initial spot forward rates curve t→ f∗(0, t)(y) satisfies a Vasicek model (corresponding
to b(y) constant in time) if

∂2f
∗(0, t)(y) + a(y)(f∗(0, t)(y)− b(y)) + ||σ||2

2a(y) (1− e−2a(y)t) = 0

that is f∗(0, t)(y) = b(y) + (r0(y)− b(y))e−a(y)t − ||σ||2
2a(y)2 (1− e−a(y)t)2.

Remark that f∗(0,+∞)(y) = b(y)− ||σ||2
2a(y)2 .

The next section studies the infinite maturity yield curve.
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4.2 Infinite maturity yield curve

Let us first recall that, from Definition 1.2, any discounted pricing kernel Y ∗t (y) can by
written as

Y ∗t (y) = yY 0
t (y)L⊥,∗t (y), where


Y 0
t = exp

( ∫ t

0

−rs(y)ds−
∫ t

0

ηRt (y).dWs −
1

2

∫ t

0

||ηRt (y)||2ds
)

L⊥,∗t (y) = exp
( ∫ t

0

ν∗s (y).dWs −
1

2

∫ t

0

||ν∗s (y)||2ds
)
.

Then, simplifying (4.1) by Y ∗t (y), the zero-coupon bonds prices are given by

B∗(t, T )(y)

B∗(0, T )(y)
= exp

( ∫ t

0

rs(y)ds+ Γ∗(s, T )(y).(dWs+S∗s(y)ds)− 1

2
||Γ∗(s, T )(y)||2ds

)
(4.6)

with S∗s(y) = ν∗s (y)− ηRs (y).

4.2.1 Infinite maturity yield curve with forward utility

We study the yield curve dynamics for infinite maturity, first in the framework of forward
utility, for which the orthogonal risk premium ν∗(y) does not depend on the time-horizon.
From the equation (4.6) of the zero-coupon bonds, and using (T − t)R∗t (T − t)(y) =

− lnB∗(t, T )(y),

(T − t)R∗t (T − t)(y) = TR∗0(T )(y)−
∫ t

0

rsds−
∫ t

0

Γ∗(s, T )(y).dWs (4.7)

+
1

2

∫ t

0

||Γ∗(s, T )(y)||2ds+

∫ t

0

Γ∗(s, T )(y).S∗s(y)ds.

Along the same lines as in Dybvig [DIR96] and in El Karoui et al. [EKFG97], we study the
dynamics behavior of the yield curve, when the maturity goes to infinity

lt(y) := lim
T→+∞

R∗t (T, y). (4.8)

From (4.7), when T is large, R∗t (T )(y) behaves as

R∗0(T )(y)−
∫ t

0

Γ∗(s, T )(y)

T
.dWs +

∫ t

0

||Γ∗(s, T )(y)||2

2T
ds+

∫ t

0

Γ∗(s, T )(y)

T
.S∗s(y)ds (4.9)

thus we have to study together the behavior of 1
T

∫ t
0

Γ∗(s, T )(y).dWs, 1
T

∫ t
0
||Γ∗(s, T )(y)||2ds

and 1
T

∫ t
0

Γ∗(s, T )(y).S∗s(y)ds for a fixed t.

Proposition 4.3. In the forward case, the infinite maturity yield curve lt(y) is
(i) infinite if lim

T→+∞
Γ∗(t,T )(y)

T exists and is not equal to zero dt⊗ dP a.s.

(ii) Otherwise, lt(y) = l0(y) +
∫ t

0
g2s(y)

2 ds with g2
t (y) := lim

T→+∞
||Γ∗(t,T )(y)||2

T .

So, the long run interest rate lt is still a nondecreasing process in time starting from l0,
constant if gt ≡ 0 for all t.

Proof. (i) If lim
T→+∞

Γ∗(t,T )(y)
T exists and is not equal to zero dt⊗ dP a.s. then
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lim
T→+∞

||Γ∗(t,T )(y)||2
T = lim

T→+∞
||Γ
∗(t,T )(y)

T ||2T = +∞ a.s and lt(y) is infinite.

(ii) Otherwise, 1
T

∫ t
0

Γ∗(s, T )(y).dWs and 1
T

∫ t
0

Γ∗(s, T )(y).S∗s(y)ds converge to zero and

lt(y) = l0(y) +
∫ t

0
g2s(y)

2 ds where g2
t (y) = lim

T→+∞
||Γ∗(t,T )(y)||2

T . So, the long run interest rate

lt is still a nondecreasing process in time starting from l0, constant if gt ≡ 0 for all t. In this
case, all yield curves in the future have the same asymptotic l0 than at t = 0.

Therefore, in the forward case, the yield curve dynamics and the infinite maturity behavior
given by the Ramsey rule are in line with the models of the standard financial literature.
Nevertheless, in the backward case, such similarities are not so obvious, due to the depen-
dency of ν∗,H(y) (and thus S∗(y)) on the time horizon TH .

4.2.2 Yield curve properties with backward utilities

For backward utility function, the yield curve dynamics (4.7) is still valid for any t ≤ TH ,
nevertheless the time horizon TH impacts the orthogonal risk premium ν∗,H as well as the
volatility Γ∗(., T ), and consequently the long term behavior of the yield curve. For zero-
coupon bond with maturity T < TH , the payoff at time T is recapitalized at the risk-free
rate from time T to time TH , leading to the marginal utility price for zero-coupon bond
(as explained in (3.10)) B∗,H(t, T )(y) = E

[
Y ∗,HT (y)

Y ∗,Ht (y)

∣∣Ft]. In the backward point of view,
the dependency on the time horizon TH is crucial. We focus on this dependency in the
following and thus in order to alleviate the notations, we omit the reference to the initial
conditions x and y. The dependency on TH adds a deterministic constraint between optimal
wealth and optimal discounted pricing kernel at time TH , given by the first order condition
X∗,HTH = u−1

x (Y ∗,HTH
). This induces a link between the orthogonal risk premium ν∗,H and the

orthogonal part of the volatility Γ∗(., T ) (but that is not easy to describe in all generality).
Then the infinite maturity yield curve depends on the infinite behavior of Γ∗,⊥(.,TH)

ν∗,H
. To fix

the idea, as T tends to infinity, let us take TH = T .

Proposition 4.4. In the backward case, the infinite maturity yield curve lt(y) is
(i) the same as in the forward case if lim

TH→+∞
||Γ∗,⊥(s,TH)||
||ν∗,Hs ||

=∞

(ii) if lim
TH→+∞

||Γ∗,⊥(s,TH)||
||ν∗,Hs ||

= 0, lt(y) = l0(y) +
∫ t

0
hs(y)ds with

hs(y) := lim
TH→+∞

||Γ∗,R(s,TH)(y)||2
2TH

+
Γ∗,⊥(s,TH).ν∗,Hs

TH

(iii)otherwise lt(y) = l0(y)+
∫ t

0
hs(y)ds with hs(y) := lim

TH→+∞
||Γ∗(s,TH)(y)||2

2TH
+

Γ∗,⊥(s,TH).ν∗,Hs
TH

.

The following paragraph provides the concrete example of backward power utilities in Gaus-
sian markets, for which computations are tractable.

Yield curve properties with backward power utilities and Gaussian markets To
be able to give more precise properties of the backward marginal utility yield curve, we
consider backward power utilities u(x) = x1−θ

1−θ . For the backward power utilities, the deter-
ministic constraint between optimal wealth and optimal discounted pricing kernel at time
TH , given by the first order condition, states as follows: Y ∗,HTH

(X∗,HTH )θ is a constant C. Be-
sides, we have the martingale property of the value function along the optimal portfolio,

equal to the martingale e
∫ t
0 ρ
∗,H
s ds

1−θ Y ∗,Ht X∗,Ht = 1
1−θEt

(
κ∗,H − ηR+ ν∗,H

)
. To understand the

impact of the short rate uncertainty, it is better to write the constraint as
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X∗,HTH Y 0
TH

= C−1/1−θ Y 0
TH

(
Y ∗,HTH

X∗,HTH
)1/1−θ

.

Both processes e
∫ t
0
ρ∗,Hs dsX∗,HY 0 and e

∫ t
0
ρ∗,Hs dsY ∗,HX∗,H are exponential martingales with

known volatility given respectively by (κ∗,H − ηR) and (ν∗,H + κ∗,H − ηR), and Y 0
t =

exp(−
∫ t

0
rsds)L

R
t where LRt is an exponential martingale with volatility (−ηR). To charac-

terize the parameters of all these processes, we can use the uniqueness of the decomposition
as terminal value of some exponential martingale, after taking into account the randomness
of the spot rate r or the risk premium ηR, and ν∗,H . In any case, this condition implies
some links on the random variable

∫ TH
0

rsds and the volatilities (ν∗,Ht −ηRt ) and κ∗,Ht of the
optimal processes Y ∗,H and X∗,H . But it is not so easy to give a description of these links
in all generality.
In a Gaussian market, the volatilities ηR. , ν∗,H and Γ0 and Γ∗ are deterministic processes,
and the spot rate r is an Ornstein-Uhlenbeck process. Then, the logarithm of Y 0 is a
Gaussian process and can be written as (recall that ν = 0 for Y 0)

−
∫ t

0

rsds = Cst(t) +

∫ t

0

Γ0(s, T ).dWs, t ∈ [0, TH ] (4.10)

for some deterministic function Cst(t) of time t. (
∫ t

0
rsds)0≤t≤TH is a Gaussian process,

with a deterministic volatility vector Γ0. Similarly, since ν∗,H is deterministic, ln(X∗,H)

and ln(Y ∗,H) are Gaussian processes. In particular, at time TH

ln(Y ∗,HTH
) = Cst−

∫ TH

0

rtdt+

∫ TH

0

(ν∗,Ht − ηRt ).dWt,

ln(X∗,HTH ) = Cst +

∫ TH

0

(rt − ρ∗,Ht )dt+

∫ TH

0

κ∗,Ht .(dWt + ηRt dt).

• Characterization of ν∗,Ht and κ∗,Ht
Recall that Y ∗,HTH

(X∗,HTH )θ is a constant. Then, the centered Gaussian variable

(1 − θ)
∫ TH

0
Γ∗(t, TH).dWt +

∫ TH
0

(ν∗,Ht − ηRt )dWt +
∫ TH

0
θκ∗,Ht dWt has a variance equal

to 0. Using the decomposition of Γ∗(t, TH) into two orthogonal vectors Γ∗,R(t, TH) and
Γ∗,⊥(t, TH), we have that

ν∗,Ht = −(1− θ)Γ∗,⊥(t, TH), θκ∗,Ht + (1− θ)Γ∗,R(t, TH) = ηRt . (4.11)

Remark that ν∗,H is proportional to Γ∗,⊥(., TH) and κ∗,H depends on the maturity TH only
through Γ∗,R(., TH). So the knowledge of deterministic risk premium ηR, and the optimal
deterministic parameters ν∗,Ht , κ∗,Ht allows us to identify the volatility of the marginal utility
zero-coupon bond with maturity TH , as

Γ∗(t, TH) =
(ηRt − ν

∗,H
t )

(1− θ)
− θ

1− θ
κ∗,Ht , ||Γ∗(t, TH)||2 =

1

(1− θ)2
[||ηRt − θκ

∗,H
t ||2 + ||ν∗,Ht ||2].

Conversely, given a deterministic volatility for the zero-coupon bond with maturity TH ,
and the risk aversion coefficient θ, we can easily recover from equation (4.11) the optimal
volatilities ν∗,Ht and κ∗,Ht .

• Yield curve for infinite maturity.
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Since in the backward case ν∗,H depends on TH , the long run rate lHt = lim
TH→+∞

R∗t (TH)

differs from the forward case if lim
TH→+∞

||Γ∗(t,TH)||2
TH

= (gHt )2 > 0 and θ < 1
2 . Indeed, in this

case, using (4.9) and (4.11)

lHt = lH0 +

∫ t

0

(
1

2
(gHs )2 − (1− θ) lim

TH→+∞

||Γ∗,⊥(s, TH)||2

TH
)ds

lHt = lH0 +

∫ t

0

lim
TH→+∞

(
(2θ − 1)||Γ∗,⊥(s, TH)||2

2TH
+
||Γ∗,R(s, T )||2

2TH

)
ds.

Thus if θ ≥ 1
2 , l

H
t is a non-decreasing process as in the forward case; if θ < 1/2 and

lim
TH→+∞

||Γ∗,⊥(t,TH)||2
TH

> 0, lHt may be decreasing or increasing, depending on the sign of

lim
TH→+∞

( (2θ−1)||Γ∗,⊥(s,TH)||2
2TH

+ ||Γ∗,R(s,TH)||2
2TH

).

Proposition 4.5. In the power backward case and in a Gaussian market, the infinite ma-
turity yield curve lt(y) is
(i) infinite if lim

TH→+∞
Γ∗(t,TH)(y)

TH
exists and is not equal to zero dt⊗ dP a.s.

(ii) constant equal to l0 if lim
TH→+∞

||Γ∗(t,TH)(y)||2
TH

= 0 .

(iii) Otherwise if θ ≥ 1
2 , l

H
t is a non-decreasing process; and if θ < 1/2, lHt is increasing if

lim
TH→+∞

( (2θ−1)||Γ∗,⊥(s,TH)||2
2TH

+ ||Γ∗,R(s,TH)||2
2TH

) < 0, and decreasing otherwise.

In particular, lim
TH→+∞

||Γ∗,⊥(t,TH)||2
TH

> 0, θ < 1
2 and lim

TH→+∞
||Γ∗,R(t,TH)||2

2TH
= 0 implies a de-

creasing yield curve for infinite maturity in this framework of backward power utilities in
Gaussian market.

An affine factor model makes it possible to extend this Gaussian model to a more stochastic
framework, while leading to tractable pricing formulas, see [EKHM14].

Conclusion This paper draws a parallel between financial and economic discount rates
and provides a financial interpretation of the Ramsey rule, using consistent pair of progres-
sive utilities of investment and consumption and using marginal utility indifference price
(Davis price) for the pricing of non replicable zero-coupon bonds. The case of power util-
ities is developed, in order to provide tractable computations and to remain deliberately
close to the economic equilibrium setting. Nevertheless power utilities imply that the opti-
mal processes are linear with respect to their initial conditions, and due to this simplification,
power utilities are not able to catch the impact of the wealth of the economy on the discount
rates. Considering aggregation of power utilities, which is equivalent to an aggregation of
discounted pricing kernels, overcomes this issue while keeping tractable formulas. This arises
naturally in a context of heterogeneous investors, while being compatible with the existence
of an equilibrium. Besides, the Davis price (and thus the Ramsey rule) is a linear pricing
rule while for non replicable claim, the size of the transaction is an important source of risk
that must be taken into account. This paper also provides a second order correcting term,
extending the Davis price, and that allows to catch non-linear phenomena and the size of
the transaction.
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