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CONTINUOUS FIELDS OF PROPERLY INFINITE C*-ALGEBRAS

ETIENNE BLANCHARD

ABSTRACT. The only separable unital continuous C([0, 1])-algebra with fibres iso-
morphic to the Cuntz algebra O is the trivial continuous field O, @ C([0,1]). But
there exist non properly infinite separable unital continuous C([0, 1])-algebras with
properly infinite fibres.

1. INTRODUCTION

One of the basic C*-algebras studied in the classification programme launched by G.
Elliott ([EL94]) of nuclear C*-algebras through K-theoretical invariants is the Cuntz
C*-algebra O, generated by infinitely many isometries with pairwise orthogonal ranges
([Cun77]). This C*-algebra is pretty rigid in so far as it is a strongly self-absorbing
C*-algebra ([TWO07]): Any separable unital continuous C(X)-algebra A the fibres of
which are isomorphic to the same strongly self-absorbing C*-algebra D is a trivial
C'(X)-algebra provided the compact Hausdorff base space X has finite topological
dimension. (Indeed, the strongly self-absorbing C*-algebra D tensorially absorbs the
Jiang-Su algebra Z ([Win09]). Hence, this C*-algebra D is Kj-injective ([Rer04])
and the C'(X)-algebra A satisfies A =2 D ® C(X) ([DWO08]).) But I. Hirshberg, M.
Rgrdam and W. Winter have built a non-trivial unital continuous C*-bundle over the
infinite dimensional compact product 1152, .S? such that all its fibres are isomorphic to
the strongly self-absorbing UHF algebra of type 2> ([HRW07, Example 4.7]). More
recently, M. Dadarlat has constructed in [Dad09, §3] for all pair (I'g,I';) of discrete
countable torsion groups a unital separable continuous C'(X)-algebra A such that:

— the base space X is the compact Hilf cube X = X of infinite dimension,

— all the fibres A, (z € X) are isomorphic to the strongly self-absorbing Cuntz
Cr-algebra Oy generated by two isometries s, 5o satisfying 1o, = 5,57 + 5555,

- K;(A) = C(Yo,I;) for i = 0,1, where Yy C [0, 1] is the canonical Cantor set.

These K-theoretical conditions imply that the C(X)-algebra A is not a trivial one.
These arguments does not anymore work when the strongly self-absorbing algebra D
is the Cuntz algebra O ([Cun77]), in so far as Ky(Ow) = Z is a torsion free group.

We show directly in this article that the Pimsner-Toeplitz algebra ([Pim95]) of the
nontrivial Dixmier-Douady Hilbert C'(X)-module Epp ([DD63]) is a nontrivial unital
C'(X)-algebra with fibres O,. This notably implies that there exists a properly infinite
Cr*-algebra A which is not Kj-injective, i.e. the mapping U(A)/Uy(A) — K;(A) is not
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injective, and there exist separable unital continuous C([0, 1])-algebras with properly
infinite fibres which are not properly infinite C*-algebras.

I especially thank E. Kirchberg and a referee for a few inspiring remarks.

2. NOTATIONS

We present in this section the main notations which are used in this article. We
denote by N = {0, 1,2,...} the set of positive integers and we denote by [S] the closed
linear span of any subset S in a Banach space.

Definition 2.1. ([Dix69], [Kas88|, [Blan97]) Let X be a compact Hausdorff space and
let C(X) be the C*-algebra of continuous function on X .

— A unital C(X)-algebra is a unital C*-algebra A endowed with a unital morphism
of C*-algebra from C(X) to the centre of A.

— For all closed subset F' C X and all element a € A, one denotes by a;p the
image of a in the quotient Ajp := A/Co(X \ F)-A. If v € X is a point in X,
one calls fibre at x the quotient A, := Ajr,y and one write a, for ajg).

— The C(X)-algebra A is said to be continuous if the upper semicontinuous map
r € X — |laz|| € Ry is continuous for all a € A.

Remarks 2.2. a) ([Cun81], [BRROS]) For all integer n > 2, the C*-algebra 7,, := T (C")
is the universal unital C*-algebra generated by n isometries si,...,s, satisfying the
relation

5187+ ... +s,8, <1. (2.1)

b) A unital C*-algebra A is properly infinite if and only if one the following equivalent
conditions holds ([Cun77], [Rer03, Proposition 2.1]):

— the C*-algebra A contains two isometries with mutually orthogonal range pro-
jections, i.e. A unitally contains a copy of 7z,

— the C*-algebra A contains a unital copy of the simple Cuntz C*-algebra O
generated by infinitely many isometries with pairwise orthogonal ranges.

3. GLOBAL PROPER INFINITENESS

Proposition 2.5 of [BRR08] and section 6 of [Blan13] entail the following stable proper
infiniteness for continuous C'(X)-algebras with properly infinite fibres.

Proposition 3.1. Let X be a second countable perfect compact Hausdorff space and
let A be a separable unital continuous C(X)-algebra with properly infinite fibres.

1) There exist:
(a) a finite integer n > 1,

(b) a covering X = F1U...U ];n by the interiors of closed balls F, ..., F,,
(c) unital embeddings of C*-algebra oy, : O — Ap, (1 <k <)

2) The tensor product M,(C) ® A is properly infinite for all large enough integers p.
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Proof. 1) For all point x € X, the semiprojectivity of the C*-subalgebra O, — A,
([Blac04, Theorem 3.2]) entails that there are a closed neighbourhood F' C X of the
point z and a unital embedding O, ® C(F) — Ajp of C(F)-algebra. The compactness
of the topological space X enables to conclude.

2) Proposition [BRROS8, Proposition 2.7] entails that Man-1(A) is properly infinite and
[Rer97, Proposition 2.1] implies that M, (A) for all integer p > 2"~ 1. O

Remark 3.2. If X is an ordinary second countable compact Hausdorff space and A is
a separable unital continuous C'(X)-algebra, then X =X x [0,1] is a perfect space,
A= A® C([0,1]) is a unital continuous C(X )-algebra and any morphism O — A
induces a morphism O, — A by composition with the projection map A A coming
from the injection z € X — (2,0) € X .

The proper infiniteness of the tensor product M,(C)® A does not always imply that
the C*-algebra A is properly infinite ([HR98]). Indeed, there exists a unital C*-algebra
A which is not properly infinite, but such that the tensor product Ms(C)® A is properly
infinite ([Ror03, Proposition 4.5]). We nevertheless have the following corollary.

Corollary 3.3. Let j9, 71 denote the two canonical unital embeddings of the C*-algebra
T> in the full unital free product To xc To and let @ € U(Ty xc T2) be a Ki-trivial unitary
satisfying y1(s1) = @ - 30(s1) ([BRROS8, Lemma 2.4]).

Then the following conditions are equivalent:

(a) The full unital free product Ty *xc Ty is Ki-injective.

(b) The unitary @ belongs to the connected component Uy(Tz *c T2) of 17ueTs -

(¢) Every separable unital continuous C(X)-algebra A with properly infinite fibres
1s a properly infinite C*-algebra.

Proof. (a)=-(b) A unital C*-algebra A is called K;-injective if and only if every unitary
v € U(A) is homotopic to the unit 1,4 in U(A) (see e.g. [Roh09]). Thus, (b) is a special
case of (a).

(b)=-(c) Let A be a separable unital continuous C(X)-algebra with properly infinite
fibres. Take a finite covering such that there exist unital embeddings o : 72 — Ajp,
(1 <k<n) Set Gy :=F,U...UF, C X for all 1 <k < n and let us construct by
induction isometries wy, € Ajg, such that the two projections wjwjy and 1, — wpwy,
are properly infinite and full in the restriction Ag, :

—If k =1, the isometry w; := 01(s1) has the requested properties.

~If k € {1,...,n — 1} and the isometry w, € A, is already constructed, then
Lemma 2.4 of [BRRO§] implies that there exist an homomorphism of unital C*-algebra
e Ta*c To = Ajgynr,,, and a Kj-trivial unitary w1 € U(Ajq,nF,,,) satisfying:

_ m(]O(Sl)) = WE|GrNFyqq and (3.1)
_ Wk(]l(sl)) = 0k+1(81)|GkﬂFk+1 = Ugy1 - wk|GkﬁFk+1 .

If the unitary @ belongs to Uy(Tz *¢ T2), then the unitary ugyq = m(@) is homotopic
to lA‘kaFk+1 = Tk(Lpeer) in U(AjGynE,,, ), SO that .,y admits a unitary lifting 244
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in Up(Ap,,,) (see e.g. [LLROO, Lemma 2.1.7]). The only isometry wii1 € Ajg,,,
satisfying the two constraints:

Wi+1|Gy, = Wk and W1 |Fpyy — (Zk+1)* . Uk+1(81) (3-2)

verifies that the two projections wy 1wy, and 1jg,,, — wry1wy,, are properly infinite
and full in Aig,, , .

The proper infiniteness of the projection w,w;, € A, = A implies that the unit
14 = wiw, = w}-wy,w} -w, is also a properly infinite projection in A, i.e. the C*-algebra
A is properly infinite.

(c)=(a) The C*-algebra D:={f € C([0,1], Ta*xcT2); f(0) € 30(72) and f(1) €1 (T3) } is
a unital continuous C([0, 1])-algebra the fibres of which are all properly infinite. Thus,
condition (c) implies that the C*-algebra D is properly infinite, a statement which is
equivalent to the K;-injectivity of 73 ¢ 72 ([Blanl0, Proposition 4.2]). O

4. THE PIMSNER-TOEPLITZ ALGEBRA OF A HILBERT C(X)-MODULE

We look in this section at the special case of unital continuous C'(X)-algebras with
fibres O corresponding to the Pimsner-Toeplitz C(X)-algebras of Hilbert C(X)-
modules with infinite dimension fibres.

Definition 4.1. ([Pim95]) Let X be a compact Hausdorff space and E a full Hilbert
C(X)-module E, i.e. without any zero fibre.
a) The full Fock Hilbert C(X)-module F(E) of E is the direct sum of Hilbert C(X)-
module
F(E) = ECcw™, (4.1)
meN
m | CX ifm=20,
where E©e@)™ — E(®C)(X) - Qo (x) E (m terms) ifm>1.
b) The Pimsner-Toeplitz C(X)-algebra T (E) of E is the unital subalgebra of the C(X)-
algebra Lo (F(E)) of adjointable C(X)-linear operator acting on F(E) generated by
the creation operators £(¢) (C € E), where:

— UQ(f ) =fC=C-f  for fEC(X)  and 43
- OG®...0¢) =C(RG®...Q¢ for (,....,r€E ifk>1. '
c¢) There is a unique coaction o of the group C*-algebra (C*(Z),A) on the Pimsner-
Toeplitz C(X)-algebra T(E) such that a(€(¢)) = 4(¢) ® u for all { € E, i.e.
a: T(E) - TE)eC(zZ) = C(T,T(E))
() = UH)®u = (2 {(2(Q))

The fixed point C(X)-subalgebra T(E)* = {a € T(E); a(a) = a ® 1} under this
coaction is the closed linear span

T(E)* = [C(X)1+ > UE)" ((E))]. (4.4)

k>1

(4.3)

Besides, the projection P € L(F(F)) onto the submodule E induces a quotient
morphism of C(X)-algebra a € T(E)* — q(a) :=P-a-P € K(E)+C(z)-1C L(E).
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Proposition 4.2. Let X be a second countable compact Hausdorff perfect space,
i.e. without any isolated point, and let E be a separable Hilbert C'(X)-module with
infinite dimensional fibres.

1) There exist a covering X = ]*gl U.. .Uﬁm by the interiors of closed subsets F1, ..., F,,
and m sections (i, ..., Gy in E such that T(E) = C* < T(E)*, (i, ..., l((n) > and
|(Ck)zll =1 for all k € {1,...,m} and all x € F.

2) If the full unital free product Ty x¢ T is Ki-injective, then there exists a section
€ € E such that ||&|| =1 for all x € X.

Proof. 1) For all point x € X, there exists a section section ¢ € F such that ||(,| = 1,
whence an isomorphism of C*-algebra T(E), = T (E,) = C* < T(E,)*, ¢(¢;) > . The
semiprojectivity of the C*-algebra O, = T(E), and the Compactness of the space X

then imply that there exist a finite covering X = F 1U UF by the interiors of closed
subsets Fi, ..., F,, and m contractions (i, ...,(, in E such that ||((x)z|| = 1 for all
index k € {1,...,m} and all point = € Fj},.

2) Set G, := FiU...UF;, for all k € {1,...,m} (as in Corollary 3.3) and let us
construct inductively sections (k) € Ejq, such that ||€(k).|| = 1 for all z € Gy.

—If k =1, the section £(1) := ((1)m has the requested properties.

~If ke {1,...,m — 1} and a convenient section {(k) in E|g, has already been con-
structed, then there exists a unital *-homomorphism 7 : T3 *¢ T2 — T (E)|cunFyy.
such that m(g0(s1)) = £(§(k))iGunF,, and mx(1(s1)) = €(Ck+1)iGrnm,,- The partial
isometry £(Crt1)iGpnFeiq - C(§(K))*|GrnF,., belongs to the subalgebra T (E)¢,qF,,, and
it extends in T (E)|q,nr,,, to a Ki-trivial unitary w; by [BRROS, Lemma 2.4], i.e.

U(Crr1) 16 Fss LER)) 16 Fs = C(Cer1)E(Chr1) (GrnFrsy - ur = ur-l(E(R))L(E(R)) 1GunFri

since 1 — L(§(k)UE(R)) \GunFrys = Tr(J0(5955)) and 1 — £(Cea1)0(Cos1) |GunFrys >
Tk(71(8953)) are two properly infinite and full projections in 7 (E)|q,qr, .- If To*c T2 is

Ki-injective, this unitary u; belongs to Uy (T (E) gunry,,) and it admits a unitary lift-
ing zp41 € Up(T(E)). The only section {(k + 1) € Ejg,,, such that {(k + 1)q, = £(k)
and §(k + 1)k, = A(2k41)" - Ek41)F,,, satisfies the desired conditions. O

Theorem 4.3. The full unital free product T ¢ To is properly infinite, but not K-
mjective.

Proof. Let X be the complex Hilbert cube X := {z € C; |z| < 1}". It is a compact space
when equipped with the distance d(z,y) = 3. 2777 %[z, —y,|. Let also Epp be the
non-trivial separable Hilbert C'(X)-module contracted by J. Dixmier and A. Douady
([DD63]): It has infinite dimensional fibres and every section ¢ € Epp satisfies (, =0
for at least one x € X. Thus proposition 4.2 implies that T3¢ 7Tz is not Kj-injective. [

The C([0,1])-algebra D :={f € C([0,1], T *c T2); f(0) € 30(T2) and f(1) € 1(T3) }

introduced in Corollary 3.3 is an example of the following corollary:

Corollary 4.4. There exists a separable unital continuous C([0, 1])-algebra with prop-
erly infinite fibres which is not properly infinite.
5



Question 4.5. The Pimsner-Toeplitz algebra T (Epp) is locally purely infinite ([BK04b,
Definition 1.3]) since all its simple quotients are isomorphic to the Cuntz algebra O,
([BK04b, Proposition 5.1]). But is T (Epp) properly infinite?
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