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Abstract

In this paper we propose various Markov-switching auotoregressive models for bivariate
time series which describe wind conditions at a single location. The main originality of the
proposed models is that the hidden Markov chain is not homogeneous, its evolution depending
on the past wind conditions. It is shown that they permit to reproduce complex features of
wind time series such as non-linear dynamics and the multimodal marginal distributions.

Keywords: Wind time series, Markov-switching autoregressive process, non-homogeneous
hidden Markov process, linear-circular time series

1 Introduction

Wind time series are more and more involved in risk forecasting and impact studies applications.
Wind data are often available over periods of time that are not long enough to estimate reliably
probabilities of complex events related, for example, to the maintenance of wind farms (see [16]).
Stochastic weather generators have been developed to overcome this insufficiency by simulating
unlimited number of sequences as long as desired of meteorological variables with statistical
properties similar to those of the observations.

In this paper, we have used the ERA-40 data set which consists in a global reanalysis with
6-hourly data covering the period from 1958 to 2001. This reanalysis was carried out by the
European Centre for Medium-range Weather Forecast (ECMWF) and can be freely downloaded
and used for scientific purposes at the URL: http://data.ecmwf.int/data. We have extracted
from the ERA-40 data set the wind data for the point with geographical coordinates (47.50

N, 50 W) which is located off the Brittany coast (northwest of France). We have performed
a comparison with in-situ data which indicates that this reanalysis data provides an accurate
description of the wind condition observed at this location with the advantage of being easy to
use in a statistical study (long time series with no missing data). The resulting time series is non-
stationary since it exhibits an important seasonal component but also diurnal and inter-annual
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components. A classical approach for treating seasonality in meteorological time series consists
in blocking the data, typically by period ranging from a month to a trimester depending on the
amount of data available, and fit a separate model for each period in the year. This approach
has been used in this paper and we have chosen to focus on the months of January. It leads to 44
time series of length 124 (31 days with 4 observations each day), each time series describing the
wind conditions during the months of January for a particular year. In the sequel, we assume
that these time series are independent realizations of a stationary process. It seems realistic
according to the results given in [2] for the wind speed at the same location since the diurnal
components can be neglected during the winter season. Following [2], another approach would
consist in letting some of the coefficients of the model introduced below to evolve in time with
periodic functions for the diurnal and seasonal components and eventually a trend. The wind
condition at a single location at time t can be described using the polar coordinates {Ut,Φt},
where Ut denotes the wind speed with values in R

+ and Φt the wind direction with values in
T = R/2πZ or the Cartesian coordinates {ut, vt} where ut and vt denote respectively the zonal
and meridional components with values in R.

The bivariate marginal distribution of the wind time series considered in this work has complex
features (see Figure 1). In particular it clearly exhibits two modes, each one corresponding to a
different meteorological regime or ’weather types’: the prevailing mode corresponds to westerlies
cyclonic conditions with low pressure systems coming from the Atlantic ocean whereas the second
mode is associated to anticyclonic conditions and wind blowing from the east. The presence of
regimes with distinct weather conditions is a usual feature of meteorological time series and
a classical approach for modeling these meteorological regimes (or ”weather types”) consists
in introducing a hidden (or latent) variable. This idea goes back to [22] where Hidden Markov
Models (HMMs) were proposed for modeling the space-time evolution of daily rainfall (see [4] for
more recent references on this topic). HMMs have also been proposed for modeling time series of
wind direction in [23]. However HMMs assume that the successive observations are conditionally
independent given the latent weather type and we found fail in reproducing the strong relation
which exists between the wind conditions at successive time steps (see the time series on Figure
2). In this situation it seems natural to consider Markov-Switching AutoRegressive (MS-AR)
models which extend the usual HMMs by adding dynamics in the regimes (Section 2). MS-AR
models are also an extension of AR models which are often used to model wind time series.

In HMMs or MS-AR models, the evolution of the weather type is independent of the past
observed process. For our particular example, it would imply for example that the probability
of switching from the cyclonic conditions to the anticyclonic conditions between time t and time
t+1 does not dependent on the wind conditions observed at time t whereas we know that these
switchings generally occur when the wind is blowing from the North and is very unlikely to occur
when the wind is blowing from the South. The main originality of the models proposed in this
paper is that the evolution of the latent weather type depends on past wind direction leading
to non-homogeneous MS-AR (NHMS-AR) models. We show that NHMS-AR models lead to
a better description of important characteristics of the data considered in this work, such as
multimodality and non-linear dynamics, compared to MS-AR models.

The polar coordinates are generally used by meteorologists, probably because they are easier to
interpret. However, from a statistical point of view, it is probably easier to model the time series
of Cartesian components {ut, vt} since many models have been proposed for bivariate time series
with values in R

2. The process {Ut,Φt} is a linear-circular process with values in R
+ × T and

few models have been proposed for such variables. Both representations have their advantages
and it is not easy to decide a priori which one to choose.
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The paper is organized as follows. NHMS-AR models are introduced in Section 2 with spe-
cific parameterizations proposed when considering Cartesian and polar coordinates. Parameter
estimation is discussed in Section 3. Then the performances of the models are discussed and
compared in Section 4. At last, we make a synthesis of the obtained results and we give some
perspectives in Section 5.
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Figure 1: Histogram of {Ut} (left), rose plot of {Φt} (middle) and histograms of {ut} and {vt} and
joint distribution of {ut, vt} (right). The lines on the scatter plots are levels of a non-parametric kernel
estimate of the bivariate density. Results for the months of January.

2 Models

2.1 Non-homogeneous Markov-switching autoregressive models

Let Xt ∈ {1, ...,M} represent the latent weather type and Yt denote the observed wind condi-
tions at time t. Throughout the article {Yt} will represent successively the bivariate process of
Cartesian coordinates of wind in Section 2.3, the wind direction in Section 2.4, and finally {Yt}
stands for the wind speed in Section 2.5. Let us write E the space in which Yt takes values, E will
respectively refer to R

2, T and R
+. It will be useful to introduce notation Y t+u

t := (Yt, ..., Yt+u),
yt+ut := (yt, ..., yt+u) (as well as X

t+u
t , xt+ut ) for t > 0 and u > 0.

Hypothesis 1. Let s,M ≥ 1 be some integers. The sequence (Xt, Y
t
t−s+1)t∈Z follows a NHMS-

AR model if it is a Markov chain with values in {1, ...,M} × E such that

• the conditional distribution of Xt given the values of {Xt′}t′<t and {Yt′}t′<t only depends
on Xt−1 and Yt−1 and we denote p1(xt|xt−1, yt−1) = P (Xt = xt|Xt−1 = xt−1, Yt−1 = yt−1),

• the conditional distribution of Yt given the values of {Yt′}t′<t and {Xt′}t′≤t only depends on
Xt and Yt−1, . . . , Yt−s and this conditional distribution has a probability density function
(p.d.f.) p2

(

yt|xt, y
t−1
t−s

)

.

Let us write p(.|xt−1
t−u, y

t−1
t−u) for the conditional p.d.f. of (Xt, Yt) given (Xt−1

t−u = xt−1
t−u, Y

t−1
t−u =

yt−1
t−u). Hypothesis 1 implies that for u ≥ s

p(xt, yt|x
t−1
t−u, y

t−1
t−u) = p1(x|xt−1, yt−1)p2(y|x, y

t−1
t−s). (1)

The various conditional independence assumptions are summarized by the directed graph below
for s = 1. They define a quite general family of model which will be referred to as Non-
Homogeneous Markov-Switching AutoRegressive (NHMS-AR) models in the sequel.
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· · · → Xt−1 → Xt → Xt+1 → · · ·
↓ ր ↓ ր ↓

· · · → Yt−1 → Yt → Yt+1 → · · ·

NHMS-AR models define a quite general family of models:

• If p1(xt|xt−1, yt−1) does not depend on yt−1, we retrieve the usual MS-AR models which
include the HMMs as a particular case (s = 0).

• If M = 1, {Yt} is an autoregressive process of order s.

• If p1,θ(xk|xk−1, y
k−1
k−s) does not dependent on xk−1 and is parametrized using indicator func-

tions, we obtain the Threshold AutoRegressive (TAR) models which is an other important
family of models with regime switching in the literature (see e.g. [20]).

The following sections propose specific parametric models for p1 (see Section 2.2) and p2 when
using Cartesian coordinates (see 2.3) or polar coordinates (see Sections 2.4 and 2.5).

2.2 Modeling weather types

As mentioned earlier, we introduce the latent process {Xt} to describe the weather type which
evolution may depend on previous wind direction. For example, we expect that the probability
of switching from the cyclonic to the anticyclonic conditions generally is more likely to occur
when the wind is blowing from the North that when it is blowing from the South. Such feature
can be modeled through the transition kernel p1. In all the models we assume more precisely
that

p1(xt|xt−1, φt−1) ∝ qxt−1,xtfVM (φt−1;κ = λxt−1,xt , φ = ψxt−1,xt), (2)

where fVM (.;κ, φ) is the probability density function (p.d.f) of the von Mises distribution,
Q = (qx,x′)x,x′∈{1,...,M} is a stochastic matrix with positive entries and, for x, x′ ∈ {1, ...,M},
λx,x′ ≥ 0 and ψx,x′ ∈ T are unknown parameters. The von Mises distribution is a natural
distribution for circular variables (see [19]) which p.d.f. with respect to the Lebesgue measure
on T, is given by

∀z ∈ T, fγ(z) := fVM (z;κ, φ) =
1

2πI0(κ)
exp (κ cos(z − φ)) =

1

2πI0(|γ|)

∣

∣

∣
eγe

−iz
∣

∣

∣
, (3)

for Φ ∈ T and γ := κeiφ is a complex parameter. I0 denotes the modified Bessel function of
order 0 defined as

I0(κ) :=
1

2π

∫

T

exp(κ cos(z)) dz.

φ ∈ T corresponds to the circular mean of the distribution and κ ≥ 0 describes the concentration
of the distribution around φ: when κ = 0 we get the uniform distribution whereas when κ
increases the distribution is more and more concentrated around φ. This distribution is denoted
by VM(γ) hereafter.
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According to (2), the probability that the hidden Markov chain {Xt} switches from xt−1 to xt
will increase when the wind direction Φt−1 is close to ψxt−1,xt and λxt−1,xt models the directional
spreading in which this transition is likely to occur. When λx,x′ = 0 for all x, x′ ∈ {1, ...,M}
then we obtain again the homogeneous MS-AR models. Observe that (2) can be rewritten

p1(xt|xt−1, φt−1) =
qxt−1,xt

∣

∣

∣
exp

(

λ̃xt−1,xte
−iφt−1

)
∣

∣

∣

∑M
x′=1 qxt−1,x′

∣

∣

∣
exp

(

λ̃xt−1,x′e
−iφt−1

)∣

∣

∣

, (4)

with λ̃x,x′ ∈ C (by taking λ̃x,x′ = λx,x′e
iψx,x′ ). With this expression, it can be easily seen that

replacing (λ̃x,x′)x,x′ by (λ̃x,x′ −ax)x,x′ (for any choice of (ax)x) does not change p1 and thus that
identifiability constraints are needed.

In order to reduce the number of unknown parameters we add the following constraints for the
non-homogeneous models developed in the sequel

λ̃x,x′ = λ̃x′ (5)

for all x, x′ ∈ {1, ...,M} such that x 6= x′ with the identifiability constraint

M
∑

x′=1

λ̃x′ = 0 (6)

We have also fitted the model without the constraint (5) and found that the likelihood of these
models is similar to the one of the models with the constraint (5) whereas they have a significantly
larger number of parameters. Even when assuming (5), we found that the parameter (λx′) is
sometimes hard to fit in practice and that fixing its values to e.g. the concentration parameter
of the von-Mises distribution fitted to the time series of wind direction leads to satisfactory
models. The results obtained with these alternative strategies are not further discussed below.

2.3 Modeling {ut, vt} conditionally to the weather type

In this section we propose a model for the bivariate process {Yt} = {ut, vt} conditionally to the
weather type {Xt}. This process has values in R

2 and the most classical autoregressive model
for such process is the linear Gaussian vector autoregressive (VAR) model of order s. With this
model, if Xt = xt then

Yt = A
(xt)
0 +A

(xt)
1 Yt−1 + ...+A(xt)

s Yt−s +
(

Σ(xt)
)

1
2
ǫt (7)

where A
(x)
l ∈ R

2 for l ∈ {0, ..., s} and x ∈ {1, ...,M}, Σ(x) ∈ R
2 are symmetric positive matrices

for x ∈ {1, ...,M} and {ǫt} is a bivariate white noise sequence.

VAR models have been proposed for wind fields in a space-time context in [15, 3, 21, 12]. On
our particular dataset, we found that it was not appropriate to reproduce the ’hole’ around the
origin which can be seen on the joint distribution on Figure 1. It corresponds to a low probability
of observing low wind speed. We can get around this issue by applying a power transformation
as follows

{

ũt = Uαt cos(Φt)
ṽt = Uαt sin(Φt)

5



and fit the MS-AR model is fitted the Gaussian model to {ũt, ṽt} instead of {ut, vt}. The
value α = 1.5 was chosen experimentally to remove the ’hole’ close to the origin in the original
distribution. The model with homogeneous hidden Markov chain is denoted HMS-AR(u,v) and
the non-homogeneous model, where p1 is given by (2), is denoted NHMS-AR(u,v).

2.4 Modeling the wind direction conditionally to the weather type

In this section we propose a model for the circular process {Yt} = {Φt}. The inclusion of {Ut} in
this model is discussed in the next section. Several models have been proposed in the literature
for circular time series The model proposed in this paper extends the models proposed in [6]
and [13].

Several autoregressive models have been proposed in the literature for modeling directional
time series (see [6], [10],[13], [18]). We have chosen to focus on the von Mises process initially
introduced in [6] and assume that the conditional distribution of Yt given

(

Xt = xt, Y
t−1
t−s y

t−1
t−s

)

is VM
(

γ
(xt)
0 +

∑s
ℓ=1 γ

(xt)
ℓ eiyt−ℓ

)

with γ
(x)
ℓ = κ

(x)
ℓ eiφ

(x)
ℓ ∈ C for x ∈ {1, ...,M} and ℓ ∈ {0, ..., s}.

This can be rewritten

p2(yt|xt, y
t−1
t−s) =

1

b(xt, y
t−1
t−s)

exp

(

κ
(xt)
0 cos(yt − φ

(xt)
0 ) +

s
∑

ℓ=1

κ
(xt)
ℓ cos(yt − yt−ℓ − φ

(x)
ℓ )

)

=
1

b(xt, y
t−1
t−s)

∣

∣

∣

∣

∣

exp

(

[γ
(xt)
0 +

s
∑

ℓ=1

γ
(xt)
ℓ eiyt−ℓ ]e−iyt

)∣

∣

∣

∣

∣

(8)

with

b(xt, y
t−1
t−s) :=

∫

T

exp

(

κ
(xt)
0 cos(y − φ

(xt)
0 ) +

s
∑

ℓ=1

κ
(xt)
ℓ cos(y − yt−ℓ)

)

dy

= I0

(∣

∣

∣

∣

∣

γ
(xt)
0 +

s
∑

ℓ=1

γ
(xt)
ℓ eiyt−ℓ

∣

∣

∣

∣

∣

)

.

In [6], it was assumed that γ
(x)
ℓ ∈ R for ℓ ∈ {1, ..., s}. We have chosen to extend it to a model

with complex parameters in order to be able to reproduce the prevailing rotation of the wind
direction in the clockwise direction (see Section 4).

The model with homogeneous hidden Markov chain is denoted HMS-EVM and the non-
homogeneous model, where p1 is given by (2), is denoted NHMS-EVM.

2.5 A joint model for the wind speed and wind direction

In [2] it was proposed to model the wind speed {Ut} using a homogeneous MS-AR model with
M = 3 regimes and Gaussian linear AR models (see (7)) of order s = 2. Figure 2 shows typical
examples of wind speed and wind direction time series together with the regimes identified by the
fitted MS-AR models. They basically correspond to periods with different temporal variability
and there seems to be no simple relation between the regimes identified on the two time series.
In this context, it does not seem relevant to use the same weather type for the two time series.
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We thus propose to introduce a different weather type X
(U)
t for the wind speed and X

(Φ)
t for

the wind direction.

Figure 2: Example of time series of wind direction (top plot) and wind speed (bottom plot). The
colors indicate the most likely regimes for the fitted NHMS-EVM model with 4 regimes (top plot) and
Gaussian homogeneous MS-AR model for wind speed with 3 regimes (bottom plot). The regimes have
been ordered according to the time variability (the darker the more variability).

In order to explore the link between X
(U)
t and Φ, we have computed the most likely values of

X
(U)
t given the observed time series of wind speed {Ut} and produced rose plots of the wind

direction in the different weather types which were identified for the wind speed. We got plots
very similar to the ones shown on Figure 3 (right panel). The first regime, which corresponds
to periods with low temporal variability for the wind speed, can occur in any wind direction
whereas the more variable regimes 2 and 3 are mainly associated to south-westerlies (cyclonic
conditions).

It suggests the use of a non-homogeneous MS-AR model for the wind speed where the transition
probabilities depend on the wind direction. Herefater NHMS-AR(U,Φ) denote the model for
{Ut,Φt} such that

- {Φt} is modeled by the NHMS-EVM model for {x
(Φ)
t ,Φt} with M = 4 and s = 2,

- {Ut} is modeled conditionally to {Φt} by a NHMS-AR model with p1 given by (2) and p2
by a linear Gaussian AR model (7).

The structure of the model, with two layers of hidden variables, one for the wind speed and one
for the wind direction, is shown on the directed graph below.
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3 Parameter estimation

3.1 Numerical computation of the maximum likelihood estimate

The parameter vector of NH-MSAR models is composed of the parameters θQ of the transition
probabilities p1(xt|xt−1, yt−1), the parameters θ(x) of the transition kernel p2(yt|x, y

t−1
t−s) for each

regime x ∈ {1, ...,M} and the initial distribution of the regimes.

They are estimated by maximizing the likelihood function using a generalized EM algorithm.
This algorithm was initially introduced in [5] for HMMs and then generalized to models with
latent variables in [8]. This recursive algorithm computes successive approximations θ̂i of the
maximum likelihood estimate (MLE). θ̂ by cycling through the following steps.

E-step: Compute Q
(

θ|θ̂i

)

= E
θ̂i
(log(pθ(X

T
1 , Y

T
1 ))|yT−s+1) as a function of θ.

M-step: Determine the updated parameter estimate θ̂i+1 = argmax
θ

Q
(

θ|θ̂i

)

.

The conditional probabilities involved in the computation of Q(θ|θ̂n) are computed using the
so-called forward-backward recursions (see e.g. [7] and references therein). The particular
implementation of these recursions for homogeneous MS-AR models is discussed in [14] and [17]
discusses it for non-homogeneous HMMs. It can be easily generalized to the models considered
in this paper. The M-step requires numerical optimization leading to the so-called Generalized
EM (GEM) algorithm. In order to get an efficient EM algorithm, it is important to implement
carefully the numerical optimization procedure. In practice, the function Q(.|θ̂i) which has to
be maximized in the M-step can be written as the sum of M + 1 functions as follows

Q
(

θ|θ̂i

)

= QX

(

Q, θQ|θ̂i

)

+
M
∑

x=1

QY

(

θ(x)|θ̂i

)

.

This leads to solving M + 1 separate optimization problems on spaces with reduced dimension
which is far more efficient than maximizing directly Q(.|θ̂i) over all the parameters. Note that
analytical expressions are available for the Gaussian linear AR models (7).

In order to avoid convergence to non-interesting maxima and save computational time, a proper
initialization of this algorithm with realistic parameter values θ̂0 is needed. In practice, we have
used the nested nature of the models. We have first fitted homogeneous models and then use
the estimated parameters as a starting point for the corresponding non-homogeneous models.
In the same spirit, the results obtained for the model of order s have been used to initialize the
EM for the models of order s+ 1.

3.2 Properties

All the models considered here are ψ-irreducible, Harris-recurrent. Moreover, for these models,
the parameters are identifiable up to a permutation of indices and the Maximum Likelihood
Estimator is consistent.

In this section we prove ψ-irreducibility, aperiodicity, Harris-recurrence, identifiability and con-
sistency for the NHMS-EVM. One can prove the same results for the other models by combining
arguments of this appendix with those of [1, section 2.2]

Assume Hypothesis 1 with p1 and p2 given by (4) and (8) respectively.
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Let Θ′ be the set of parameters θ = (qx,x′ , λ̃x,x′ , γ
(x)
ℓ )ℓ,x,x′ such that γ

(x)
ℓ ∈ C, qx,x′ > 0 such that

∑

x′ qx,x′ = 1 and λ̃x,x′ ∈ C satisfying (6).

Theorem 2 (Consistency for NHMS-EVM). Assume that Θ is a compact subset of Θ′ and that
the coordinates of the true parameter θ∗ satisfy

x 6= x′ ⇒ (γ
(x)
0,∗ , ..., γ

(x)
s,∗ ) 6= (γ

(x′)
0,∗ , ..., γ

(x′)
s,∗ ). (9)

Then, for every x0 ∈ {1, ...,M} and any initial measure ν on {1, ...,M}×T, on a set of probability
one, the limit values θ = (γ,Q, λ̃) of the sequence of MLE (θ̂n,x0)n are equal to θ∗ = (γ∗, Q∗, λ̃∗)
up to a permutation of indices, i.e. for any such limit value θ, there exists a permutation σ of
{1, ...,M} such that, for every x, x′ ∈ {1, ...,M}, for every j = 0, ..., s, the following relations
hold true

γ
(x)
j = γ

(σ(x))
j,∗ , qx,x′ = qσ(x),σ(x′),∗ and λ̃x,x′ = λ̃σ(x),σ(x′),∗.

One can notice that (9) just means that there is no couple of regimes (x, x′) with x 6= x′ in
which the behaviour of the process Y is the same.

The proof of Theorem 2 is based on two ingredients: a general consistency result established in
[1][Thm 2] and the proof of the ”identifiability up to a permutation of indices”.

Since for every (θ, x, y) ∈ Θ̃ × {1, ...,M} × T, qθ(x, y|·, ·) is continuous on the compact set
{1, ...,M} × T

s, we have

α =

∫

E×K
γ(x, y) dµ0(x, y) > 0, with γ(x, y) := inf

x′,y−1
−s

qθ(x, y|x
′, y−1

−s).

Now we consider the probability density function (w.r.t. µ0) β given by

β(x, y) :=
γ(x, y)

α
.

For every x0, x−1 ∈ E and every y0−s, we have

qθ(x0, y0|x−1, y
−1
−s) ≥ αβ(x0, y0).

This implies the ψ-irreducibility, strongly aperiodic (the ν1-small set being the whole space),
the Harris recurrence (since we can decompose the whole set in a union of uniformly accessible
sets from the whole set), positive (the invariant measure being unique and finite). In particular,
this gives Assumption (5) of [1][Thm 2].

Moreover, since p1,θ(x1|x0, y0) and p2,θ(y0|x0, y−1) are continuous in (θ, x1, x0, y0) and in (θ, x0, y0, y−1)
(respectively), all the other assumptions of [1][Thm 2] are satisfied for any compact subset of
Θ′. Hence, we have

Corollary 3. Assume that Θ is a compact subset of Θ′. Then, for all θ ∈ Θ, there exists a
unique invariant probability and, for every x0 ∈ E and every initial probability ν, the limit values
of (θ̂n,x0)n are P̄θ∗-almost surely contained in {θ ∈ Θ : P̄θ = P̄θ∗}.

Now, Theorem 2 will follow from the following result giving the identifiability of the parameter
(up to permutation of indices) .
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Proposition 4 (Identifiability). Let θ1 and θ2 belong to Θ′ (resp. Θ′′):

θi =
(

(γ
(x)
j,(i))j,x, (qx,x′,(i))x,x′ , (λ̃x,x′,(i))x,x′

)

.

Assume that the parameters (γ
(x)
j,(1))j,x which model the evolution of the wind direction in the

different regimes through (8) for θ1 are such that

x 6= x′ ⇒ (γ
(x)
0,(1), ..., γ

(x)
s,(1)) 6= (γ

(x′)
0,(1), ..., γ

(x′)
s,(1)). (10)

Then P̄
Y
θ1

= P̄
Y
θ2

if and only θ1 is equal to θ2 up to a permutation of indices.

Proof of Proposition 4. We write Leb for the Lebesgue measure on T. Assume that P̄Yθ1 = P̄
Y
θ2
.

In particular, we have

p̄θ1(Yt = yt|Y
t−1
t−s = yt−1

t−s) = p̄θ2(Yt = yt|Y
t−1
t−s = yt−1

t−s), for P̄
Y t
t−s

θ1
− a.e. ytt−s

and thus

M
∑

x=1

P̄θ1(Xt = x|yt−1
t−s)p2,θ1(yt|x, y

t−1
t−s) =

M
∑

x=1

P̄θ2(Xt = x|yt−1
t−s)p2,θ2(yt|x, y

t−1
t−s), for P̄

Y t
t−s

θ1
−a.e. ytt−s.

Since p̄θ1(y
t
t−s) > 0 (since the invariant density h1 satisfies h1 > 0 since α > 0 and the transition

density p satisfies p > 0 by construction) and since (4) holds true, we deduce that, for Leb⊗(s+1)-
a.e. ytt−s, we have

M
∑

x=1

P̄θ1(Xt = x|yt−1
t−s)fγ(x)

0,(1)
+
∑s

ℓ=1 γ
(x)
ℓ,(1)

e
iyt−ℓ

(yt) =

M
∑

x=1

P̄θ2(Xt = x|yt−1
t−s)fγ(x)

0,(2)
+
∑s

ℓ=1 γ
(x)
ℓ,(2)

e
iyt−ℓ

(yt)

with fγ defined by (3). Due to [11], finite mixtures of von Mises distributions are identifiable.
Hence if

M
∑

x=1

π
(x)
1 f

γ
(x)
1

(y) =

M
∑

x=1

π
(x)
2 f

γ
(x)
2

(y) for Leb−a.e. y

with γ
(x)
1 6= γ

(x′)
1 for x 6= x′ and π

(x)
1 > 0 for x ∈ {1, ...,M} then there exists a permutation

τ : {1, ...,M} → {1, ...,M} such that γ
(x)
1 = γ

(τ(x))
2 and π

(x)
1 = π

(τ(x))
2 .

Recall that we have assumed that θ
(x)
Y,1 6= θ

(x′)
Y,1 if x 6= x′, which implies that

for Leb⊗s−a.e. yt−1
t−s , γ

(x)
0,1 +

s
∑

ℓ=1

γ
(x)
ℓ,1 e

iyt−ℓ 6= γ
(x′)
0,1 +

s
∑

ℓ=1

γ
(x′)
ℓ,1 e

iyt−ℓ for Leb−a.e. yt.

Therefore, since for every x ∈ {1, ...,M} and for Leb⊗s-almost every yt−1
t−s , P̄θ1(Xt = x|yt−1

t−s) > 0
(since hθ1 > 0), for Leb⊗s-almost every yt−1

t−s there exists a permutation σ
yt−1
t−s

of {1, ...,M} such

that,

∀x ∈ {1, ...,M}, γ
(x)
0,(1) +

s
∑

ℓ=1

γ
(x)
ℓ,(1)e

iyt−ℓ = γ
(σ

y
t−1
t−s

(x))

0,(2) +
s
∑

ℓ=1

γ
(σ

y
t−1
t−s

(x))

ℓ,(2) eiyt−ℓ .

Since the set of permutations of {1, ...,M} is finite, there exists a positive Lebesgue measure
subset of Ts on which the permutation is the same permutation σ. From this, we deduce that

∀x ∈ {1, ...,M}, ∀j ∈ {0, ..., s}, γ
(x)
j,(1) = γ

(σ(x))
j,(2)
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and that, for Lebesgue almost every yt+1
t−s , the following holds true

∀x ∈ {1, ...,M}, P̄θ1(Xt = x|yt−1
t−s) = P̄θ2(Xt = σ(x)|yt−1

t−s).

Let us now discuss the identifiability of the other components of θ1 and θ2. If P̄
Y
θ1

= P̄
Y
θ2

then

p̄θ1(Yt = yt, Yt+1 = yt+1|Y
t−1
t−s = yt−1

t−s) = p̄θ2(Yt = yt, Yt+1 = yt+1|Y
t−1
t−s = yt−1

t−s) P̄
Y
θ1
a.s.

and thus, for Lebesgue almost every yt+1
t−s , we have

M
∑

x,x′=1

P̄θ1(Xt = x|yt−1
t−s)p1,θ1(x

′|x, yt)fγ(x)
0,(1)

+
∑s

ℓ=1 γ
(x)
ℓ,(1)

e
iyt−ℓ

(yt)f
γ
(x′)
0,(1)

+
∑s

ℓ=1 γ
(x′)
ℓ,(1)

e
iyt−ℓ+1

(yt+1)

=
M
∑

x,x′=1

P̄θ2(Xt = x|yt−1
t−s)p1,θ2(x

′|x, yt)fγ(x)
0,(2)

+
∑s

ℓ=1 γ
(x)
ℓ,(2)

e
iyt−ℓ

(yt)f
γ
(x′)
0,(2)

+
∑s

ℓ=1 γ
(x′)
ℓ,(2)

e
iyt−ℓ+1

(yt+1).

This implies that, for almost every yt+1
t−s , the quantity

∑

x,x′

P̄θ1(Xt = x|yt−1
t−s)(p1,θ1(x

′|x, yt)−p1,θ2(σ(x
′)|σ(x), yt))fγ(x)

0,(1)
+
∑s

ℓ=1 γ
(x)
ℓ,(1)

e
iyt−ℓ

(yt)f
γ
(x′)
0,(1)

+
∑s

ℓ=1 γ
(x′)
ℓ,(1)

e
iyt−ℓ+1

(yt+1)

is null and so (again using the identifiability of von Mises distribution)

∀x, x′, p1,θ1(x
′|x, yt) = p1,θ2(σ(x

′)|σ(x), yt) for Leb−a.e. yt.

Now, due to the special form of p1,θ specified in (4), we get

∀x, x′, Leb−a.e. yt,
qx,x′,(1)

∣

∣

∣
exp

(

λ̃x,x′,(1)e
−iyt

)
∣

∣

∣

∑M
x′′=1 qx,x′′,(1)

∣

∣

∣
exp

(

λ̃x,x′′,(1)e−iyt
)∣

∣

∣

=
qσ(x),σ(x′),(2)

∣

∣

∣
exp

(

λ̃σ(x),σ(x′),(2)e
−iyt

)∣

∣

∣

∑M
x′′=1 qσ(x),x′′,(2)

∣

∣

∣
exp

(

λ̃σ(x),x′′,(2)e−iyt
)∣

∣

∣

.

(11)
Let x ∈ {1, ...,M} be fixed. Applying (11) a first time with x′ = x and a second time with any
x′, we get

∀x′, for Leb−a.e. yt,
qx,x′,(1)

∣

∣

∣
exp

(

λ̃x,x′,(1)e
−iyt

)∣

∣

∣

qx,x,(1)

∣

∣

∣
exp

(

λ̃x,x,(1)e−iyt
)
∣

∣

∣

=
qσ(x),σ(x′),(2)

∣

∣

∣
exp

(

λ̃σ(x),σ(x′),(2)e
−iyt

)∣

∣

∣

qσ(x),σ(x),(2)

∣

∣

∣
exp

(

λ̃σ(x),σ(x),(2)e−iyt
)
∣

∣

∣

and so
∀x′,

qx,x′,(1)

qx,x,(1)
=
qσ(x),σ(x′),(2)

qσ(x),σ(x),(2)
(12)

and
∀x′, λ̃x,x′,(1) − λ̃x,x,(1) = λ̃σ(x),σ(x′),(2) − λ̃σ(x),σ(x),(2). (13)

Now, since
∑

x′ qx,x′,(1) = 1 =
∑

x′ qσ(x),σ(x′),(2), due to (12), it comes qx,x,(1) = qσ(x),σ(x),(2) and
so

∀x′ ∈ E, qx,x′,(1) = qσ(x),σ(x′),(2).

Since θ1 and θ2 are in Θ′,
∑

x′ λ̃x,x′,(1) = 0 =
∑

x′ λ̃σ(x),σ(x′),(2), and due to (13), we get λ̃x,x,(1) =

λ̃σ(x),σ(x),(2) and, applying again (13), we conclude that

∀x′ ∈ E, λ̃x,x′,(1) = λ̃σ(x),σ(x′),(2).

11



4 Numerical results and model comparison

4.1 Model selection

Before analyzing any numerical results, one has to discuss the choice of the number of regimes
and of the order of the AR models. In practice we found that the BIC criterion generally permits
to identify parsimonious models which fit well the data. It is defined as

BIC = −2 logL+ k log(N)

and L is the likelihood of the data, k is the number of parameters and N is the number of
observations. In order to make the final selection among the best models identified by BIC,
we have compared their abilities to generate realistic wind time series since this is the main
motivation for this work. For this, a large number of realizations of the various models under
competition have been simulated and various statistics of these synthetic sequences have been
compared with the ones of the original data.

The models were fitted with a number of regimesM varying from 1 to 6 at the most and the BIC
values suggest selecting models withM = 3 orM = 4 regimes (see Tables 1 and 2). For the wind
direction the model with M = 4 regimes tends to better reproduce the marginal distribution of
the process compared to the models with M = 3 regimes and we thus have chosen to select this
model. The NHMS-EVM model withM = 4 and s = 2, which is used in the NHMS-AR(U,Φ)

model, has 43 parameters. For the Cartesian coordinates {ut, vt} and for the wind intensity {Ut}
the models with M = 3 and M = 4 regimes lead to similar results and we have thus chosen to
keep the simplest model with M = 3.

We also varied the order s of the autoregressive models from s = 0 (yt is independent of yt−1
0

given xt) to s = 5 and the BIC values are generally decreasing with s suggesting that a model
of order s ≥ 5 may be needed. Notice however that there is generally a big improvement in the
BIC values when s increases from 0 to 1 and from 1 to 2 whereas the difference is much smaller
when comparing the models of order s = 2 and s ≥ 3 (not shown). We will focus on models of
order s = 2 in the sequel. We believe that models of reduced order are more realistic from a
physical point of view and we get similar simulation results with s = 2 compared to the models
with s ≥ 3.

The BIC of {ut, vt} models are generally smaller than the ones of {Ut,Φt} models except for
s = 0. It may be due to the higher number of parameters involved in the NHMS-AR(U,Φ)

model (66 parameters when M = 3), which has two layers of hidden variables whereas the
NHMS-AR(u,v) model has one common weather type for {ut} and {vt} and only 44 parameters
when M = 3. Note however that BIC does not permit to make a clear distinction between both
parameterizations (polar or Cartesian) since the differences in BIC values are relatively small.

M 1 2 3 4 5 6 k

Model s BIC

HMS-EVM 1 7778 6326 6334 6307 6277 6385 M(M-1)+4M
NHMS-EVM 1 7778 6266 6171 6141 6158 6372 M(M+1)-1+4M

HMS-EVM 2 7568 5952 5979 5963 6051 6075 M(M-1)+6M
NHMS-EVM 2 7568 5882 5872 5882 5968 6075 M(M+1)-1+6M

Table 1: BIC values for the various fitted wind direction models. The last column gives the number of
parameters. The bold value corresponds to the selected model.
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M 1 2 3 4 5 k

Model s BIC

HMS-AR(u,v) 0 48583 44616 42338 40903 40025 (M(M-1)+5M

NHMS-AR(u,v) 0 - 43679 41212 39878 38981 M(M+1)-1+5M

NHMS-AR(U,Φ) 0 - 32553 31180 30381 30000 43+M(M+1)-1+2M

HMS-AR(u,v) 1 31979 28134 27561 27219 27079 (M(M-1)+9M

NHMS-AR(u,v) 1 - 27687 27110 26855 26755 M(M+1)-1+9M

NHMS-AR(U,Φ) 1 - 28833 28543 28446 28380 43+M(M+1)-1+3M

HMS-AR(u,v) 2 30619 26753 26162 25950 25947 (M(M-1)+11M

NHMS-AR(u,v) 2 - 26275 25681 25598 25607 M(M+1)-1+11M

NHMS-AR(U,Φ) 2 - 28458 28266 28163 28196 43+M(M+1)-1+4M

Table 2: BIC values for the various bivariate models. The last column gives the number of parameters.
The bold values correspond to the selected models.

4.2 Regimes can be interpreted as weather types

An important benefit of using weather type models for meteorological variables is that they
generally lead to interpretable models. This is illustrated in this section on NHMS-AR(u,v)

and NHMS-AR(U,Φ) models. In order to compare the regimes of these two models, they have

been ordered according to the variance of the innovation of the autoregressive processes Σ(s).
Figure 3 shows that the distributions of the wind direction in the different regimes are broadly
similar for both models. The first regime corresponds mainly to anticyclonic conditions with
easterly wind and a slow varying intensity (the variance of the innovation of the AR model
is lower than in the other regimes and the first AR coefficient is larger). This regime is also
the most likely (probability of occurrence of about 46%). The two other regimes correspond to
cyclonic conditions with westerly wind and higher temporal variability in the intensity. These
two regimes are discriminated mainly by the temporal variability, which is higher in the third
regime, and the wind direction with the second regime corresponding mainly to south-westerlies
and the third regime corresponding mainly to north-westerlies (see Figure 3).

BothNHMS-AR(u,v) than inNHMS-AR(U,Φ) models have similar transition probabilities (see
Figure 4) with a more pronounced dependence on the wind direction for the NHMS-AR(U,Φ)

model. The more persistent regime is clearly the first one (mean duration of about 3.4 days)
with a high probability of staying in this regime in any wind direction. The probability of
switching directly from regime 1 to regime 3 is very small and the Markov chain will generally
transit through the regime 2. Transitions from regime 1 to regime 2 are more likely when the
wind is blowing from the west and transitions from regime 2 to regime 3 generally occur when
the wind is from south. Regime 3 is persistent only when the wind is from south-west. If the
wind blows from other directions, the weather type will quickly switch to regime 1 or 2.

4.3 Marginal distributions

According to Figure 5, the models with non-homogeneous transition probabilities provide a
better description of the marginal distribution of the wind direction than homogeneous models
which have difficulties in reproducing the second mode of the distribution (associated to easter-
lies). The NHMS-AR(U,Φ) model seems to perform slightly better than the NHMS-AR(u,v)

model.
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Figure 3: Rose plot of the wind direction in the three regimes identified on wind speed by
NHMS-AR(U,Φ) model (top) and by NHMS-AR(u,v) model (bottom).
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Figure 4: Matrix of non-homogeneous transitions of NHMS-AR(u,v) model (plain line) and
NHMS-AR(U,Φ) model (dashed line)

WE

N

S

HMS−AR(u,v)

WE

N

S

HMS−EVM

WE

N

S

NHMS−AR(u,v)

WE

N

S

NHMS−EVM

Figure 5: Rose plot of the marginal distribution of wind direction for the various models with M = 4
(resp. M = 3) regimes for Φt (resp.{ut, vt}) and order s = 2.

The joint distribution of {ut, vt} is globally well reproduced by both non-homogeneous models
(see Figure 6). Simulated data exhibit two modes like in the original data. The modes seem to be
slightly better located with the NHMS-AR(U,Φ) model. It may be due to the small differences
in the non-homogeneous transition probabilities shown in Figure 4 with the NHMS-AR(U,Φ)

model having a slightly higher probability of staying in regime 3 when the wind is blowing from
the south-west. It may help to create two distinct modes at the correct locations.

Both models generate too much low wind and as a consequence fail to reproduce accurately the
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Figure 6: Joint distributions of {ut, vt} for observed wind (left) and wind simulated with
NHMS-AR(u,v) model (middle) and NHMS-AR(U,Φ) model (right)

hole at origin. Similar lack of fit for the marginal distribution was observed on other dataset
with MS-AR models. It seems to be especially sensible when the model is miss-specified. This
discrepancy may be reduced by developing alternative estimation methods which would give
more importance to the stationary distribution of the process. This will be the topic of future
research.

4.4 Dependence structure

All the models reproduce approximatively the first lags of autocorrelation function of {Ut} (see
Figure 7) and the circular autocorrelation of Φ (not shown) defined as (see [9])

ρ(h) =
E[cos(Y0) cos(Yh)] + E[sin(Y0) sin(Yh)]− E[sin(Y0) cos(Yh)]− E[cos(Y0) sin(Yh)]

E[cos(Y0)2]E[sin(Y0)2]− E[sin(Y0) cos(Y0)]2
(14)

for any positive integer h. To further validate the models, we have also plotted the various terms

which appear in (14). According to Figure 8, the autocorrelation function of {cos(Φt)} is gen-
erally better reproduced than the one of {sin(Φt)}. The empirical autocorrelation of {sin(Φt)}
has a more complex shape, with a quick decrease close to the origin and a bump around 4
days, than the one of {cos(Φt)} which exhibits a more monotonic decrease. Figure 7 shows the
cross-correlation function between the time series {cos(Yt)} and {sin(Yt)}. The sample cross-
correlation function is at its maximum value for a lag between 18 hours and 24 hours, with the
time series {sin(Yt)} being in advance of the time series {cos(Yt)}. This may be related to the
fact that, for the location of interest, the wind direction tends to rotate more often clockwise
than anti-clockwise between two successive time steps (see Figure 9). Note that the complex
parametrization of the von Mises autoregressive models permits to model rotation in a prevailing
direction and significantly improves the boxplot shown on Figure 9 compared to models with real
parametrization (not shown). One can also remark that the first order autoregressive matrices
of the NHMS-AR(u,v) look like rotation matrices with diagonal coefficients which are close to
each other and out-diagonal coefficients which are almost opposed. Figure 9 shows however that
they do not generate not anticlockwise rotations.

The non-homogeneous models generally lead to a better description of the correlation functions
compared to the homogeneous models. All the models lead to an underestimation of the empir-
ical autocorrelations functions of the time series {cos(Yt)} and {sin(Yt)} for positive time lags.
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Increasing the order s of the autoregressive models leads to a better description of the second
order structure of the process but models of order s ≥ 3 can not reproduce the second mode of
the marginal distribution and thus models of order s = 2 seem to provide a good compromise.
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Figure 7: Correlation function of Ut and cross-correlation functions between the time series {cos(Yt)}
and {sin(Yt)} for the various models. The full grey line corresponds to the sample functions and the
dashed line to the fitted model with a 95% prediction intervals (dotted line). The distributions for the
fitted model was obtained by simulation. Time on the x-axis is expressed in days.
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Figure 8: Autocorrelation functions of the time series {cos(Yt)} and {sin(Yt)} for the various models.
The full grey line corresponds to the sample functions and the dashed line to the fitted model with a
95% prediction intervals (dotted line). The distributions for the fitted model was obtained by simulation.
Time on the x-axis is expressed in days.

5 Conclusion

In this paper we propose to model bivariate wind time series considering Cartesian coordinates
on one hand and polar coordinates on the other hand. Both approaches have advantages. The
{ut, vt} models is easier to write and to fit since they are based on Gaussian distributions unlike
the (Ut,Φt) for which one has to use von Mises distributions. The {ut, vt} model permits to
globally well restore the second order structure observed on the data while the {Ut,Φt} model
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seems to give a better description of the marginal distributions. However, the differences between
both models are slight.

All the models are based on MS-ARmodeling and versions with homogeneous and non-homogeneous
probability transition functions are compared. In non-homogeneous models, the transitions de-
pend on the wind direction at the previous time. At the location of interest, wind is rotating
more often clockwise but wind direction may also oscillate around two prevailing directions
(northeast for anti-cyclonic conditions and southwest for cyclonic conditions). These features
induce respectively some cycles which can be seen in the second order structure and modes in
the marginal distribution. In broad outline, non-homogeneous transitions help the process to
stay in the same weather regime when the wind direction is close to the main directions. In
order to generate the cycles, it is necessary to command the wind direction to turn in the right
direction. In {ut, vt} models the rotations are reproduced by the autoregressive A matrices, but
they are specified more naturally in NHMS-EVM model by using a complex parametrization
of the von Mises autoregressive models.

At last, the proposed models allow to generate wind time series with features very close to the
main features of the observed time series. The introduction of the latent state allow to simulate
the different time scale which are present in the data, with the autoregressive part describing
the short-term fluctuations whereas the weather type, which lasts typically a few days, describes
longer-term fluctuations. An other layer could be added to simulate shorter time scales for very
local features. The model could also be extended to a space-time model in several ways. For this,
it will probably be easier to work with the {ut, vt} model based on Gaussian distributions which
can naturally handle a space-time information. Then several strategies could be considered for
the weather type process which could be local, with a different weather type at each site, or
regional with a common weather type for the different locations. With the first strategy one
has to deal with a space-time process of latent discrete variables and this is challenging from
both a modeling and computational point of view. The second strategy is probably simpler
to implement but requires some space-time homogeneity in the data. These and other related
modeling issues remain to be investigated.
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Figure 9: Frequency of anticlockwise rotations between successive observations for the various models
with M = 4 regimes and autoregressive model of order s = 2. The grey line corresponds to the value
obtained on the data (45.4 % of anticlockwise rotations against 54.6 % of clockwise rotations). The
boxplots show the distributions for the fitted models. They were obtained by simulation (results based
on 4400 time series of length 124). Le xlabel est coupe
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