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Erratum to “Multipliers and Morrey spaces”.

Pierre Gilles Lemarié–Rieusset∗

Abstract

We correct the complex interpolation results for Morrey spaces

which is false for the first interpolation functor of Calderón, but is

exact for the Calderón’s second interpolation functor.
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In my paper “Multipliers and Morrey spaces” [3], there is a slight mistake
in Theorem 3, concerning the interpolation of Morrey spaces.

Let B be the collection of all Euclidean balls B on Rd : B = B(xB, rB) =
{x ∈ Rd / |x − xB| < RB. For B ∈ B, we write |B| =

∫
B
dx = |B(0, 1)|rdB.

Define, for 1 < p ≤ q < +∞, the space Ṁp,q(Rn) as the space of locally
p-integrable functions f such that

‖f‖Ṁp,q := sup
B∈B

|B|1/q−1/p(

∫
B

|f(x)|p dx)1/p < +∞.

It is easy to check that, when 1 < p0 ≤ q0 < +∞ and 1 < p1 ≤ q1 < +∞,
and

(
1

p
,
1

q
) = (1− θ)(

1

p0
,
1

q0
) + θ(

1

p1
,
1

q1
)

for some θ ∈ (0, 1), then Ṁp0,q0 ∩ Ṁp1,q1 ⊂ Ṁp,q and

‖f‖Ṁp,q ≤ ‖f‖1−θ

Ṁp0,q0
‖f‖θ

Ṁp1,q1

The question I studied was then whether one may find an interpolation
functor F of exponent θ such that F (Ṁp0,q0, Ṁp1,q1) = Ṁp,q. If so, one should
have the continuous embeddings

[Ṁp0,q0, Ṁp1,q1]θ,1 ⊂ Ṁp,q ⊂ [Ṁp0,q0, Ṁp1,q1]θ,∞.
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The inclusion [A0, A1]θ,1 ⊂ F (A0, A1) is a direct conclusion from the in-
equality

‖f‖F (A0,A1) ≤ C‖f‖1−θ
A0

‖f‖θA1

(obtained by interpolation inequalities for the operator norms of λ 7→ λf
from R to A0 and from R to A1, hence from R to F (A0, A1)). The inclusion
F (A0, A1) ⊂ [A0, A1]θ,∞ is proven in [1] under the assumption that A0 ∩ A1

is dense in A0 and in A1. This is not the case for Morrey spaces. However,
one may easily adapt the proof, as Morrey spaces are dual spaces (see for
instance [6]).

If we assume that A0 = B′
0 and A1 = B′

1 and that B0 ∩ B1 is dense in
B0 and B1; then, for b ∈ B0 ∩ B1, the linear form Tb : f 7→ 〈f |b〉 has a
norm less than ‖b‖B0

as an operator from A0 to R and less than ‖b‖B1
as

an operator from A1 to R, hence as a norm less than C‖b‖1−θ
B0

‖b‖θB1
; thus,

T̃f : b 7→ 〈f |b〉 is a continuous linear form on [B0, B1]θ,1. This gives that
f ∈ ([B0, B1]θ,1)

′ = [B′
0, B

′
1]θ,∞ (since B0 ∩ B1 is dense in B0 and B1).

The theorem I proved in [3] is the following one:

Theorem 1

Let 1 < p0 ≤ q0 < +∞ and 1 < p1 ≤ q1 < +∞, and
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for some θ ∈ (0, 1). Then there exists an interpolation functor F of exponent

θ such that F (Ṁp0,q0, Ṁp1,q1) = Ṁp,q if and only if p0/q0 = p1/q1.

The negative result for the case p0/q0 6= p1/q1 was proven by a general-
ization of a counterexample by Ruiz and Vega [4] which proves that, in that
case, we don’t have the embedding of Ṁp,q into [Ṁp0,q0, Ṁp1,q1]θ,∞.

The proof for the positive result (on the case p0/q0 = p1/q1) was inex-
act. I claimed that in that case we have the complex interpolation Ṁp,q =
[Ṁp0,q0, Ṁp1,q1]θ. But this is false as pointed to me by Sickel (who has
recently characterized the intermediate space Ṁp,q ⊂ [Ṁp0,q0, Ṁp1,q1]θ in
a joint work with Yang and Yuan [5]). Indeed, it is easy to see that,
when p0/q0 = p1/q1 = p0/q0 < 1 and p0 6= p1, Ṁp0,q0 ∩ Ṁp1,q1 is not
dense in Ṁp,q, while it is always true that A0 ∩ A1 is dense in [A0, A1]θ
(see [1]). Sickel’s counterexample is very clear : if r = min(p0, p1) and
s = max(q0, q1), we have Ṁp,q ⊂ Ṁ r,q and Ṁp0,q0 ∩ Ṁp1,q1 ⊂ Ṁ r,s; thus
the applications f 7→ ρd(1/q−1/r)1B(0,ρ)f are equicontinuous from Ṁp,q to Lr;

for f ∈ Ṁp0,q0 ∩ Ṁp1,q1, we have limρ→0 ρ
d(1/q−1/r)‖1B(0,ρ)f‖r = 0, while for

f0 = |x|−d/q ∈ Ṁp,q, we have limρ→0 ρ
d(1/q−1/r)‖1B(0,ρ)f0‖r > 0; thus f0 does

not belong to the closure of Ṁp0,q0 ∩ Ṁp1,q1
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However, a slight modification of the proof of [3] gives the following the-
orem :

Theorem 2

Let 1 < p0 ≤ q0 < +∞ and 1 < p1 ≤ q1 < +∞, and

(
1

p
,
1

q
) = (1− θ)(

1

p0
,
1

q0
) + θ(

1

p1
,
1

q1
)

If p0/q0 = p1/q1, then

Ṁp,q = [Ṁp0,q0, Ṁp1,q1]θ.

Let us recall that Calderón [2] defined two complex interpolation functors :
[A0, A1]θ and [A0, A1]

θ. We have [A0, A1]θ = [A0, A1]
θ (with equality when at

least one of the two spaces A0 and A1 is reflexive).

Proof :

Let us recall the definition of [A0, A1]θ and [A0, A1]
θ.

Let Ω be the open complex strip Ω = {z ∈ C / 0 < ℜz < 1}. F is the
space of functions F defined on the closed complex strip Ω̄ such that :

1. F is continuous and bounded from Ω̄ to A0 + A1

2. F is analytic from Ω to A0 + A1

3. t 7→ F (it) is continuous from R to A0, and lim|t|→+∞ ‖F (it)‖A0
= 0

4. t 7→ F (1+it) is continuous from R to A1, and lim|t|→+∞ ‖F (1+it)‖A0
=

0

Then
f ∈ [A0, A1]θ ⇔ ∃F ∈ F , f = F (θ)

and
‖f‖[A0,A1]θ = inf

f=F (θ)
max(sup

t∈R
‖F (it)‖A0

, sup
t∈R

‖F (1 + it)‖A1
).

On the other hand, G is the space of functions G defined on the closed
complex strip Ω̄ such that :

1. 1
1+|z|

G is continuous and bounded from Ω̄ to A0 + A1

2. G is analytic from Ω to A0 + A1

3. t 7→ G(it)−G(0) is Lipschitz from R to A0
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4. t 7→ G(1 + it)−G(1) is Lipschitz from R to A1

Then
f ∈ [A0, A1]

θ ⇔ ∃G ∈ G, f = G′(θ)

and

‖f‖[A0,A1]θ = inf
f=G′(θ)

max( sup
t1,t2∈R

‖
G(it2)−G(it1)

t2 − t1
‖A0

, sup
t1,t2∈R

‖
G(1 + it2)−G(1 + it1)

t2 − t1
‖A1

).

Let us remark that, for continuous functions, (strong) analyticity is equiv-
alent to weak analyticiy or even *-weak analyticity when A0 and A1 are dual
spaces of B0 and B1 with B0 ∩B1 dense in B0 and B1. Indeed, analyticity is
equivalent to the fact that, whenever the closed ball B̄(z0, r) is contained in
Ω and |w − z0| < r, then F (w) = 1

2iπ

∫
|z−z0|=r

F (z) dz
z−w

. As F is continuous,

we have, for b ∈ B0 ∩ B1,

〈b|
1

2iπ

∫
|z−z0|=r

F (z)
dz

z − w
〉B0∩B1,A0+A1

=
1

2iπ

∫
|z−z0|=r

〈b|F (z)〉B0∩B1,A0+A1

dz

z − w

The equvalence remains true for *-weakly continuous functions.
However, of course, there is no equivalence between (strong) continuity

and *-weak continuity. In the original proof of [3], one made two remaks :

1. Let 1 < p0 ≤ q0 < +∞ and 1 < p1 ≤ q1 < +∞, and

(
1

p
,
1

q
) = (1− θ)(

1

p0
,
1

q0
) + θ(

1

p1
,
1

q1
).

If F is an interpolation functor of exponent θ that satisfies F (Lp0 , Lp1) =
Lp, then F (Ṁp0,q0, Ṁp1,q1) ⊂ Ṁp,q. Thus, we have the embeddings of
[Ṁp0,q0, Ṁp1,q1]θ,p, [Ṁ

p0,q0, Ṁp1,q1]θ and [Ṁp0,q0, Ṁp1,q1]θ into Ṁp,q.

2. When moreover p0/q0 = p1/q1 = p/q we may define for f ∈ Ṁp,q the

function F (z) = f
|f |
|f |

(1−z) p

p0
+z p

p1 . This is a bounded *-weakly continu-

ous function of z = x+iy (for 0 ≤ x ≤ 1) with values in Ṁp0,q0+Ṁp1,q1,
holomorphic on the strip 0 < x < 1, with sup∈R ‖F (iy)‖Ṁp0,q0 < +∞,
sup∈R ‖F (1 + iy)‖Ṁp1,q1 < +∞, and F (θ) = f .

If F was strongly continuous, we would find that f = F (θ) would belong
to [Ṁp0,q0, Ṁp1,q1]θ. But F is only *-weakly continuous. We may define
G(z) =

∫ z

0
F (w) dw. Then we have G ∈ G, and G′(θ) = f ; thus f belongs to

[Ṁp0,q0, Ṁp1,q1]θ ⋄
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