Erratum to "Multipliers and Morrey spaces".

Pierre Gilles Lemarié-Rieusset*

Abstract

We correct the complex interpolation results for Morrey spaces which is false for the first interpolation functor of Calderón, but is exact for the Calderón's second interpolation functor.

Keywords: Morrey spaces; interpolation. **2010** Mathematics Subject Classification: 42B

In my paper "Multipliers and Morrey spaces" [3], there is a slight mistake in Theorem 3, concerning the interpolation of Morrey spaces.

Let \mathcal{B} be the collection of all Euclidean balls B on \mathbb{R}^d : $B = B(x_B, r_B) = \{x \in \mathbb{R}^d \mid |x - x_B| < R_B$. For $B \in \mathcal{B}$, we write $|B| = \int_B dx = |B(0, 1)| r_B^d$. Define, for $1 , the space <math>\dot{M}^{p,q}(\mathbb{R}^n)$ as the space of locally p-integrable functions f such that

$$||f||_{\dot{M}^{p,q}} := \sup_{B \in \mathcal{B}} |B|^{1/q - 1/p} (\int_{B} |f(x)|^{p} dx)^{1/p} < +\infty.$$

It is easy to check that, when $1 < p_0 \le q_0 < +\infty$ and $1 < p_1 \le q_1 < +\infty$, and

$$(\frac{1}{p}, \frac{1}{q}) = (1 - \theta)(\frac{1}{p_0}, \frac{1}{q_0}) + \theta(\frac{1}{p_1}, \frac{1}{q_1})$$

for some $\theta \in (0,1)$, then $\dot{M}^{p_0,q_0} \cap \dot{M}^{p_1,q_1} \subset \dot{M}^{p,q}$ and

$$||f||_{\dot{M}^{p,q}} \le ||f||_{\dot{M}^{p_0,q_0}}^{1-\theta} ||f||_{\dot{M}^{p_1,q_1}}^{\theta}$$

The question I studied was then whether one may find an interpolation functor F of exponent θ such that $F(\dot{M}^{p_0,q_0},\dot{M}^{p_1,q_1}) = \dot{M}^{p,q}$. If so, one should have the continuous embeddings

$$[\dot{M}^{p_0,q_0},\dot{M}^{p_1,q_1}]_{\theta,1}\subset\dot{M}^{p,q}\subset[\dot{M}^{p_0,q_0},\dot{M}^{p_1,q_1}]_{\theta,\infty}.$$

^{*}Laboratoire de Mathématiques et Modélisation d'Évry, UMR CNRS 8071, Université d'Évry; e-mail : plemarie@univ-evry.fr

The inclusion $[A_0, A_1]_{\theta,1} \subset F(A_0, A_1)$ is a direct conclusion from the inequality

$$||f||_{F(A_0,A_1)} \le C||f||_{A_0}^{1-\theta}||f||_{A_1}^{\theta}$$

(obtained by interpolation inequalities for the operator norms of $\lambda \mapsto \lambda f$ from \mathbb{R} to A_0 and from \mathbb{R} to A_1 , hence from \mathbb{R} to $F(A_0, A_1)$. The inclusion $F(A_0, A_1) \subset [A_0, A_1]_{\theta,\infty}$ is proven in [1] under the assumption that $A_0 \cap A_1$ is dense in A_0 and in A_1 . This is not the case for Morrey spaces. However, one may easily adapt the proof, as Morrey spaces are dual spaces (see for instance [6]).

If we assume that $A_0 = B'_0$ and $A_1 = B'_1$ and that $B_0 \cap B_1$ is dense in B_0 and B_1 ; then, for $b \in B_0 \cap B_1$, the linear form $T_b : f \mapsto \langle f|b\rangle$ has a norm less than $||b||_{B_0}$ as an operator from A_0 to \mathbb{R} and less than $||b||_{B_1}$ as an operator from A_1 to \mathbb{R} , hence as a norm less than $C||b||_{B_0}^{1-\theta}||b||_{B_1}^{\theta}$; thus, $\tilde{T}_f : b \mapsto \langle f|b\rangle$ is a continuous linear form on $[B_0, B_1]_{\theta,1}$. This gives that $f \in ([B_0, B_1]_{\theta,1})' = [B'_0, B'_1]_{\theta,\infty}$ (since $B_0 \cap B_1$ is dense in B_0 and B_1).

The theorem I proved in [3] is the following one:

Theorem 1

Let $1 < p_0 \le q_0 < +\infty$ and $1 < p_1 \le q_1 < +\infty$, and

$$(\frac{1}{p}, \frac{1}{q}) = (1 - \theta)(\frac{1}{p_0}, \frac{1}{q_0}) + \theta(\frac{1}{p_1}, \frac{1}{q_1})$$

for some $\theta \in (0,1)$. Then there exists an interpolation functor F of exponent θ such that $F(\dot{M}^{p_0,q_0},\dot{M}^{p_1,q_1}) = \dot{M}^{p,q}$ if and only if $p_0/q_0 = p_1/q_1$.

The negative result for the case $p_0/q_0 \neq p_1/q_1$ was proven by a generalization of a counterexample by Ruiz and Vega [4] which proves that, in that case, we don't have the embedding of $\dot{M}^{p,q}$ into $[\dot{M}^{p_0,q_0}, \dot{M}^{p_1,q_1}]_{\theta,\infty}$.

The proof for the positive result (on the case $p_0/q_0 = p_1/q_1$) was inexact. I claimed that in that case we have the complex interpolation $\dot{M}^{p,q} = [\dot{M}^{p_0,q_0},\dot{M}^{p_1,q_1}]_{\theta}$. But this is false as pointed to me by Sickel (who has recently characterized the intermediate space $\dot{M}^{p,q} \subset [\dot{M}^{p_0,q_0},\dot{M}^{p_1,q_1}]_{\theta}$ in a joint work with Yang and Yuan [5]). Indeed, it is easy to see that, when $p_0/q_0 = p_1/q_1 = p_0/q_0 < 1$ and $p_0 \neq p_1$, $\dot{M}^{p_0,q_0} \cap \dot{M}^{p_1,q_1}$ is not dense in $\dot{M}^{p,q}$, while it is always true that $A_0 \cap A_1$ is dense in $[A_0, A_1]_{\theta}$ (see [1]). Sickel's counterexample is very clear: if $r = \min(p_0, p_1)$ and $s = \max(q_0, q_1)$, we have $\dot{M}^{p,q} \subset \dot{M}^{r,q}$ and $\dot{M}^{p_0,q_0} \cap \dot{M}^{p_1,q_1} \subset \dot{M}^{r,s}$; thus the applications $f \mapsto \rho^{d(1/q-1/r)} 1_{B(0,\rho}) f$ are equicontinuous from $\dot{M}^{p,q}$ to L^r ; for $f \in \dot{M}^{p_0,q_0} \cap \dot{M}^{p_1,q_1}$, we have $\lim_{\rho \to 0} \rho^{d(1/q-1/r)} \|1_{B(0,\rho)} f\|_r = 0$, while for $f_0 = |x|^{-d/q} \in \dot{M}^{p,q}$, we have $\lim_{\rho \to 0} \rho^{d(1/q-1/r)} \|1_{B(0,\rho)} f_0\|_r > 0$; thus f_0 does not belong to the closure of $\dot{M}^{p_0,q_0} \cap \dot{M}^{p_1,q_1}$

However, a slight modification of the proof of [3] gives the following theorem :

Theorem 2

Let $1 < p_0 \le q_0 < +\infty$ and $1 < p_1 \le q_1 < +\infty$, and

$$(\frac{1}{p}, \frac{1}{q}) = (1 - \theta)(\frac{1}{p_0}, \frac{1}{q_0}) + \theta(\frac{1}{p_1}, \frac{1}{q_1})$$

If $p_0/q_0 = p_1/q_1$, then

$$\dot{M}^{p,q} = [\dot{M}^{p_0,q_0}, \dot{M}^{p_1,q_1}]^{\theta}.$$

Let us recall that Calderón [2] defined two complex interpolation functors : $[A_0, A_1]_{\theta}$ and $[A_0, A_1]^{\theta}$. We have $[A_0, A_1]_{\theta} = [A_0, A_1]^{\theta}$ (with equality when at least one of the two spaces A_0 and A_1 is reflexive).

Proof:

Let us recall the definition of $[A_0, A_1]_{\theta}$ and $[A_0, A_1]^{\theta}$.

Let Ω be the open complex strip $\Omega = \{z \in \mathbb{C} \mid 0 < \Re z < 1\}$. \mathcal{F} is the space of functions F defined on the closed complex strip $\bar{\Omega}$ such that :

- 1. F is continuous and bounded from $\bar{\Omega}$ to $A_0 + A_1$
- 2. F is analytic from Ω to $A_0 + A_1$
- 3. $t \mapsto F(it)$ is continuous from \mathbb{R} to A_0 , and $\lim_{|t| \to +\infty} ||F(it)||_{A_0} = 0$
- 4. $t \mapsto F(1+it)$ is continuous from \mathbb{R} to A_1 , and $\lim_{|t| \to +\infty} ||F(1+it)||_{A_0} = 0$

Then

$$f \in [A_0, A_1]_{\theta} \Leftrightarrow \exists F \in \mathcal{F}, f = F(\theta)$$

and

$$||f||_{[A_0,A_1]_{\theta}} = \inf_{f=F(\theta)} \max(\sup_{t\in\mathbb{R}} ||F(it)||_{A_0}, \sup_{t\in\mathbb{R}} ||F(1+it)||_{A_1}).$$

On the other hand, \mathcal{G} is the space of functions G defined on the closed complex strip $\bar{\Omega}$ such that :

- 1. $\frac{1}{1+|z|}G$ is continuous and bounded from $\bar{\Omega}$ to A_0+A_1
- 2. G is analytic from Ω to $A_0 + A_1$
- 3. $t \mapsto G(it) G(0)$ is Lipschitz from \mathbb{R} to A_0

4. $t \mapsto G(1+it) - G(1)$ is Lipschitz from \mathbb{R} to A_1

Then

$$f \in [A_0, A_1]^{\theta} \Leftrightarrow \exists G \in \mathcal{G}, f = G'(\theta)$$

and

$$||f||_{[A_0,A_1]^{\theta}} = \inf_{f=G'(\theta)} \max(\sup_{t_1,t_2 \in \mathbb{R}} ||\frac{G(it_2) - G(it_1)}{t_2 - t_1}||_{A_0}, \sup_{t_1,t_2 \in \mathbb{R}} ||\frac{G(1+it_2) - G(1+it_1)}{t_2 - t_1}||_{A_1}).$$

Let us remark that, for continuous functions, (strong) analyticity is equivalent to weak analyticity or even *-weak analyticity when A_0 and A_1 are dual spaces of B_0 and B_1 with $B_0 \cap B_1$ dense in B_0 and B_1 . Indeed, analyticity is equivalent to the fact that, whenever the closed ball $\bar{B}(z_0, r)$ is contained in Ω and $|w - z_0| < r$, then $F(w) = \frac{1}{2i\pi} \int_{|z-z_0|=r} F(z) \frac{dz}{z-w}$. As F is continuous, we have, for $b \in B_0 \cap B_1$,

$$\langle b | \frac{1}{2i\pi} \int_{|z-z_0|=r} F(z) \frac{dz}{z-w} \rangle_{B_0 \cap B_1, A_0 + A_1} = \frac{1}{2i\pi} \int_{|z-z_0|=r} \langle b | F(z) \rangle_{B_0 \cap B_1, A_0 + A_1} \frac{dz}{z-w}$$

The equivalence remains true for *-weakly continuous functions.

However, of course, there is no equivalence between (strong) continuity and *-weak continuity. In the original proof of [3], one made two remaks:

1. Let $1 < p_0 \le q_0 < +\infty$ and $1 < p_1 \le q_1 < +\infty$, and

$$(\frac{1}{p}, \frac{1}{q}) = (1 - \theta)(\frac{1}{p_0}, \frac{1}{q_0}) + \theta(\frac{1}{p_1}, \frac{1}{q_1}).$$

If F is an interpolation functor of exponent θ that satisfies $F(L^{p_0}, L^{p_1}) = L^p$, then $F(\dot{M}^{p_0,q_0}, \dot{M}^{p_1,q_1}) \subset \dot{M}^{p,q}$. Thus, we have the embeddings of $[\dot{M}^{p_0,q_0}, \dot{M}^{p_1,q_1}]_{\theta,p}$, $[\dot{M}^{p_0,q_0}, \dot{M}^{p_1,q_1}]_{\theta}$ and $[\dot{M}^{p_0,q_0}, \dot{M}^{p_1,q_1}]^{\theta}$ into $\dot{M}^{p,q}$.

2. When moreover $p_0/q_0 = p_1/q_1 = p/q$ we may define for $f \in \dot{M}^{p,q}$ the function $F(z) = \frac{f}{|f|} |f|^{(1-z)\frac{p}{p_0} + z\frac{p}{p_1}}$. This is a bounded *-weakly continuous function of z = x + iy (for $0 \le x \le 1$) with values in $\dot{M}^{p_0,q_0} + \dot{M}^{p_1,q_1}$, holomorphic on the strip 0 < x < 1, with $\sup_{\in \mathbb{R}} ||F(iy)||_{\dot{M}^{p_0,q_0}} < +\infty$, $\sup_{\in \mathbb{R}} ||F(1+iy)||_{\dot{M}^{p_1,q_1}} < +\infty$, and $F(\theta) = f$.

If F was strongly continuous, we would find that $f = F(\theta)$ would belong to $[\dot{M}^{p_0,q_0},\dot{M}^{p_1,q_1}]_{\theta}$. But F is only *-weakly continuous. We may define $G(z) = \int_0^z F(w) \, dw$. Then we have $G \in \mathcal{G}$, and $G'(\theta) = f$; thus f belongs to $[\dot{M}^{p_0,q_0},\dot{M}^{p_1,q_1}]^{\theta}$

References

- [1] J. Bergh and J. Löfström. *Interpolation spaces*. Springer-Verlag, 1976.
- [2] A.P. Calderón. Intermediate spaces and interpolation: the complex method. *Studia Math.*, 24:113–190, 1964.
- [3] P.G. Lemarié-Rieusset. Multipliers and Morrey spaces. *Potential Analysis*, 38:741–752, 2013.
- [4] A. Ruiz and L. Vega. Corrigenda to "unique continuation for Schrödinger operators" and a remark on interpolation of Morrey spaces. *Publ. Mat.*, 39:404–411, 1995.
- [5] W. Sickel. Personnal communication, march 2014.
- [6] C.T. Zorko. Morrey spaces. Proc. Amer. Math. Soc., 98:586–592, 1986.