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20-nm-thick and 50-nm-thick La0.7Sr0.3MnO3 films were grown by molecular-beam epitaxy on Si �001�
substrates overlaid by a 20-nm-thick SrTiO3 �001� buffer layer. X-ray diffraction and atomic force microscopy

studies demonstrate their epitaxial �001� orientation. Their static magnetic properties are investigated as a

function of the temperature using a superconducting quantum interference device. Ferromagnetic resonance

�FMR� inside a cavity and microstrip ferromagnetic resonance �MS-FMR� are used to study their dynamic

properties. The field dependence of the MS-FMR resonance frequency as a function of a perpendicular applied

field provides a precise evaluation of the g factor and of the effective demagnetizing field 4�Mef f at room

temperature. The perpendicular uniaxial and the in-plane anisotropies strongly decrease versus temperature.

The excellent epitaxial crystallographic orientation due to the SrTiO3 buffer gives rise to an observed fourfold

symmetry of the in-plane anisotropy which is assumed of magnetocrystalline nature. The large perpendicular

uniaxial anisotropy gives rise to an effective demagnetizing field significantly larger than the resulting one

from the sole contribution of the saturation magnetization. It is most probably induced by the interfacial strain.

DOI: 10.1103/PhysRevB.81.054410 PACS number�s�: 75.40.Gb, 76.50.�g, 75.30.Gw, 75.40.Cx

I. INTRODUCTION

Perovskite manganites ��RE�1−x�AE�xMnO3, where RE

=rare earth and AE=alkaline earth� form an interesting class

of compounds where the interplay between metal-insulator

and ferromagnetic transitions results in a variety of fascinat-

ing properties such as colossal magnetoresistance.1 The ori-

gin of ferromagnetism in these materials is the double-

exchange interaction2 which leads to a strong correlation

between magnetization and charge transport properties.

La0.7Sr0.3MnO3 �LSMO� is one of the perovskite manganites

which show a colossal magnetoresistance and is expected to

have a spin polarization close to 100% �half metal�3 allowing

for potential technological applications in spin-sensitive de-

vices.

Integrating La0.7Sr0.3MnO3 onto semiconducting materials

is a challenging task for potential applications that utilize

both information processing and data storage in the same

device, such as high-density magnetic memories, sensors,

and infrared bolometers. In order to grow an epitaxial quality

manganite film on a semiconductor substrate, the film-

substrate lattice mismatch needs to be minimized and chemi-

cal reactions between the substrate and the deposited film

should be eliminated. Recent progress on direct integration4,5

of SrTiO3 �STO� on Si has opened the possibility of integrat-

ing both STO and La0.7Sr0.3MnO3 onto this technologically

important semiconductor. Pradhan et al.6 have succeeded in

the fabrication of high-performance La0.67Ba0.33MnO3

samples which are ferromagnetic in the vicinity of room tem-

perature. Despite the intense research activity on

La0.7Sr0.3MnO3 thin films grown on Si substrates,7–9 mainly

focused on their structural and static magnetic properties,

their dynamic magnetic properties remain unexplored, ac-

cording to our knowledge. The dynamics of these types of

materials within the 1–10 GHz frequency range, which de-

termines the high-speed response, is key for their future tech-

nological applications, especially in view of increasing data

rates in magnetic storage devices. Therefore, the aim of this

paper is to investigate the dynamic magnetic properties of

La0.7Sr0.3MnO3 thin films deposited on a Si substrate first

overlaid with a thin STO buffer.

In this paper, we present static magnetometric measure-

ments, conventional ferromagnetic resonance �FMR� and, in

addition, microstrip line ferromagnetic resonance �MS-

FMR�, thus allowing for a full magnetic characterization of

La0.7Sr0.3MnO3 thin films at different temperatures. In the

first part of this work, we describe the samples and the ex-

perimental setups �Sec. II�. In Sec. III, we define the model

to be used for the analysis of our measurements. The first

part of Sec. IV summarizes the main static magnetic charac-

teristics derived from superconducting quantum interference

device �SQUID� data; its second part presents dynamic mea-

surements obtained using FMR and MS-FMR and provides

the derived magnetic parameters which satisfactory fit our

data. In Sec. V, conclusions are presented.

II. SAMPLES AND EXPERIMENTAL SETUPS

A. Samples

La0.7Sr0.3MnO3 films with 20 and 50 nm thickness were

grown on STO buffered Si �001� substrates5 by a reactive

molecular-beam epitaxy system. A substrate temperature of

T=670 °C and an ozone background pressure of 3

�10−7 Torr were used. The x-ray diffraction study shows

that both the La0.7Sr0.3MnO3 and STO layers are fully �001�
oriented and of high epitaxial quality. �-2� scans reveal that

no second phases are present. The full width at half maxi-
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mum in �-scan of the 002 STO and the 002 La0.7Sr0.3MnO3

peaks are 0.26° and 0.22°, respectively. The pole figure of

La0.7Sr0.3MnO3 measured around its 110 peak �Fig. 1� shows

full in-plane epitaxy of the La0.7Sr0.3MnO3 film with

pseudocubic axes �100� and �010� along the sample edges

�which define the x axis and the y axis, respectively�. There-

fore, from the x-ray study, fourfold in-plane anisotropy is

expected with one principal axis which can be chosen paral-

lel to �110�. Detailed study of structural properties of these

samples will be reported in a forthcoming paper.

B. Experimental setups

The static measurements were carried out using a SQUID

sweeping the �4–400 K� temperature range with a maximum

applied field of 5 T. The saturation magnetization Ms as a

function of temperature was measured. Some conclusions

about the anisotropy properties were also obtained from

these data.

For the dynamic measurements, 9.5 GHz conventional

FMR �Ref. 10� and MS-FMR �Ref. 11� were used. The con-

ventional FMR setup in a bipolar X-band Bruker ESR spec-

trometer with a TE102 resonant cavity immersed is an Oxford

cryostat allowing for exploring the 4–300 K temperature in-

terval. The MS-FMR setup consists of a homemade mount-

ing which, up to now, only works at room temperature. The

resonance fields �conventional FMR� and frequencies �MS-

FMR� are obtained from a fit assuming a Lorentzian deriva-

tive shape of the recorded data. In contrast with the conven-

tional FMR, the MS-FMR allows for dynamic measurements

over a large frequency range and for the application of low

external fields, in order to put in evidence small magnetic

anisotropies which cannot be detected using the necessarily

high applied magnetic fields used in conventional FMR.

III. MAGNETIC ENERGY-DENSITY MODEL AND

EXPRESSIONS FOR THE UNIFORM

MAGNETIC MODE

Figure 2 reports the coordinate system used as reference,

where �M �respectively, �H� is the in-plane angle between

the magnetization M �respectively, the external applied field

H� and the x axis while �M �respectively, �H� is the out-of-

plane angle between the magnetization �respectively, the ex-

ternal field H� and the direction normal to the sample plane

�z axis�. We assume fourfold in-plane anisotropy, as expected

from the crystallographic orientation �see Sec. II� and we

then define �4 as the angle between one of the anisotropy

axes and the x axis.

The free-energy density E is then written as

E = − MsH�sin �M sin �H cos��M − �H� + cos �M cos �H�

− �2�Ms
2 − K��sin2 �M

−
1

8
K4�3 + cos 4��M − �4��sin4 �M . �1�

Ms is the magnetization at saturation. K� and K4 are the

uniaxial out-of-plane and the in-plane anisotropy constant,

respectively. K� and K4 are effective anisotropy constants

resulting from the simultaneous occurrence of a true volume

term and of the additional contribution of a surface energy

term. More explicitly, K�=K�V+ �K�S� /d and K4=K4V

+ �K4S� /d, where d is the film thickness and where the indi-

ces V and S are related to the volume and to the surface

contribution, respectively. It is easily proved that, in the case

of small thickness values, as considered in this study, this

approach using effective volume energy density allows for a

satisfactory evaluation of the frequencies of the magnetic

modes.12

The resonance frequency Fr of the uniform precession

mode is deduced from the energy density from the

expression13

Fr
2 = � �

2�
�2 1

Ms
2 sin2 �M

� �
2E

��M
2

�
2E

��M
2

− � �
2E

��M � �M

�2� ,

�2�

where � is the gyromagnetic factor ��=g �B, �B being the

Bohr magneton and g being the Landé factor� and where the

derivatives are evaluated at the equilibrium position.

FIG. 1. �Color online� 110 pole figure for the

La0.7Sr0.3MnO3 �50 nm� /SrTiO3 �20 nm� /Si film. Directions x

and y correspond to �100� and �010�, respectively.
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FIG. 2. �Color online� Sketch of the coordinate system used. �M

�respectively, �H� is the in-plane angle between the magnetization

M �respectively, the external field H� and the x axis while �M �re-

spectively, �H� is the out-of-plane angle between the magnetization

�respectively, the external field H� and the z axis and �4 is the angle

of fourfold in-plane anisotropy axis H4 with the x axis. H4=
4K4

Ms
is

the fourfold in-plane anisotropy field.
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In the case of an in-plane applied magnetic field, the mag-

netization lies in the plane of the film, �M =�H=90°. The

in-plane resonance frequency is then given by

Fr
2 = � �

2�
�2�H cos��M − �H� + 4�Mef f

+
K4

2MS

�3 + cos 4��M − �4���
��H cos��M − �H� +

2K4

MS

cos 4��M − �4�� , �3�

where 4�Mef f =4�Ms−
2K�

Ms
defines the effective demagnetiz-

ing field.

The �M value is calculated from the energy minimization

at equilibrium. It is a solution of

H sin��	 − �
� =
1

2

K4

Ms

sin 4�	. �4�

In the case of an out-of-plane applied magnetic field, for �H

significantly smaller than 90°, high applied fields are needed

and, consequently, the fourfold anisotropy contribution can

be neglected. It results that the resonance frequency for an

out-of-plane applied magnetic field is given by

Fout
2 = � �

2�
�2

�H cos��M − �H� − 4�Mef f cos 2�M�

��H cos��M − �H� − 4�Mef f cos2 �M� �5�

with

H sin��M − �H� = 2�Mef f sin 4�M . �6�

IV. RESULTS AND DISCUSSION

A. Static magnetic properties

The saturation magnetizations of the 20 nm and the 50 nm

samples were measured using the SQUID up to 400 K. The

values obtained for 4�Ms, under an in-plane applied field of

5000 Oe, at room temperature are 3000 and 2500 Oe, respec-

tively, for the 20-nm-thick and for the 50-nm-thick films,

with an error bar which can reach 10%, mostly due to the

limited precision concerning the evaluation of the corrections

arising from the poorly controllable contribution of the sub-

strate. Typical temperature dependences of 4�Ms are shown

in Fig. 3�a� for the 20-nm-thick and 50-nm-thick films. The

measured Curie temperature Tc is the same, 330 K, for both

films. A theoretical estimation of the low-temperature mag-

netization at saturation Ms0 leads to 4�Ms0=7350 Oe �as-

suming a mean kinetic momentum equal to 11/6 and a Landé

factor equal to 2�. Within the frame of the experimental pre-

cision this value fits our measurement for the 50-nm-thick

sample �7900 Oe� but is slightly larger in the case of the

20-nm-thick film �6100 Oe�. Such a reduction in the magne-

tization in thin films is frequently observed.9,14 Both samples

�20 and 50 nm� show a saturation magnetization nearer from

the theoretically expected one and significantly higher than

the previously reported values in comparable situations �e.g.,

La0.7Sr0.3MnO3 films grown on a LaAlO3 substrate14�. As

shown in Fig. 3�a�, a classical fit of the temperature depen-

dence of Ms�T ,H� using a Brillouin function BJ �with J

=1.5 or 2� provides a reasonable agreement with the experi-

mental data assuming Tc=330 K. In the case of the 50-nm-

thick film, the best fit is obtained using the above-mentioned

7350 Oe theoretical value of 4�Ms0; however, a reduced

value of 4�Ms0 �5900 Oe� has to be used for the 20-nm-thick

sample.

The room-temperature hysteresis loop using an in-plane

applied magnetic field along the sample diagonal ��110� di-

rection� shows a rectangular shape with a coercive field of

about 7 Oe, as illustrated in Fig. 3�b� for the 50-nm-thick

sample. This suggests a weak planar anisotropy but the static

data do not allow a convincing quantitative determination of

in-plane anisotropy parameters which monitor the magnetic

energy density. Moreover, hysteresis loops obtained using a

magnetic field parallel to the �100� and to the �010� axes do

not appreciably differ from each other. These loops do not

behave in the same way as the observed one applying a mag-

netic field along the �110� axis; their shape is smoother and

the measured coercive field is smaller. This result qualita-

tively agrees with a description of the in-plane anisotropy in

terms of a fourfold contribution with an easy axis along the

�110� direction �and, indeed, a hard axis along the �100� one�.
When the applied field is normal to the film, the magne-

tization loops roughly agree with the usual scheme of a co-

herent rotation in the hard-axis geometry, as shown in Fig.

3�c�. The effective demagnetizing field Hef f =4�Mef f is

found to lay around 5000 Oe for the 50-nm-thick film. How-

ever, it cannot be derived precisely.

B. Dynamic magnetic properties

In principle, both FMR and MS-FMR can give access to

all the coefficients which define the magnetic energy density.

However, the g value, which determines the gyromagnetic

factor �, is precisely accessible only by the MS-FMR tech-

nique, through the study of the frequency variation versus

the amplitude of an applied magnetic field perpendicular to

the film. More generally, MS-FMR provides more accurate

evaluations of the magnetic parameters since it allows for

experimental studies not only versus the direction of the ap-

plied field, as in the case of conventional FMR, but also

versus its amplitude. The magnetic parameters where pre-

cisely derived at room temperature from MS-FMR measure-

ments. Their variation versus temperature was studied using

conventional FMR, except in the case of the g factor which

could not be precisely evaluated through this technique. For-

tunately, g is expected to be practically independent of the

temperature,15 as assumed in the present work.

1. Room-temperature (300 K) results

For both films �20 and 50 nm� we find g=1.915. This

value is slightly smaller than the theoretically expected one

�	2� which is generally observed in bulk La0.7Sr0.3MnO3.15

Both films approximately show the same effective demagne-

tizing field.

For the 50 nm film the best fit obtained from the MS-

FMR study under a perpendicular magnetic field corresponds
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to 4�Mef f =4900 Oe. Taking account of the static magneti-

zation reported above it results that K� is negative �thus

implying an easy-axis uniaxial anisotropy with an anisotropy

field H�= 
2
K�

Ms

 of about 2000 Oe�

From the MS-FMR measurements of the frequency de-

pendence versus the direction of an in-plane applied field we

deduce that �4=45°, as expected, and that this angle is re-

lated to the easy in-plane anisotropy axis. For the 50-nm-

thick sample the corresponding measured anisotropy field

H4=4
K4

Ms
is equal to 28 Oe.

Figures 4 and 5 illustrate that the obtained parameters

allow for an excellent fit of all the experimental data for

fields applied perpendicular �Fig. 4� as well as parallel to the

films �Figs. 5�a� and 5�b��, including conventional FMR re-

sults.

2. Temperature dependence

The variations in the resonance fields versus their orien-

tation for both samples was studied by conventional FMR as

a function of the temperature in view of deriving the tem-

perature dependence of the effective demagnetizing field and

of the uniaxial and in-plane anisotropy parameters. Figure

6�a� shows a typical spectrum at 120 K for 50-nm-thick film

while Fig. 6�b� presents angular variations in the resonance

fields in this sample at the same temperature. Two distinct

modes noted 1 and 2 are observed. We begin by focusing on

the so-called “principal” mode 1 while mode 2 will be dis-

cussed in the end of this section.

The derived values of the effective demagnetizing fields

of the 20 nm and of the 50 nm films do not appreciably differ

from each other. These values can be obtained from in-plane

and, when the resonant field does not overpass the experi-

mentally available maximum value �16000 Oe�, from out-of-

plane measurements. In the 20-nm-thick and the 50-nm-thick

samples, they are decreasing functions of the temperature,

varying from about 14000 Oe at 4 K down to 5000 Oe at

300K, as shown in Fig. 7. The evaluation of the perpendicu-
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FIG. 3. �Color online� �a� Temperature dependences of 4�Ms in

a La0.7Sr0.3MnO3 �50 nm� /SrTiO3 �20 nm� /Si sample and a

La0.7Sr0.3MnO3 �20 nm� /SrTiO3 �20 nm� /Si film measured under

a 5000 Oe in-plane applied field; the full black lines represent the

best obtained fit using a simple molecular-field model �see text�.
�b� Room-temperature hysteresis loops for three different

orientations of an in-plane applied magnetic field in the

La0.7Sr0.3MnO3 �50 nm� /SrTiO3 �20 nm� /Si sample. �c� Room-

temperature hysteresis loops for an applied magnetic field perpen-

dicular to the La0.7Sr0.3MnO3 �50 nm� /SrTiO3 �20 nm� /Si sample

plane.
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La0.7Sr0.3MnO3 �50 nm� /SrTiO3 �20 nm� /Si sample.
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lar uniaxial anisotropy suffers from a rather a low accuracy,

due to the lack of precision concerning the evaluation of the

magnetization �see the preceding section�. However, its ap-

proximate variation versus temperature is shown in Fig. 8�a�;
the perpendicular uniaxial easy-axis anisotropy field H� de-

creases from about 5000 Oe down to 2000 Oe when T in-

creases from 4 to 300 K. As mentioned above the K� coef-

ficient is negative. Figure 8�b� presents the resulting

temperature variation in 
K�
; in both samples it approxi-

mately linearly decreases above 120 K from about 1.5

�106 erg /cm3 down to 2.5�105 erg /cm3 at 300 K. Large

negative values of K� have been observed previously in

La0.7Sr0.3MnO3 films grown on a SrTiO3 substrate.10 The

main source of uniaxial perpendicular anisotropy is generally

considered as proceeding from the interfacial strain through

the magnetoelastic coupling.10,14 Notice that its sign depends

on the sign of the mismatch between the lattice constants of

La0.7Sr0.3MnO3 and the substrate; it was found positive in the

case of LaAlO3 �compressive strain�14 but it is negative in

the case of STO �extensive strain�.10

The temperature variation in the fourfold in-plane aniso-
tropy field was also studied and it is shown in Fig. 9�a�; in
both films the easy axis remains along the �110� direction
�i.e., �4=45° and H4�0�. Within the experimental accuracy
the 20-nm-thick and the 50-nm-thick samples show identical
values of the coefficient K4 in the full studied temperature
range, as shown in Fig. 9�b�; it decreases from about 1.4
�105 erg /cm3 at 4 K down to 104 erg /cm3 at 300 K. This
result is in agreement with previously reported observations
in La0.7Sr0.3MnO3 thin films on STO �001� substrates16,17 and
with the symmetry put in evidence by our x-ray diffraction

spectra and by Kerr microscopy;18 it suggests that this in-

plane anisotropy, induced by the �001� STO seed layer, is of

magnetocrystalline nature. The values of K4 at 100 K re-

ported in Ref. 14 for a large manifold of La0.7Sr0.3MnO3

films deposited on different substrates allowing for a fourfold

in-plane symmetry lie in the �3.9�104 ,13�104� erg /cm3

interval, to compare to our own determination, 8.5

�104 erg /cm3. In addition, they report nearly the same de-

crease versus temperature as the observed one in the present

study.
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FIG. 5. �a� MS-FMR in-plane angular dependence of the reso-

nance frequency. �b� Resonance frequency of the uniform mode as a

function of the in-plane applied field �parallel to the x axis� in the

La0.7Sr0.3MnO3 �50 nm� /SrTiO3 �20 nm� /Si sample.
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FIG. 6. �Color online� �a� FMR spectrum for an in-plane applied

magnetic field ��H=15°�. �b� In-plane angular dependence of the

two observed resonance fields. All the measurements are performed

at 120 K on the La0.7Sr0.3MnO3 �50 nm� /SrTiO3 �20 nm� /Si

sample. The two distinct fits are obtained using �i� 4�Mef f

=11450 Oe, H4=340 Oe for mode 1 and �ii� 4�Mef f =7500 Oe,

H4=150 Oe for mode 2.
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Since the measured values of K� and K4 do not apprecia-

bly differ for the two studied samples with different thick-

nesses, we deduce that the main contribution to the aniso-

tropy derives from the volume terms and that the surface

energy plays a minor role. The variations in the normalized

anisotropy constants k�=K��T� /K��T0� �with T0=4 K� and

k4=K4�T� /K4�T0� versus the normalized saturation magneti-

zation m=Ms�T� /Ms�T0� are reported in Figs. 10�a� and

10�b�; the observed behavior is approximately given by k�

=m2 and k4=m6, respectively. As usual,19 the anisotropy co-

efficients show a relative decrease versus temperature sig-

nificantly faster than the observed one for the magnetization.

This decrease is more pronounced for the fourfold term K4

than for the uniaxial one K�.

For simplicity, in the above discussion we omitted to

mention the presence of two distinct resonant fields in the

thicker film �50 nm�, as illustrated in Fig. 6. This multiplicity

is observed in the 140–300 K temperature range when apply-

ing a magnetic field perpendicular to the sample, and in the

120–200 K temperature range in the case of an in-plane ap-

plied field. In order to interpret the data in this sample we

had to identify the principal uniform mode within this mul-

tifields temperature interval; it is defined as the mode pre-

senting a continuous variation in the resonance field around

the boundaries of this interval. Its resonance field is close to

the measured one in the 20-nm-thick film, which argues for

the validation of this choice. In the perpendicular geometry

the principal uniform mode corresponds to the higher mea-

sured field; at low temperature it disappears from the spectra

due to the limited available value of the applied field. The

failure to observe the secondary resonance outside the 120–

200 K temperature range is not yet completely understood.

For this extra resonance, the measured field value and its

variation versus the angular orientation prevent for its iden-

tification in terms of a standing magnetic mode along the

direction normal to the sample. We then believe that, in this

sample, two different magnetic phases coexist, thus giving
rise to two observable uniform modes: the standard principal

one �mode 1 in Figs. 6 and 7� which is always present �for an

in-plane applied field� and the extra “auxiliary” phase �mode

2� which needs specific thickness conditions in order to be

stabilized. The uniform mode related to this auxiliary phase

can be studied in order to derive the effective demagnetizing

field and the in-plane anisotropy related to this phase as

shown in Figs. 7 and 9�a�. The effective demagnetizing fields

which provide the best fit for the spectra obtained with an

in-plane applied magnetic field agree with the derived ones

in the case of a perpendicular applied field, as seen in Fig. 7.

Also notice that the in-plane anisotropy remains fourfold

with an easy axis along �110� but that for the mode 2 the

in-plane anisotropy field H4 is smaller than for the mode 1. It

is not possible to evaluate the uniaxial perpendicular aniso-

tropy field H� for this phase since its saturation magnetiza-

tion cannot be measured separately. Finally, the simultaneous
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presence of two phases could slightly modify the above de-

termined values of K� and of K4 related to the principal

mode since the SQUID measurements do not allow for sepa-

rate evaluations of the two involved magnetizations. How-

ever, we believe that the apparent adequacy of our classical

analysis of the magnetic static measurements argues for the

hypothesis of a weak perturbation arising from the auxiliary

phase in the calculation of the static magnetic properties of

the principal one.

V. CONCLUSION

The temperature dependence of the static and of the dy-

namic magnetic properties of 20-nm-thick and 50-nm-thick

La0.7Sr0.3MnO3 films, deposited on Si substrates overlaid by

a 20-nm-thick STO buffer layer have been studied, using

SQUID and ferromagnetic resonance �conventional inside

cavity: FMR and microstrip line: MS-FMR�, respectively.

Our x-ray diffraction measurements show an excellent epi-

taxial �001� orientation of the La0.7Sr0.3MnO3 films. Their

magnetic behavior is interpreted assuming a magnetic energy

density characterized by a strong uniaxial anisotropy along

the direction normal to the plane of the films and by an

in-plane anisotropy showing a fourfold symmetry. The in-

plane and out-of-plane anisotropies decrease drastically

when the temperature increases. A good fit of all the experi-

mental data, using appropriate values of the magnetic coef-

ficients describing the free energy, is obtained. The depen-

dence of the anisotropies on the nature of the buffer layer

will be studied in future work.
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