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CONTINUOUS FIELDS OF PROPERLY INFINITE C∗-ALGEBRAS

ETIENNE BLANCHARD

Abstract. Any unital separable continuous C(X)-algebra with properly infinite fi-
bres is properly infinite as soon as the compact Hausdorff space X has finite topolog-
ical dimension. We study conditions under which this is still the case in the infinite
dimensional case.

1. Introduction

One of the basic C∗-algebras studied in the classification programme launched by G.
Elliott ([Ell94]) of nuclear C∗-algebras through K-theoretical invariants is the Cuntz
C∗-algebra O∞ generated by infinitely many isometries with pairwise orthogonal ranges
([Cun77]). This C∗-algebra is pretty rigid in so far as it is a strongly self-absorbing
C∗-algebra ([TW07]): Any separable unital continuous C(X)-algebra A the fibres of
which are isomorphic to the same strongly self-absorbing C∗-algebra D is a trivial
C(X)-algebra provided the compact Hausdorff base space X has finite topological
dimension. (Indeed, the strongly self-absorbing C∗-algebra D tensorially absorbs the
Jiang-Su algebra Z ([Win09]). Hence, this C∗-algebra D is K1-injective ([Rør04])
and the C(X)-algebra A satisfies A ∼= D ⊗ C(X) ([DW08]).) But I. Hirshberg, M.
Rørdam and W. Winter have built a non-trivial unital continuous C∗-bundle over the
infinite dimensional compact product Π∞

n=0 S
2 such that all its fibres are isomorphic to

the strongly self-absorbing UHF algebra of type 2∞ ([HRW07, Example 4.7]). More
recently, M. Dădărlat has constructed in [Dăd09, §3] for all pair (Γ0,Γ1) of discrete
countable torsion groups a unital separable continuous C(X)-algebra A such that:

– the base space X is the compact Hilbert cube X = X of infinite dimension,
– all the fibres Ax (x ∈ X) are isomorphic to the strongly self-absorbing Cuntz
C∗-algebra O2 generated by two isometries s1, s2 satisfying 1O2 = s1s

∗
1 + s2s

∗
2 ,

– Ki(A) ∼= C(Y0,Γi) for i = 0, 1 , where Y0 ⊂ [0, 1] is the canonical Cantor set.

These K-theoretical conditions imply that the C(X)-algebra A is not a trivial one. But
these arguments does not anymore work when the strongly self-absorbing algebra D is
the Cuntz algebra O∞ ([Cun77]), in so far as K0(O∞) = Z is a torsion free group.

We study in this article whether the Pimsner-Toeplitz algebra ([Pim95]) of the
nontrivial Dixmier-Douady Hilbert C(X)-module EDD ([DD63]) is a nontrivial unital
C(X)-algebra with fibres O∞. This would imply that there exists a properly infinite
C∗-algebra A which is not K1-injective, i.e. the mapping U(A)/U0(A) → K1(A) is not
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injective, and there exist separable unital continuous C([0, 1])-algebras with properly
infinite fibres which are not properly infinite C∗-algebras.

I especially thank E. Kirchberg and a referee for a few inspiring remarks.

2. Notations

We present in this section the main notations which are used in this article. We
denote by N = {0, 1, 2, . . .} the set of positive integers and we denote by [S] the closed
linear span of any subset S in a Banach space.

Definition 2.1. ([Dix69], [Kas88], [Blan97]) Let X be a compact Hausdorff space and
let C(X) be the C∗-algebra of continuous function on X .

– A unital C(X)-algebra is a unital C∗-algebra A endowed with a unital morphism
of C∗-algebra from C(X) to the centre of A.

– For all closed subset F ⊂ X and all element a ∈ A, one denotes by a|F the
image of a in the quotient A|F := A/C0(X \ F ) · A. If x ∈ X is a point in X,
one calls fibre at x the quotient Ax := A|{x} and one write ax for a|{x}.

– The C(X)-algebra A is said to be continuous if the upper semicontinuous map
x ∈ X 7→ ‖ax‖ ∈ R+ is continuous for all a ∈ A.

Remarks 2.2. a) ([Cun81], [BRR08]) For all integer n ≥ 2, the C∗-algebra Tn := T (Cn)
is the universal unital C∗-algebra generated by n isometries s1, . . . , sn satisfying the
relation

s1s
∗
1 + . . .+ sns

∗
n ≤ 1 . (2.1)

b) A unital C∗-algebra A is properly infinite if and only if one the following equivalent
conditions holds ([Cun77], [Rør03, Proposition 2.1]):

– the C∗-algebra A contains two isometries with mutually orthogonal range pro-
jections, i.e. A unitally contains a copy of T2 ,

– the C∗-algebra A contains a unital copy of the simple Cuntz C∗-algebra O∞

generated by infinitely many isometries with pairwise orthogonal ranges.

3. Global proper infiniteness

Proposition 2.5 of [BRR08] and section 6 of [Blan13] entail the following stable proper
infiniteness for continuous C(X)-algebras with properly infinite fibres.

Proposition 3.1. Let X be a second countable perfect compact Hausdorff space,
i.e. without any isolated point, and let A be a separable unital continuous C(X)-
algebra with properly infinite fibres.

1) There exist:

(a) a finite integer n ≥ 1 ,

(b) a covering X =
o

F1 ∪ . . . ∪
o

Fn by the interiors of closed balls F1, . . . , Fn ,
(c) unital embeddings of C∗-algebra σk : O∞ →֒ A|Fk

(1 ≤ k ≤ n ).

2) The tensor product Mp(C)⊗ A is properly infinite for all large enough integers p.
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Proof. 1) For all point x ∈ X, the semiprojectivity of the C∗-subalgebra O∞ →֒ Ax

([Blac04, Theorem 3.2]) entails that there are a closed neighbourhood F ⊂ X of the
point x and a unital embedding O∞⊗C(F ) →֒ A|F of C(F )-algebra. The compactness
of the topological space X enables to conclude.

2) Proposition [BRR08, Proposition 2.7] entails that M2n−1(A) is properly infinite and
[Rør97, Proposition 2.1] implies that Mp(A) for all integer p ≥ 2n−1. �

Remark 3.2. If X is an ordinary second countable compact Hausdorff space and A is

a separable unital continuous C(X)-algebra, then X̃ := X × [0, 1] is a perfect compact

space, Ã := A⊗C([0, 1]) is a unital continuous C(X̃)-algebra and any unital morphism

O∞ → Ã induces a unital morphism O∞ → A by composition with the projection map

Ã → A coming from the injection x ∈ X 7→ (x, 0) ∈ X̃ .

The proper infiniteness of the tensor product Mp(C)⊗A does not always imply that
the C∗-algebra A is properly infinite ([HR98]). Indeed, there exists a unital C∗-algebra
A which is not properly infinite, but such that the tensor productM2(C)⊗A is properly
infinite ([Rør03, Proposition 4.5]). We nevertheless have the following corollary.

Corollary 3.3. Let 0, 1 denote the two canonical unital embeddings of the Cuntz
extension T2 in the full unital free product T2 ∗C T2 and let ũ ∈ U(T2 ∗C T2) be a K1-
trivial unitary satisfying 1(s1) = ũ · 0(s1) ([BRR08, Lemma 2.4]).

Then the following conditions are equivalent:

(a) The full unital free product T2 ∗C T2 is K1-injective.
(b) The unitary ũ belongs to the connected component U0(T2 ∗C T2) of 1T2∗CT2.
(c) Every separable unital continuous C(X)-algebra A with properly infinite fibres

is a properly infinite C∗-algebra.

Proof. (a)⇒(b) A unital C∗-algebra A is called K1-injective if and only if all K1-trivial
unitaries v ∈ U(A) are homotopic to the unit 1A in U(A) (see e.g. [Roh09]). Thus, (b)
is a special case of (a) since K1(T2 ∗C T2) = {1} (see e.g. [Blan10, Lemma 4.4].

(b)⇒(c) Let A be a separable unital continuous C(X)-algebra with properly infinite

fibres. Take a finite covering X =
o

F1 ∪ . . .∪
o

Fn such that there exist unital embeddings
σk : T2 → A|Fk

(1 ≤ k ≤ n). Set Gk := F1 ∪ . . . ∪ Fk ⊂ X for all 1 ≤ k ≤ n and let us
construct by induction isometries wk ∈ A|Gk

such that the two projections wkw
∗
k and

1|Gk
− wkw

∗
k are properly infinite and full in the restriction A|Gk

:

– If k = 1, the isometry w1 := σ1(s1) has the requested properties.

– If k ∈ {1, . . . , n − 1} and the isometry wk ∈ A|Gk
is already constructed, then

Lemma 2.4 of [BRR08] implies that there exist an homomorphism of unital C∗-algebra
πk : T2 ∗C T2 → A|Gk∩Fk+1

and a K1-trivial unitary uk+1 ∈ U(A|Gk∩Fk+1
) satisfying:

− πk(0(s1)) = wk |Gk∩Fk+1
,

− πk(1(s1)) = σk+1(s1)|Gk∩Fk+1
= uk+1 · wk |Gk∩Fk+1

.
(3.1)

If the unitary ũ belongs to U0(T2 ∗C T2), then the unitary uk+1 = πk(ũ) is homotopic
to 1A|Gk∩Fk+1

= πk(1T2∗CT2) in U(A|Gk∩Fk+1
), so that uk+1 admits a unitary lifting zk+1
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in U0(A|Fk+1
) (see e.g. [LLR00, Lemma 2.1.7]). The only isometry wk+1 ∈ A|Gk+1

satisfying the two constraints:

wk+1|Gk
= wk and wk+1|Fk+1

= (zk+1)
∗ · σk+1(s1) (3.2)

verifies that the two projections wk+1w
∗
k+1 and 1|Gk+1

−wk+1w
∗
k+1 are properly infinite

and full in A|Gk+1
.

The proper infiniteness of the projection wnw
∗
n ∈ A|Gn

= A implies that the unit
1A = w∗

nwn = w∗
n·wnw

∗
n·wn is also a properly infinite projection in A, i.e. the C∗-algebra

A is properly infinite.

(c)⇒(a) The C∗-algebra D :={f ∈ C([0, 1], T2∗CT2) ; f(0) ∈ 0(T2) and f(1)∈1(T2) } is
a unital continuous C([0, 1])-algebra the fibres of which are all properly infinite. Thus,
condition (c) implies that the C∗-algebra D is properly infinite, a statement which is
equivalent to the K1-injectivity of T2 ∗C T2 ([Blan10, Proposition 4.2]). �

4. The Pimsner-Toeplitz algebra of a Hilbert C(X)-module

We look in this section at the special case of unital continuous C(X)-algebras with
fibres O∞ corresponding to the Pimsner-Toeplitz C(X)-algebras of Hilbert C(X)-
modules with infinite dimension fibres.

Definition 4.1. ([Pim95]) Let X be a compact Hausdorff space and E a full Hilbert
C(X)-module E, i.e. without any zero fibre.
a) The full Fock Hilbert C(X)-module F(E) of E is the direct sum of Hilbert C(X)-
module

F(E) :=
⊕

m∈N

E(⊗C(X))m , (4.1)

where E(⊗C(X))m :=

{
C(X) if m = 0 ,
E ⊗C(X) . . .⊗C(X) E (m terms) if m ≥ 1 .

b) The Pimsner-Toeplitz C(X)-algebra T (E) of E is the unital subalgebra of the C(X)-
algebra LC(X)(F(E) ) of adjointable C(X)-linear operator acting on F(E) generated by
the creation operators ℓ(ζ) (ζ ∈ E), where:

− ℓ(ζ) (f · 1̂C(X)) := f · ζ = ζ · f for f ∈ C(X) and
− ℓ(ζ) (ζ1 ⊗ . . .⊗ ζk) := ζ ⊗ ζ1 ⊗ . . .⊗ ζk for ζ1, . . . , ζk ∈ E if k ≥ 1 .

(4.2)

c) Let (C∗(Z),∆) be the compact quantum group generated by a unitary u with spectrum
the unit circle and with coproduct ∆(u) = u⊗u. Then, there is a unique coaction α of
the Hopf C∗-algebra (C∗(Z),∆) on the Pimsner-Toeplitz C(X)-algebra T (E) such that
α
(
ℓ(ζ)

)
= ℓ(ζ)⊗ u for all ζ ∈ E, i.e.

α : T (E) → T (E)⊗ C∗(Z) = C(T, T (E))
ℓ(ζ) 7→ ℓ(ζ)⊗ u = (z 7→ ℓ(zζ) )

(4.3)

The fixed point C(X)-subalgebra T (E)α = {a ∈ T (E) ; α(a) = a ⊗ 1} under this
coaction is the closed linear span

T (E)α =

[
C(X).1 +

∑

k≥1

ℓ(E)k ·
(
ℓ(E)k

)∗
]
. (4.4)
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Besides, the projection P ∈ L(F(E)) onto the submodule E induces a quotient
morphism of C(X)-algebra a ∈ T (E)α 7→ q(a) := P · a · P ∈ K(E) + C(x) · 1 ⊂ L(E).

Proposition 4.2. Let X be a second countable compact Hausdorff perfect space and
let E be a separable Hilbert C(X)-module with infinite dimensional fibres.

1) There exist a covering X =
o

F1 ∪ . . .∪
o

Fm by the interiors of closed subsets F1, . . . , Fm

and m sections ζ1, . . . , ζm in E such that T (E) = C∗ < T (E)α, ℓ(ζ1), . . . , ℓ(ζm) > and
‖(ζk)x‖ = 1 for all k ∈ {1, . . . ,m} and x ∈ Fk.

2) If for all k ∈ {1, . . . ,m − 1} and all norm 1 section ξ ∈ E with ‖ξy‖ = 1 for all
point y in a closed subset Ḡk ⊂ Fk+1, there is a unitary zk+1 ∈ T (E)α|Fk+1

such that
zk+1 · ℓ(ξ(k))|Gk∩Fk+1

= ℓ(ζk+1)|Gk∩Fk+1
, then there exists a section ξ ∈ E satisfying

‖ξx‖ = 1 for all x ∈ X, so that T (E) is properly infinite by [Blan13, Lemma 6.1].

Proof. 1) For all point x ∈ X, there exists a section ζ ∈ E satisfying ‖ζx‖ = 1,
whence an isomorphism of C∗-algebra T (E)x ∼= T (Ex) = C∗ < T (Ex)

α, ℓ(ζx) > . The
semiprojectivity of the C∗-algebra O∞

∼= T (E)x and the compactness of the space X

then imply that there exist a finite covering X =
o

F1 ∪ . . .∪
o

Fm by the interiors of closed
subsets F1, . . . , Fm and m contractions ζ1, . . . , ζm in E such that ‖(ζk)x‖ = 1 for all
index k ∈ {1, . . . ,m} and all point x ∈ Fk .

2) Set Gk := F1 ∪ . . . ∪ Fk for all k ∈ {1, . . . ,m} (as in Corollary 3.3) and let us
construct inductively sections ξ(k) ∈ E|Gk

such that ‖ξ(k)x‖ = 1 for all x ∈ Gk.

– If k = 1, the section ξ(1) := (ζ1)|F1 has the requested properties.

– If k ∈ {1, . . . ,m − 1} and a convenient section ξ(k) in E|Gk
is already constructed,

then there exists a unital ∗-homomorphism πk : T2 ∗C T2 → T (E)|Gk∩Fk+1
such that

πk(0(s1)) = ℓ(ξ(k))|Gk∩Fk+1
and πk(1(s1)) = ℓ(ζk+1)|Gk∩Fk+1

. The partial isometry
vk := ℓ(ζk+1)|Gk∩Fk+1

· ℓ(ξ(k))∗|Gk∩Fk+1
belongs to the subalgebra (T (E)|Gk∩Fk+1

)α and
the two projections 1 − v∗kvk, 1 − vkv

∗
k are properly infinite and full in T (E)|Gk∩Fk+1

.
Thus, there is by [BRR08, Lemma 2.4] a unitary uk ∈ U(T (E)|Gk∩Fk+1

) such that
uk · ℓ(ξ(k))|Gk∩Fk+1

= ℓ(ζk+1)|Gk∩Fk+1
and [uk] = [1] in K1(T (E)|Gk∩Fk+1

). There is also

by assumption a unitary zk+1 ∈ T (E)α|Fk+1
satifying

zk+1|Gk∩Fk+1
· ℓ(ξ(k))|Gk∩Fk+1

= ℓ(ζk+1)|Gk∩Fk+1

1 .
The only section ξ(k + 1) ∈ E|Gk+1

such that ξ(k + 1)|Gk
= ξ(k) and ξ(k + 1)|Fk+1

=
q(zk+1)

∗ · (ξk+1)|Fk+1
satisfies ‖ξ(k + 1)x‖ = 1 for all point x ∈ Gk+1. �

Remark 4.3. The complex Hilbert cube X := {x ∈ C; |x| ≤ 1}N is a compact space when
equipped with the distance d((xp), (yp)) =

∑
p 2−p−2 |xp−yp| . The nontrivial separable

Hilbert C(X)-module EDD constructed by J. Dixmier and A. Douady ([DD63], [BK04a,
Proposition 3.6]) has infinite dimensional fibres and every section ζ ∈ EDD satisfies
ζx = 0 for at least one point x = (xp) ∈ X. Thus, it does not verify the assumptions
for the assertion 2) of Proposition 4.2.

1The restriction zk+1|Gk∩Fk+1
belongs to U0(T (E)|Gk∩Fk+1

) · uk by [BRR08, Lemma 2.4].
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Question 4.4. The Pimsner-Toeplitz algebra T (EDD) is locally purely infinite ([BK04b,
Definition 1.3]) since all its simple quotients are isomorphic to the Cuntz algebra O∞

([BK04b, Proposition 5.1]). But is T (EDD) properly infinite?
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Math. France 91 (1963), 227–284.
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