Erratum to "Multipliers and Morrey spaces".

Pierre Gilles Lemarié-Rieusset*

Abstract

We correct the complex interpolation results for Morrey spaces which is false for the first interpolation functor of Calderón, but is exact for the Calderón's second interpolation functor.

Keywords : Morrey spaces; interpolation.
2010 Mathematics Subject Classification : 42B35
In my paper "Multipliers and Morrey spaces" [3], there is a slight mistake in Theorem 3, concerning the interpolation of Morrey spaces.

Let \mathcal{B} be the collection of all Euclidean balls B on $\mathbb{R}^{d}: B=B\left(x_{B}, r_{B}\right)=$ $\left\{x \in \mathbb{R}^{d} /\left|x-x_{B}\right|<R_{B}\right.$. For $B \in \mathcal{B}$, we write $|B|=\int_{B} d x=|B(0,1)| r_{B}^{d}$. Define, for $1<p \leq q<+\infty$, the space $\dot{M}^{p, q}\left(\mathbb{R}^{n}\right)$ as the space of locally p-integrable functions f such that

$$
\|f\|_{\dot{M}^{p, q}}:=\sup _{B \in \mathcal{B}}|B|^{1 / q-1 / p}\left(\int_{B}|f(x)|^{p} d x\right)^{1 / p}<+\infty .
$$

It is easy to check that, when $1<p_{0} \leq q_{0}<+\infty$ and $1<p_{1} \leq q_{1}<+\infty$, and

$$
\left(\frac{1}{p}, \frac{1}{q}\right)=(1-\theta)\left(\frac{1}{p_{0}}, \frac{1}{q_{0}}\right)+\theta\left(\frac{1}{p_{1}}, \frac{1}{q_{1}}\right)
$$

for some $\theta \in(0,1)$, then $\dot{M}^{p_{0}, q_{0}} \cap \dot{M}^{p_{1}, q_{1}} \subset \dot{M}^{p, q}$ and

$$
\|f\|_{\dot{M}^{p, q}} \leq\|f\|_{\dot{M}^{p_{0}, q_{0}}}^{1-\theta}\|f\|_{\dot{M}^{p_{1}, q_{1}}}^{\theta}
$$

The question I studied was then whether one may find an interpolation functor F of exponent θ such that $F\left(\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right)=\dot{M}^{p, q}$. If so, one should have the continuous embeddings

$$
\left[\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right]_{\theta, 1} \subset \dot{M}^{p, q} \subset\left[\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right]_{\theta, \infty} .
$$

[^0]The inclusion $\left[A_{0}, A_{1}\right]_{\theta, 1} \subset F\left(A_{0}, A_{1}\right)$ is a direct conclusion from the inequality

$$
\|f\|_{F\left(A_{0}, A_{1}\right)} \leq C\|f\|_{A_{0}}^{1-\theta}\|f\|_{A_{1}}^{\theta}
$$

(obtained by interpolation inequalities for the operator norms of $\lambda \mapsto \lambda f$ from \mathbb{R} to A_{0} and from \mathbb{R} to A_{1}, hence from \mathbb{R} to $F\left(A_{0}, A_{1}\right)$). The inclusion $F\left(A_{0}, A_{1}\right) \subset\left[A_{0}, A_{1}\right]_{\theta, \infty}$ is proven in [1] under the assumption that $A_{0} \cap A_{1}$ is dense in A_{0} and in A_{1}. This is not the case for Morrey spaces. However, one may easily adapt the proof, as Morrey spaces are dual spaces (see for instance [6]).

If we assume that $A_{0}=B_{0}^{\prime}$ and $A_{1}=B_{1}^{\prime}$ and that $B_{0} \cap B_{1}$ is dense in B_{0} and B_{1}; then, for $b \in B_{0} \cap B_{1}$, the linear form $T_{b}: f \mapsto\langle f \mid b\rangle$ has a norm less than $\|b\|_{B_{0}}$ as an operator from A_{0} to \mathbb{R} and less than $\|b\|_{B_{1}}$ as an operator from A_{1} to \mathbb{R}, hence as a norm less than $C\|b\|_{B_{0}}^{1-\theta}\|b\|_{B_{1}}^{\theta}$; thus, $\tilde{T}_{f}: b \mapsto\langle f \mid b\rangle$ is a continuous linear form on $\left[B_{0}, B_{1}\right]_{\theta, 1}$. This gives that $f \in\left(\left[B_{0}, B_{1}\right]_{\theta, 1}\right)^{\prime}=\left[B_{0}^{\prime}, B_{1}^{\prime}\right]_{\theta, \infty}$ (since $B_{0} \cap B_{1}$ is dense in B_{0} and B_{1}).

The theorem I proved in [3] is the following one:

Theorem 1

Let $1<p_{0} \leq q_{0}<+\infty$ and $1<p_{1} \leq q_{1}<+\infty$, and

$$
\left(\frac{1}{p}, \frac{1}{q}\right)=(1-\theta)\left(\frac{1}{p_{0}}, \frac{1}{q_{0}}\right)+\theta\left(\frac{1}{p_{1}}, \frac{1}{q_{1}}\right)
$$

for some $\theta \in(0,1)$. Then there exists an interpolation functor F of exponent θ such that $F\left(\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right)=\dot{M}^{p, q}$ if and only if $p_{0} / q_{0}=p_{1} / q_{1}$.

The negative result for the case $p_{0} / q_{0} \neq p_{1} / q_{1}$ was proven by a generalization of a counterexample by Ruiz and Vega [4] which proves that, in that case, we don't have the embedding of $\dot{M}^{p, q}$ into $\left[\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right]_{\theta, \infty}$.

The proof for the positive result (on the case $p_{0} / q_{0}=p_{1} / q_{1}$) was inexact. I claimed that in that case we have the complex interpolation $\dot{M}^{p, q}=$ $\left[\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right]_{\theta}$. But this is false as pointed to me by Sickel (who has recently characterized the intermediate space $\dot{M}^{p, q} \subset\left[\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right]_{\theta}$ in a joint work with Yang and Yuan [5]). Indeed, it is easy to see that, when $p_{0} / q_{0}=p_{1} / q_{1}=p_{0} / q_{0}<1$ and $p_{0} \neq p_{1}, \dot{M}^{p_{0}, q_{0}} \cap \dot{M}^{p_{1}, q_{1}}$ is not dense in $\dot{M}^{p, q}$, while it is always true that $A_{0} \cap A_{1}$ is dense in $\left[A_{0}, A_{1}\right]_{\theta}$ (see [1]). Sickel's counterexample is very clear : if $r=\min \left(p_{0}, p_{1}\right)$ and $s=\max \left(q_{0}, q_{1}\right)$, we have $\dot{M}^{p, q} \subset \dot{M}^{r, q}$ and $\dot{M}^{p_{0}, q_{0}} \cap \dot{M}^{p_{1}, q_{1}} \subset \dot{M}^{r, s} ;$ thus the applications $f \mapsto \rho^{d(1 / q-1 / r)} 1_{B(0, \rho)} f$ are equicontinuous from $\dot{M}^{p, q}$ to L^{r}; for $f \in \dot{M}^{p_{0}, q_{0}} \cap \dot{M}^{p_{1}, q_{1}}$, we have $\left.\lim _{\rho \rightarrow 0} \rho^{d(1 / q-1 / r)} \| 1_{B(0, \rho}\right) f \|_{r}=0$, while for $f_{0}=|x|^{-d / q} \in \dot{M}^{p, q}$, we have $\left.\lim _{\rho \rightarrow 0} \rho^{d(1 / q-1 / r)} \| 1_{B(0, \rho}\right) f_{0} \|_{r}>0$; thus f_{0} does not belong to the closure of $\dot{M}^{p_{0}, q_{0}} \cap \dot{M}^{p_{1}, q_{1}}$

However, a slight modification of the proof of [3] gives the following theorem :

Theorem 2

Let $1<p_{0} \leq q_{0}<+\infty$ and $1<p_{1} \leq q_{1}<+\infty$, and

$$
\left(\frac{1}{p}, \frac{1}{q}\right)=(1-\theta)\left(\frac{1}{p_{0}}, \frac{1}{q_{0}}\right)+\theta\left(\frac{1}{p_{1}}, \frac{1}{q_{1}}\right)
$$

If $p_{0} / q_{0}=p_{1} / q_{1}$, then

$$
\dot{M}^{p, q}=\left[\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right]^{\theta} .
$$

Let us recall that Calderón [2] defined two complex interpolation functors : $\left[A_{0}, A_{1}\right]_{\theta}$ and $\left[A_{0}, A_{1}\right]^{\theta}$. We have $\left[A_{0}, A_{1}\right]_{\theta}=\left[A_{0}, A_{1}\right]^{\theta}$ (with equality when at least one of the two spaces A_{0} and A_{1} is reflexive).

Proof :

Let us recall the definition of $\left[A_{0}, A_{1}\right]_{\theta}$ and $\left[A_{0}, A_{1}\right]^{\theta}$.
Let Ω be the open complex strip $\Omega=\{z \in \mathbb{C} / 0<\Re z<1\}$. \mathcal{F} is the space of functions F defined on the closed complex strip $\bar{\Omega}$ such that :

1. F is continuous and bounded from $\bar{\Omega}$ to $A_{0}+A_{1}$
2. F is analytic from Ω to $A_{0}+A_{1}$
3. $t \mapsto F(i t)$ is continuous from \mathbb{R} to A_{0}, and $\lim _{|t| \rightarrow+\infty}\|F(i t)\|_{A_{0}}=0$
4. $t \mapsto F(1+i t)$ is continuous from \mathbb{R} to A_{1}, and $\lim _{|t| \rightarrow+\infty}\|F(1+i t)\|_{A_{0}}=$ 0

Then

$$
f \in\left[A_{0}, A_{1}\right]_{\theta} \Leftrightarrow \exists F \in \mathcal{F}, f=F(\theta)
$$

and

$$
\|f\|_{\left[A_{0}, A_{1}\right]_{\theta}}=\inf _{f=F(\theta)} \max \left(\sup _{t \in \mathbb{R}}\|F(i t)\|_{A_{0}}, \sup _{t \in \mathbb{R}}\|F(1+i t)\|_{A_{1}}\right) .
$$

On the other hand, \mathcal{G} is the space of functions G defined on the closed complex strip $\bar{\Omega}$ such that:

1. $\frac{1}{1+|z|} G$ is continuous and bounded from $\bar{\Omega}$ to $A_{0}+A_{1}$
2. G is analytic from Ω to $A_{0}+A_{1}$
3. $t \mapsto G(i t)-G(0)$ is Lipschitz from \mathbb{R} to A_{0}
4. $t \mapsto G(1+i t)-G(1)$ is Lipschitz from \mathbb{R} to A_{1}

Then

$$
f \in\left[A_{0}, A_{1}\right]^{\theta} \Leftrightarrow \exists G \in \mathcal{G}, f=G^{\prime}(\theta)
$$

and
$\|f\|_{\left[A_{0}, A_{1}\right]^{\theta}}=\inf _{f=G^{\prime}(\theta)} \max \left(\sup _{t_{1}, t_{2} \in \mathbb{R}}\left\|\frac{G\left(i t_{2}\right)-G\left(i t_{1}\right)}{t_{2}-t_{1}}\right\|_{A_{0}} \sup _{t_{1}, t_{2} \in \mathbb{R}}\left\|\frac{G\left(1+i t_{2}\right)-G\left(1+i t_{1}\right)}{t_{2}-t_{1}}\right\|_{A_{1}}\right)$.
Let us remark that, for continuous functions, (strong) analyticity is equivalent to weak analyticiy or even ${ }^{*}$-weak analyticity when A_{0} and A_{1} are dual spaces of B_{0} and B_{1} with $B_{0} \cap B_{1}$ dense in B_{0} and B_{1}. Indeed, analyticity is equivalent to the fact that, whenever the closed ball $\bar{B}\left(z_{0}, r\right)$ is contained in Ω and $\left|w-z_{0}\right|<r$, then $F(w)=\frac{1}{2 i \pi} \int_{\left|z-z_{0}\right|=r} F(z) \frac{d z}{z-w}$. As F is continuous, we have, for $b \in B_{0} \cap B_{1}$,
$\left\langle b \left\lvert\, \frac{1}{2 i \pi} \int_{\left|z-z_{0}\right|=r} F(z) \frac{d z}{z-w}\right.\right\rangle_{B_{0} \cap B_{1}, A_{0}+A_{1}}=\frac{1}{2 i \pi} \int_{\left|z-z_{0}\right|=r}\langle b \mid F(z)\rangle_{B_{0} \cap B_{1}, A_{0}+A_{1}} \frac{d z}{z-w}$
The equvalence remains true for *-weakly continuous functions.
However, of course, there is no equivalence between (strong) continuity and ${ }^{*}$-weak continuity. In the original proof of [3], one made two remaks :

1. Let $1<p_{0} \leq q_{0}<+\infty$ and $1<p_{1} \leq q_{1}<+\infty$, and

$$
\left(\frac{1}{p}, \frac{1}{q}\right)=(1-\theta)\left(\frac{1}{p_{0}}, \frac{1}{q_{0}}\right)+\theta\left(\frac{1}{p_{1}}, \frac{1}{q_{1}}\right) .
$$

If F is an interpolation functor of exponent θ that satisfies $F\left(L^{p_{0}}, L^{p_{1}}\right)=$ L^{p}, then $F\left(\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right) \subset \dot{M}^{p, q}$. Thus, we have the embeddings of $\left[\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right]_{\theta, p},\left[\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right]_{\theta}$ and $\left[\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right]^{\theta}$ into $\dot{M}^{p, q}$.
2. When moreover $p_{0} / q_{0}=p_{1} / q_{1}=p / q$ we may define for $f \in \dot{M}^{p, q}$ the function $F(z)=\frac{f}{|f|}|f|^{(1-z) \frac{p}{p_{0}}+z \frac{p}{p_{1}}}$. This is a bounded ${ }^{*}$-weakly continuous function of $z=x+i y$ (for $0 \leq x \leq 1$) with values in $\dot{M}^{p_{0}, q_{0}}+\dot{M}^{p_{1}, q_{1}}$, holomorphic on the strip $0<x<1$, with $\sup _{\in \mathbb{R}}\|F(i y)\|_{\dot{M}^{p_{0}, q_{0}}}<+\infty$, $\sup _{\in \mathbb{R}}\|F(1+i y)\|_{\dot{M}^{p_{1}, q_{1}}}<+\infty$, and $F(\theta)=f$.

If F was strongly continuous, we would find that $f=F(\theta)$ would belong to $\left[\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right]_{\theta}$. But F is only ${ }^{*}$-weakly continuous. We may define $G(z)=\int_{0}^{z} F(w) d w$. Then we have $G \in \mathcal{G}$, and $G^{\prime}(\theta)=f$; thus f belongs to $\left[\dot{M}^{p_{0}, q_{0}}, \dot{M}^{p_{1}, q_{1}}\right]^{\theta}$

References

[1] J. Bergh and J. Löfström. Interpolation spaces. Springer-Verlag, 1976.
[2] A.P. Calderón. Intermediate spaces and interpolation: the complex method. Studia Math., 24:113-190, 1964.
[3] P.G. Lemarié-Rieusset. Multipliers and Morrey spaces. Potential Analysis, 38:741-752, 2013.
[4] A. Ruiz and L. Vega. Corrigenda to "unique continuation for Schrödinger operators" and a remark on interpolation of Morrey spaces. Publ. Mat., 39:404-411, 1995.
[5] W. Sickel. Personnal communication, march 2014.
[6] C.T. Zorko. Morrey spaces. Proc. Amer. Math. Soc., 98:586-592, 1986.

[^0]: *Laboratoire de Mathématiques et Modélisation d'Évry, UMR CNRS 8071, Université d'Évry; e-mail : plemarie@univ-evry.fr

