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ABSTRACT

We present a conservative method for the three-dimensional coupling between an inviscid compressible
flow and a moving rigid solid. We consider an inviscid Euler fluid in conservative form discretized using
a high-order monotonicity-preserving Finite Volume method with a directional operator splitting. An
Immersed Boundary technique is employed through the modification of the Finite Volume fluxes in the
vicinity of the solid. The method yields exact conservation of mass, momentum and energy of the system,
and also exhibits important consistency properties, such as conservation of uniform movement of both
fluid and solid as well as the absence of numerical roughness on a straight boundary. The coupling scheme
evaluates the fluxes on the fluid side and the forces and torques on the solid side only once every time
step, ensuring the computational efficiency of the coupling. We present numerical results assessing the
robustness of the method in the case of rigid solids with large displacements.
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1 Introduction

A large number of engineering problems involve fluid-structure interactions. In the military or safety
domains, the effects of an explosion on a building or on a submarine involve complex non-linear phenomena
(shock waves, cracking, rupture, ...) [28, 30]. The characteristic time scale of these phenomena is extremely
short and the driving effect of the interaction is the overpressure. Viscous effects therefore play a lesser
role in the dynamics of this type of coupled system. With an eye toward these applications, we consider
in this paper an inviscid compressible flow model on the fluid side with shock waves and a rigid object
on the solid side.

Fully Eulerian [13] and fully Lagrangian methods [17] have been proposed for the simulation of fluid-
structure interaction. However, monolithic Eulerian or Lagrangian approaches are in general limited to
the case where the fluid and the solid behave according to similar equations with different parameters
(except if the regions are solved with different coupled solvers, see [3]). In this framework, the main
challenges in fluid-structure interaction are the computation of the fluid forces that act on the solid
and the modification of the fluid domain due to the displacement of the solid. Two main classes of
methods have been developed: Arbitrary Lagrangian-Eulerian (ALE) methods and fictitious domain
methods. The ALE method [8, 18] deforms the fluid domain in order to follow the movement of the
structure, and this often involves possibly costly remeshing of the fluid domain when the solid goes
through large displacements and especially rupture. For these reasons, we choose to use a fictitious
domain method.

In fictitious domain methods, the solid is superimposed to the fixed fluid grid and additional terms
are introduced in the fluid formulation to impose the fluid boundary conditions at the solid boundary.
Various types of fictitious domain methods have been proposed. Non-conservative Immersed Boundary
methods have been first developed for incompressible flows [7, 10, 23]. An important issue in compressible
fluid-structure interaction is the conservation of mass, momentum, and energy. The accurate capture of
shocks is based on conservation properties, and the preservation of physical properties is an important
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ingredient towards an effective numerical method. In addition, verifying conservation at the discrete
level is a natural means to assess the numerical stability of the scheme [15]. Conservative Immersed
Boundary methods [5, 11, 22, 27] and Ghost Fluid methods [12, 14] have been proposed for elliptic
problems and compressible fluids. Conservative Immersed Boundary methods are built in such a way
that the spatial discretization satisfies mass, momentum, and energy conservation. Ghost Fluid methods
consist in modifying the value of ghost cells (covered by the solid) in order to compute the fluid fluxes
accurately at the interface. Ghost Fluid methods often eliminate the constraint of energy conservation
in order to eliminate spurious numerical oscillations at the material interface in compressible multifluid
interaction problems [2].

In this work, we use the Conservative Immersed Boundary method developed in [22] in combination
with a Finite Volume method (FVM) for the fluid and a Discrete Element method (DEM) for the solid.
The FVM is computed on a Cartesian grid, using high-order upwind fluxes computed with a Lax-Wendroff
approach [6]. The DEM [19, 21] is a particle method for elastodynamics, in which particles interact
through forces and torques yielding the macroscopic behaviour of the assembly. Herein, the solid being
rigid, is consists of a single particle. Both methods being time-explicit and computationally expensive, we
develop a coupling algorithm based on an explicit time-marching procedure. The two-dimensional version
of these ideas was presented in [20]. Herein, we extend the results to the three-dimensional case. This
is by no means straightforward since the three-dimensional extension poses numerous challenges at the
computational and algorithmic levels. The present method yields exact conservation of mass, momentum
and energy of the system, and also exhibits important consistency properties, such as conservation of
uniform movement of both fluid and solid as well as the absence of numerical roughness on a straight
boundary. The fluid solver used in this work is formally high-order in smooth regions so as to limit
numerical diffusion, but in the presence of shocks, the fluid limiters reduce the order to first order. Still
the use of a high-order fluid solver is advantageous to limit numerical diffusion [6]. The solid boundary
conditions in the fluid are also first order so that the coupling method is globally first order.

This paper starts in §2 with a brief description of the discretization methods for the inviscid com-
pressible fluid and the moving rigid solid. In §3, we present the conservative coupling method based
on an explicit time-marching procedure and we derive several properties of the coupling method. In
§4, we describe the main geometric algorithms required for the implementation of the three-dimensional
coupling scheme. In §5, we present numerical results showing in particular the energy and mass con-
servation achieved by the coupling scheme and the ability of the method to compute the interaction of
strong discontinuities with rigid solids undergoing large displacement. Comparisons with two-dimensional
numerical results are presented. Finally, conclusions are made in §6.

2 Fluid and solid description

The fluid is modelled by the Euler equations expressing conservation of mass, momentum, and energy
for an inviscid compressible flow, which are written in Cartesian coordinates as follows:

∂

∂t
U +

∂

∂x
F (U) +

∂

∂y
G(U) +

∂

∂z
H(U) = 0, (1)

U =


ρ
ρu
ρv
ρw
ρE

 , F (U) =


ρu

ρu2 + p
ρuv
ρuw

(ρE + p)u

 , G(U) =


ρv
ρuv

ρv2 + p
ρvw

(ρE + p)v

 , H(U) =


ρw
ρuw
ρvw

ρw2 + p
(ρE + p)w


where ρ is the mass density, p the pressure, (u, v, w) the Cartesian components of the velocity vector
~u and E the total energy. The pressure in the fluid is modelled by the state equation of a perfect gas:
p = (γ − 1)ρe, e being the specific internal energy with E = e+ 1

2 (u2 + v2 +w2) and γ = 1.4 the ratio of
specific heats, assumed to be constant.

The discretization of these equations is based on an explicit FVM on a Cartesian grid with directional
operator splitting. For the flux calculation we use the OSMP numerical scheme which is a one-step
monotonicity-preserving high-order scheme [6]. It is derived using a coupled space-time Lax-Wendroff
approach, where the formal order of accuracy in the scalar case can be set to an arbitrary order. In the
present work, we use order 11. The coupling method is actually independent from the numerical scheme
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used for the flux calculation. The time step, which is subjected to a CFL stability condition, is taken
constant for simplicity and is denoted ∆t. We introduce the discrete times tn = n∆t, for all n ≥ 0.

On the solid side, we consider a polyhedral rigid body. The solid is assumed to be star-shaped with
respect to its center of mass and its faces are assumed to be star-shaped with respect to their center
of mass. Working with triangular faces simplifies the geometric algorithms see § 4). If the solid is not
star-shaped, it might be preferable to decompose it into convex polyhedra when computing the geometric
quantites. Thus, up to a preliminary subdivision of the polygonal faces, we consider that the solid faces
are triangles. We define the thickness of the solid as the radius of the inscribed sphere. Thereafter, we
assume that the solid has a thickness greater than or equal to two fluid grid cells. Various quantities are
attached to the solid body, namely the position of his center of mass ~X, the rotation matrix Q, the velocity
of the center of mass ~V , the angular momentum matrix P, the mass m, and the principal moments of

inertia I1, I2 and I3. Let D = diag(d1, d2, d3) with di =
1

2

(
I1 + I2 + I2

)
− Ii, i ∈ {1, 2, 3}. We recall

the explicit solid time-integration scheme used in [20], consisting of the Verlet scheme for translation and
the RATTLE scheme for rotation:

~V n+ 1
2 = ~V n +

∆t

2m
~Fnfluid, ~Xn+1 = ~Xn + ∆t~V n+ 1

2 , (2)

Pn+ 1
2 = Pn +

∆t

4
j( ~Mn

fluid)Qn +
∆t

2
ΥnQn, (3)

Qn+1 = Qn + ∆tPn+ 1
2 D−1, ~V n+1 = ~V n+ 1

2 +
∆t

2m
~Fnfluid, (4)

Pn+1 = Pn+ 1
2 +

∆t

4
j( ~Mn

fluid)Qn+1 +
∆t

2
Υ̃n+1Qn+1, (5)

where in (3), Υn is a symmetric matrix such that

(Qn+1)
t
Qn+1 = I, (6)

with I the identity matrix in R3, and in (5), Υ̃n+1 a symmetric matrix such that

(Qn+1)
t
Pn+1D−1 + D−1(Pn+1)

t
Qn+1 = 0, (7)

which is the constraint associated with the derivation in time of QtQ = I, using the definition of P = Q̇D.
The matrices Υn and Υ̃n+1 are the Lagrange multipliers associated with the constraints (6) and (7),

see [20]. In addition, ~Fnfluid and ~Mn
fluid denote the fluid forces and torques applied to the solid and the

map j : R3 → R3×3 is such that j(~x)~y = ~x ∧ ~y for all ~x, ~y ∈ R3.
The time-integration scheme for the solid being explicit, the time step is restricted by a CFL stability

condition, which is in general less stringent than the fluid CFL stability condition.

3 Coupling method

In the Immersed Boundary method, the solid is superimposed to the fluid grid, leading to fluid-solid
mixed cells, thereafter called “cut-cells”. The solid faces are collected in the set F, and a generic element
of F is denoted by F . Owing to the movement of the solid, the solid faces, as set of points in R3, are
time-dependent, and we set Fn = F(tn) for all n ≥ 0. Each solid face F(t) is assigned a unit normal
vector ~νF (t) (pointing from the solid to the fluid). Finally, we denote by Ωsolid(t) the solid domain and
by Ωfluid the fluid domain.

3.1 Treatment of the cut-cells

Recalling that we use a Cartesian grid for the fluid, we denote with integer subscripts i, j, k quantities
related to the center of cells and with half-integer subscripts quantities related to the center of faces of
the fluid grid cells. For instance, the interface between cells Ci,j,k and Ci+1,j,k is denoted by ∂Ci+ 1

2 ,j,k
.

Let Ci,j,k be a cut-cell of size (∆xi,j,k, ∆yi,j,k, ∆zi,j,k). The relevant geometric quantities describing
the intersection between the moving solid and the cell Ci,j,k are (see Fig. 1):
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Solid

Fluid

Figure 1: Two possible illustrations of a cut-cell. Left panel: the cell is intersected by one solid face. Right

panel: the cell is intersected by two solid faces.

- The volume fraction 0 6 Λi,j,k(t) 6 1 occupied by solid in Ci,j,k at time t:

Λi,j,k(t) =
Vi,j,k(t)

Vi,j,k
, (8)

Vi,j,k = (∆x∆y∆z)i,j,k being the volume of Ci,j,k where the solid occupies the volume Vi,j,k(t) at time
t: Vi,j,k(t) =

∫
Ci,j,k∩Ωsolid(t)

dx dy dz. When the volume fraction is evaluated at the discrete time tn, we

use the notation Λni,j,k.

- The side area fraction 0 6 λ
n+ 1

2

i± 1
2 ,j,k

, λ
n+ 1

2

i,j± 1
2 ,k
, λ
n+ 1

2

i,j,k± 1
2

6 1 of each fluid grid cell face averaged over

the time interval
[
tn, tn+1

]
.

For example, on the face ∂Ci+ 1
2 ,j,k

, we define

λ
n+ 1

2

i+ 1
2 ,j,k

=
An+ 1

2

i+ 1
2 ,j,k

(∆y∆z)i,j,k
, (9)

where An+ 1
2

i+ 1
2 ,j,k

=
1

∆ t

∫ tn+1

tn

(∫
∂C

i+1
2
,j,k
∩Ωsolid(t)

dy dz

)
dt.

- The boundary area, denoted by A
n+ 1

2

i,j,k,F , is the area of the intersection of the solid face F(t) with

Ci,j,k averaged over the time interval
[
tn, tn+1

]
:

A
n+ 1

2

i,j,k,F =
1

∆ t

∫ tn+1

tn

(∫
Ci,j,k ∩F(t)

ds

)
dt.

We take into account the position of the solid in the fluid domain by modifying the fluid fluxes in
cut-cells. Consider such a cut-cell partially intersected by the solid, see Fig. 1. We denote by Uni,j,k the
average value of U on the fluid volume cell Ci,j,k. Integrating (1) on this cut-cell over the time interval[
tn, tn+1

]
and applying the divergence theorem yields (see Appendix A)(

1− Λn+1
i,j,k

)
Un+1
i,j,k =

(
1− Λni,j,k

)
Uni,j,k + ∆t

(
Φ
n+ 1

2

i,j,k, fluid + Φ
n+ 1

2

i,j,k, solid

)
, (10)

where Λn+1
i,j,k is defined in (8). The fluid flux is given by

Φ
n+ 1

2

i,j,k, fluid =
(1− λn+ 1

2

i− 1
2 ,j,k

)

∆xi,j,k
F
n+ 1

2

i− 1
2 ,j,k
−

(1− λn+ 1
2

i+ 1
2 ,j,k

)

∆xi,j,k
F
n+ 1

2

i+ 1
2 ,j,k

+
(1− λn+ 1

2

i,j− 1
2 ,k

)

∆yi,j,k
G
n+ 1

2

i,j− 1
2 ,k

−
(1− λn+ 1

2

i,j+ 1
2 ,k

)

∆yi,j,k
G
n+ 1

2

i,j+ 1
2 ,k

+
(1− λn+ 1

2

i,j,k− 1
2

)

∆zi,j,k
H
n+ 1

2

i,j,k− 1
2

−
(1− λn+ 1

2

i,j,k+ 1
2

)

∆zi,j,k
H
n+ 1

2

i,j,k+ 1
2

,

where λ
n+ 1

2

i± 1
2 ,j,k

, λ
n+ 1

2

i,j± 1
2 ,k

, and λ
n+ 1

2

i,j,k± 1
2

are defined in (9). The solid flux is given by Φ
n+ 1

2

i,j,k, solid =

1
Vi,j,k

∑
{F ∈F | Fn+1 ∩Ci,j,k 6= ∅} φ

n+ 1
2

i,j,k,F , which results from the presence of the solid boundaries in the

cell Ci,j,k. This flux takes into account the exchange of energy and momentum between the solid and the
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fluid resulting from the pressure forces.
The computation of the time-average of the side area fractions λn+ 1

2 (for simplicity, subscripts related

to the fluid grid cells or faces are omitted when they play no relevant role) and of the solid flux φ
n+ 1

2

F

attached to F (involving the computation of the boundary area A
n+ 1

2

F ), as considered in [11], can be very

complex in three dimensions. Instead of using Φ
n+ 1

2

fluid at time n+ 1
2 , as in [20], we evaluate the side area

fraction at time tn+1, which we now denote Φn+1
fluid, and we evaluate the solid flux, which we now denote

Φnsolid, by using the boundary area AnF . This leads to the following approximation of (10):(
1− Λn+1

i,j,k

)
Un+1
i,j,k =

(
1− Λn+1

i,j,k

)
Uni,j,k + ∆t

(
Φn+1
i,j,k, fluid + Φni,j,k, solid

)
+ ∆Un,n+1

i,j,k , (11)

where the fluid flux Φn+1
i,j,k, fluid is now given by

Φn+1
i,j,k, fluid =

(1− λn+1
i− 1

2 ,j,k
)

∆xi,j,k
F
n+ 1

2

i− 1
2 ,j,k
−

(1− λn+1
i+ 1

2 ,j,k
)

∆xi,j,k
F
n+ 1

2

i+ 1
2 ,j,k

+
(1− λn+1

i,j− 1
2 ,k

)

∆yi,j,k
G
n+ 1

2

i,j− 1
2 ,k

−
(1− λn+1

i,j+ 1
2 ,k

)

∆yi,j,k
G
n+ 1

2

i,j+ 1
2 ,k

+
(1− λn+1

i,j,k− 1
2

)

∆zi,j,k
H
n+ 1

2

i,j,k− 1
2

−
(1− λn+1

i,j,k+ 1
2

)

∆zi,j,k
H
n+ 1

2

i,j,k+ 1
2

,

the solid flux Φni,j,k, solid is now given by

Φni,j,k, solid =
1

Vi,j,k

∑
{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

φni,j,k,F , (12)

and the so called swept amount ∆Un,n+1
i,j,k =

∑
{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}∆Un,n+1

i,j,k,F , where ∆Un,n+1
F denotes

the amount of U swept by the movement of the solid face F during the time step from tn to tn+1. The
detailed procedure to compute these quantities is described in § 3.3.

One possible difficulty with Immersed Boundary methods is that they can involve small cut-cells (in
the sense that the solid volume fraction is greater than, say, 0.5). In order to ensure the CFL stability
condition of the fluid scheme on these cells, the time step should be decreased to an unacceptably small
value. To deal with this issue, we use a conservative mixing process following the ideas developed in [16].
Let Cp be a small cell and let Cn be a neighbouring cell with Λn < Λp (see Fig. 2). We define the following

exchange terms: Epn = (1−Λn)
(2−Λp−Λn) (Un−Up) and Enp =

(1−Λp)
(2−Λp−Λn) (Up−Un), and we set Up ← Up +Epn

and Un ← Un + Enp. The mixing procedure is conservative since (1 − Λp)Epn + (1 − Λn)Enp = 0 and
ensures that the equivalent volume of a small cell is compatible with the usual CFL condition using the
standard-size cells.

Another issue is the overlap of the stencil used in the FVM with the solid. Indeed, near the solid, the
states needed to calculate the fluid fluxes may be located in cells completely occupied by the solid, “ghost-
cells” (see Fig. 3). To deal with this issue we follow the ideas developed in Ghost Fluid methods [12, 14, 29],
by setting in these ghost cells a fictitious state. We define within these cells an artificial state from the
states associated with the mirror cells relatively to the fluid-solid interface. Letting Cg be a ghost cell
and let Cm be the mirror cell relatively to the fluid-solid interface, we set ρg = ρm, pg = pm, and

~ug = ~um− 2~νF

(
~um − ~VF

)
~νF , where F is the closest solid face in contact with the fluid and ~VF denotes

the velocity of F . This treatment possibly affects the order of the method (computation of the fluid flux)
but not the conservation. One possibility to improve the order is by interpolation but it requires specific
care to avoid non-physical interpolated states. Since the primary focus of this study is the conservation
issue rather than the improvement of the order in the vicinity of the boundary, we have resorted to first
order mirroring.

3.2 Main steps of the coupling algorithm

The time-integration scheme for fluid-structure interaction is based on a partitioned approach where
the coupling is achieved through boundary conditions at the fluid-solid interface. In our case, for an
inviscid fluid, we consider perfect slip boundary conditions at the fluid-solid interface:

~ufluid · ~νfluid + ~usolid · ~νsolid = 0, σfluid · ~νfluid + σsolid · ~νsolid = 0,
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Cp Cn

Fluid cell

Cut-cell

Small cut-cell

Mix small
cut-cells

Figure 2: Mix small cut-cells

Cg

Cm

Fluid cell

Cut-cell

Ghost-cell

Fill
ghost-cells

Figure 3: Fill ghost cells

where ~ufluid and ~usolid, σfluid and σsolid, ~νfluid and ~νsolid are respectively the velocities, stresses and
outward pointing normals for the fluid and solid.

At the beginning of the time step from tn to tn+1, we know the state of the fluid Un, the position and
rotation of the solid ( ~Xn,Qn), as well as the velocity of its center of mass and its angular momentum

(~V n,Pn). The general procedure for the conservative coupling method can be described by the following
five steps:

- The fluid fluxes Fn+ 1
2 , Gn+ 1

2 , Hn+ 1
2 are precomputed at all the cell faces of the fluid grid, with-

out taking into account the presence of the solid. We use the one-dimensional OSMP11 scheme with
directional operator splitting. For instance,

Un+1
i,j,k = Lx(∆t)Ly(∆t)Lz(∆t)U

n
i,j,k,

where Lx, Ly, Lz are respectively the operators corresponding to the integration of a time step ∆t in the

x, y and z directions. For instance, Lx(∆t)W = W − ∆t
∆x

(
Fi+ 1

2 ,j,k
(W )− Fi− 1

2 ,j,k
(W )

)
. Thus, second-

order time accuracy is recovered every six time steps (corresponding to all Lx, Ly, and Lz permutations)
if the directional operators do not commute. We denote by pnx , pny and pnz the pressures used in the
application of the operators Lx, Ly andLz respectively. These pressures are used to determine the forces
exerted by the fluid on the solid during the time step.

- The fluid force ~FnF, fluid acting on the solid face Fn is equal to the force exerted by these pressures
on the surface in contact with the fluid:

~FnF, fluid =

(
−
∫
Fn

p̄nx ν
n
x,F , −

∫
Fn

p̄ny ν
n
y,F , −

∫
Fn

p̄nz ν
n
z,F

)t
. (13)

The total fluid pressure force acting on the solid is the sum of the contributions on each face:

~Fnfluid =
∑
F∈F

~FnF,fluid. (14)

The fluid torques ~Mn
fluid are the sum of the torques of the pressure forces at the center of mass of the

solid:

~Mn
fluid =

∑
F∈F

~FnF,fluid ∧ ( ~Xn
F − ~Xn), (15)

where ~Xn
F is the center of mass of the solid face Fn and ~Xn the center of mass of the solid.

- The solid is advanced in time. The position of the solid ( submitted to a constant external fluid
force) is integrated using the Verlet scheme for translation and the RATTLE scheme for rotation (see
§ 2).

- The volume fractions Λn+1 and side area fractions λn+1 can then be computed using the new position
of the solid boundary. The fluid fluxes are modified using Λn+1, Λn, λn+1, the pressures pnx , pny and pnz and
the velocity of the boundary in order to enforce the conservation of fluid mass and of the total momentum
and energy of the system. At this stage, we can also calculate the swept amount ∆Un,n+1

F .
- The final value of the state Un+1

i,j,k in the cell is calculated using (11). Owing to the perfect slip
conditions at the solid boundary, the flux φnF is given by

φnF =
(

0, Πn
x,F , Πn

y,F , Πn
z,F , ~V

n+ 1
2

F · ~Πn
F

)t
, (16)
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where ~Πn
F =

(∫
Fn p̄

n
x ν

n
x,F ,

∫
Fn p̄

n
y ν

n
y,F ,

∫
Fn p̄

n
z ν

n
z,F
)t

= −~FnF, fluid,

and ~V
n+ 1

2

F is the velocity of the center of mass of the solid face Fn:

~V
n+ 1

2

F = V n+ 1
2 + ~Ωn+ 1

2 ∧ ( ~Xn
F − ~Xn), (17)

where V n+ 1
2 and ~Ωn+ 1

2 are, respectively, the average velocity and rotation velocity of the solid in the
time interval

[
tn, tn+1

]
. We define the angular velocity ~Ωn+ 1

2 at time (n + 1
2 )∆t using the relation

j(~Ωn+ 1
2 ) =

1

2
Pn+ 1

2 D−1(Qn + Qn+1)
t
.

We finish by mixing the small cut-cells, and we fill the ghost-cells in order to prepare the next time
step (see § 3.1). The general structure of the coupling scheme is presented in Fig. 4.

SOLID FLUIDCOUPLING

~Xn, Qn, ~V n, Pn

(1) Computation
of fluid fluxes

ρn, ~un, pn

(2) Predicted pressure is
transferred to the solid
boundary

(5) Fluid update

Fn+ 1
2 , Gn+ 1

2 , Hn+ 1
2

(3) Solid update

pnx , pny , pnz

(4) Boundary update:
Λn+1, λn+1, An+1

F , ~νn+1
F

~Xn+1, Qn+1, ~V n+1, Pn+1 ρn+1, ~un+1, pn+1

Figure 4: Structure of the coupling scheme

3.3 Swept amount

We now detail the computation of the amount swept by the movement of the solid interface during
the time step from tn to tn+1 and its distribution over the cut-cells. We first subdivide each solid face
Fn and Fn+1 into a set of triangles (called sub-faces) entirely contained in one cell. We then compute
the amount swept by the movement of each sub-face and we attribute this amount to the cell containing
the sub-face at time tn+1.

3.3.1 Map between Fn and Fn+1 and sub-mesh

To facilitate the computation of the swept amount ∆Un,n+1
F , we subdivide each solid face F into a set

of triangles (called sub-faces) that are contained in one fluid grid cell (not necessary the same) at times
tn and tn+1. We define a piecewise affine map Ψn,n+1 from Fn to Fn+1. If a triangular sub-face has
vertices an1 , an2 and an3 , we can express a point x of the sub-face at time tn as the weighted combination:
x = α1(x)an1 + α2(x)an2 + α3(x)an3 ; α1(x), α2(x), α3(x) ≥ 0, α1(x) + α2(x) + α3(x) = 1. The local map
Ψn,n+1 is then defined as

Ψn,n+1(x) = α1(x)an+1
1 + α2(x)an+1

2 + α3(x)an+1
3 . (18)

Let us consider the case of Fig. 5: in panel 5a, we have drawn the intersection of the solid face F with a
fluid grid cell Ci,j,k at time tn and in panel 5b, the intersection at time tn+1. Using the map (18), we now
can draw the intersection on the same plane, see Fig. 6, where we have also drawn the whole face F . If we
now consider the intersection of F with all the fluid grid cells, we can obtain the result shown in Fig. 7:
the intersections at time tn mapped by Ψn,n+1 are drawn in continuous lines, and the intersections at
time tn+1 in dashed lines. We denote these polygonal meshes respectively with SnF and Sn+1

F . The idea
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is now to intersect Ψn,n+1(SnF ) with Sn+1
F . We triangulate the polygonal mesh obtained by the previous

intersections at time tn and tn+1 in order to build a sub-mesh of both SnF and Sn+1
F (see Fig.8). Thus,

the solid face F is decomposed into a set of triangles, called sub-faces, denoted by f , so that F = ∪ f .
As for F , we set fn = f(tn) for all n ≥ 0.

(a) Ci,j,k ∩ Fn (b) Ci,j,k ∩ Fn+1

Figure 5: Intersections between a fluid cell and a solid face at time tn (a) and tn+1 (b).

Ci,j,k ∩ Fn+1
Ψn,n+1 (Ci,j,k ∩ Fn)

Figure 6: Intersections between a solid face and one fluid grid cell at time tn (continuous line) and tn+1 (dashed

line).

Figure 7: Position of the two intersections: the cor-

responding meshes at time tn (continuous line) and

tn+1 (dashed line).

Figure 8: Triangular sub-mesh

3.3.2 Computation of the integral over the prism and distribution over the cut-cells

The amount swept by the sub-face f during the time step from tn to tn+1 assigned to the cell containing
f at time tn+1, denoted ∆Un,n+1

i,j,k,f , is the integral of Un on the prism (possibly twisted, see § 4.2 ) Kf

whose bases are fn and fn+1 (see Fig. 9):

∆Un,n+1
i,j,k,f =

1

Vi,j,k

∫
Kf

U (tn, x, y, z) dx dy dz.

Since Un is piecewise constant, the integral over the prism Kf is equal to
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fn

fn+1

Solid boundary at tn

Solid boundary at tn+1

Kf Kf : domain of integration of ∆Un,n+1
f

Figure 9: Two-dimensional illustration of the computation of ∆Un,n+1
f

∫
Kf

U (tn, x, y, z) dx dy dz =
∑

{Cp,q,r |Kf ∩Cp,q,r 6=∅ }

Vp,q,r Unp,q,r,

where Vp,q,r is the signed volume (in the sense that it can be positive if the prism is positively oriented
or negative if it is not) of the intersection between the prism Kf and the fluid grid cell Cp,q,r (see § 4.2

for computation details). Thus, ∆Un,n+1
i,j,k,f is given by

∆Un,n+1
i,j,k,f =

1

Vi,j,k

∑
{Cp,q,r |Kf ∩Cp,q,r 6=∅ }

Vp,q,r Unp,q,r,

and, finally the swept amount assigned to the cell Ci,j,k is the sum of the amount swept by each sub-face
fn+1 contained in the cell,

∆Un,n+1
i,j,k =

∑
{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

∑
{f⊂Fn+1| fn+1⊂Ci,j,k}

∆Un,n+1
i,j,k,f .

As a result, the swept amount verifies the global conservation property∑
Ci,j,k

∑
{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

∆Un,n+1
i,j,k,F =

∑
Ci,j,k

(Λn+1
i,j,k − Λni,j,k)Uni,j,k. (19)

The use of the swept quantity modifies the local conservation at the level of an individual fluid grid
cell. Still, the conservation is quasi-local in the sense the exchange of information is made only with
the closest neighbours. Finally, we notice that we could have computed directly the integration over the
polyhedron ∪t∈[tn,tn+1]F ∩ Ci,j,k, without finding a sub-triangular mesh. However, this integration is
far more complex computationally than on triangular prisms and the distribution of ∆Un,n+1 over cells
would become less accurate.

3.4 Evaluation of the fluid pressure forces

In order to ensure the conservation of momentum and energy of the system during the time-step, we
need to use the same geometric quantities for the computation of the fluid forces acting on the solid,
see (13), and for the solid flux, see (16). We choose here an explicit method which also satisfies consistency
properties. The fluid force acting on the solid face F is evaluated using Fn, and we split this face
among all the sub-faces contained in Fn. This yields ~FnF,fluid = −~Πn

F =
∑
f⊂Fn

~Fnf,fluid, with ~Fnf,fluid =(
−p̄nxAnf νnx,f , −p̄nyAnf νny,f , −p̄nzAnf νnz,f

)t
:= −~Πn

f . The reason for the computation of the p̄nx , p̄
n
y , p̄

n
z on

fn is the fact that each sub-face fn is contained only in one cell at time tn. In the computation of the
solid flux Φnsolid, we also use a spiting among the sub-faces, φni,j,k,F =

∑
{fn⊂Fn | fn+1⊂Ci,j,k} φ

n
i,j,k, f ,

where

φni,j,k, f =
(

0, Πn
x,f , Πn

y,f , Πn
z,f ,

~V
n+ 1

2

f · ~Πn
f

)t
, and the velocity ~V

n+ 1
2

f is evaluated as ~V
n+ 1

2

f = V n+ 1
2 +

~Ωn+ 1
2 ∧ ( ~Xn

f − ~Xn), where ~Xn
f is the center of mass of the sub-face fn and ~Xn the center of mass of the

solid.
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3.5 Properties of the coupling scheme

3.5.1 Conservation

Conservation of mass and balance of momentum and energy hold for periodic boundary conditions and
more generally in all the cases where such properties hold at the continuous level (i.e. mass and energy
with fixed boundaries, conservation when boundaries are far ...). The proof is stated in Appendix B. The
volume of the rigid solid is preserved by construction and we have verified it numerically.

3.5.2 Quasi-conservation of energy for the rigid solid

Let Ens be the solid energy at time tn defined as Ens =
1

2
m‖~V n‖

2
+ 1

2 tr
(
PnD−1(Pn)t

)
. Using Prop. C.1,

the expression of ~Mn
fluid in (17) and the expression of ~V

n+ 1
2

F in (15), the variation of the solid energy over
a time step in terms of the fluid forces and torques and of the velocity of the solid is

En+1
s = Ens + ∆t

∑
F∈F

~FnF,fluid · ~V
n+ 1

2

F +
∆t2

8
tr
(
ΥnQnD−1(Qn)tΥn

)
− ∆t2

8
tr
(
Υ̃n+1Qn+1D−1(Qn+1)tΥ̃n+1

)
+

∆t2

32
tr
(
j( ~Mn)QnD−1(Qn)tj( ~Mn)

)
− ∆t2

32
tr
(
j( ~Mn)Qn+1D−1(Qn+1)tj( ~Mn)

)
.

The works of fluid forces and torques cancel with their discrete counterpart in the fluid integration
scheme. Concerning the additional four terms, in the two-dimensional case, they vanish due to the
commutation of the rotation matrices and their commutation with the matrices D and j(M). In the
three-dimensional case, the conservation of energy is not exact anymore. However, the discrepancy is
limited: the Lagrange multipliers Υn and Υ̃n+1 are close enough to one another if the rotation matrices
Qn and Qn+1 are close. This provides a second-order error on the energy in terms of the time-step, which
we have checked in practice. Therefore, we obtain a quasi-conservation of energy in that case. The proof
is stated in Appendix C.

4 Geometric algorithms for the coupling scheme

In this section, we present the geometric algorithms required for the implementation of the coupling
scheme. We first describe the algorithms used for the detection of the cut-cells as well as the computation
of the required informations for each of them. Afterwards, the algorithm used for the evaluation of the
swept amount due to the movement of the solid faces during a time step is presented.

4.1 Cut-cell volume

At each time step, intersections between the solid boundary and the fluid grid cells need to be com-
puted. The Immersed Boundary method uses various geometric quantities (the volume occupied by the
solid in the cut-cell, the occupation of the cut-cell faces, and the boundary areas, see Fig. 1) generated by
these intersections. The fluid is discretized and solved on a Cartesian grid. If the solid is not convex, we
decompose it into a finite number of convex polyhedral particles. The algorithm introduced here operates
on individual fluid grid cells, one at a time. The first part identifies the cut-cells, and the second part
computes the polyhedron resulting from the intersection between the fluid grid cell C and each particle
P composing the solid S.

We distinguish intersection tests which do not construct any intersection objects and intersection
algorithms which construct the intersection objects. The first type of algorithm tests if the objects
intersect and is fast as it stops after the first encountered intersection. The second type of algorithm
constructs all intersection objects. Checking for intersection is easier and much faster than actually
computing the intersection result. The algorithm hinges on two major tasks:

- Do convex 3d polyhedra P and Q intersect?
For the intersection detection tests, a classical efficient algorithm consists in approximating the geometric
primitives (the polyhedra P and Q) with their axis-aligned bounding boxes. If the bounding boxes do
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not intersect, then the objects do not either. Only when a pair of boxes intersect, the exact answer is
tested on the complex geometric primitives contained in the boxes.

- Given intersecting convex 3d polyhedra P and Q, compute their intersection.
The polyhedra being convex, we triangulate all the faces of P and Q and compute the intersection
between the triangular faces from P and the triangular faces from Q. Thus the problem can be reduced
to the computation of the intersection between triangles in three-dimensional space. The intersection
can be empty, a point, a segment, a triangle, or a polygon. Finally, the polyhedron resulting from the
intersection of P and Q is obtained by the computation of the convex hull of all the end points of the
segments, triangles and polygons resulting from the intersection between all the triangular faces of P and
Q.

The algorithm for computing the intersection between a fluid grid cell C and a convex solid particle P
is described in Algorithm 1. All the three-dimensional geometric tasks are handled by CGAL (Computa-
tional Geometry Algorithms Library) which is an open source C++ library that contains primitives, data
structures and algorithms for computational geometry, as well as a comprehensive documentation [1].
The time required for the determination of the intersections between the solid and the Cartesian fluid

Algorithm 1 Intersection between a fluid grid cell C and a convex solid particle P (intersection between
3d convex objects)

1: Associate a bounding Box to C =⇒ Box C
2: Associate a bounding Box to P =⇒ Box P
3: if (Box C ∩Box P 6= ∅) then
4: if (C ⊂ P ) then
5: Intersection result is C
6: else
7: Search vertices of P contained in C: V ertex P ∈ C
8: for F P = 0 to F P = Nb faces P do . Loop over the triangular faces of P
9: if (Box C ∩ F P 6= ∅) then

10: for F C = 0 to F C = Nb faces C do . Loop over the triangular faces of C
11: Search vertices of C contained in P : V ertex C ∈ P
12: if (F C ∩ F P 6= ∅) then
13: Compute the intersection between F C and F P
14: . Intersections between triangles in 3d
15: end if
16: end for
17: end if
18: end for
19: end if
20: end if

grid and for the computation of the volume of the resulting cut-cells, the occupation of the cut-cells faces
and the boundary areas, is comparable to the CPU time required for a fluid flux calculation on one time
step for coarse meshes such as the present test cases. However, we have observed that the cost of the
intersections increases as N

2
3 , N being the number of fluid grid cells, as compared to N for the fluid flux

so that the overhead is tempered for fine fluid meshes. As the cut-cell volume calculation is performed
for each cut-cell separately, the CPU time required for the volume calculation routine scales linearly with
the number of cut-cells and the number of the triangles describing the surface of the solid.

4.2 Swept amount

For the computation of the amount swept by the movement of the solid face during a time step, we use
the following algorithm which we decompose into two major steps. The first step consists in decomposing
the solid faces into triangular sub-faces entirely contained in a cell at the discrete times n and n + 1
(not necessarily the same). The detailed procedure is described in § 3.3. The second step consists in
calculating the amount swept by the movement of the triangular sub-face between the discrete times n
and n+ 1.

The amount swept by the movement of a triangular sub-face over the time step is the integral of Un

over the prism Kf whose bases are the triangular sub-faces at the discrete times n and n+ 1, denoted by
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Tn and Tn+1 respectively. The lateral faces of the prism are not necessarily planar. In the case where the
prism is entirely contained in one cell we can calculate its signed volume by using the following formula
for a prism P (A1B1C1, A2B2C2) whose bases are the triangles T (A1B1C1) and T (A2B2C2):

V ol(P ) =
1

36

(
2
−−−→
A1B1 ∧

−−−→
A1C1 + 2

−−−→
A2B2 ∧

−−−→
A2C2 +

−−−→
A1B1 ∧

−−−→
A2C2 +

−−−→
A2B2 ∧

−−−→
A1C1

)
·(−−−→

A1A2 +
−−−→
B1B2 +

−−−→
C1C2

)
Otherwise, since Un is piecewise constant, the integral of Un over the prism is computed by first deter-
mining the intersection between the prism and the Cartesian fluid grid. Due to the CFL condition, at
most eight fluid grid cells intersect the prism Kf . In order to compute these intersections, we triangulate
the lateral faces of the prism with respect to the barycenter of the end-points, and we decompose the
prism into tetrahedra (see Fig. 10). Supposing that the prism bases are the triangles T (A1B1C1) and
T (A2B2C2), we define the points (A,B,C) as barycenters of the four end points of the possibly non-planar
faces: A = 1

4 (B1 +B2 +C1 +C2), B = 1
4 (A1 +A2 +C1 +C2), and C = 1

4 (A1 +A2 +B1 +B2). The tetra-
hedra composing the prism are: T (A1A2CB), T (B1B2AC), T (C1C2BA), T (A1CC1B), T (B1AC1C),
T (ACBC1), T (ABCC2), T (AB2C2C), T (A1B1C1C), T (A2C2CB), and T (A2B2CC2). Finally, we com-
pute the intersections of these tetrahedra with the fluid grid cells. In particular, we reduce the computa-
tion of the intersection between the prism and the Cartesian fluid grid, by proceeding as in § 4.1, to the
computation of intersection between triangles in tree-dimension by considering the intersection between
the faces of tetrahedra and the triangulated cell faces.

A1

B1 C1

A2

B2 C2

Tn

Tn+1

•C •B

Figure 10: Cutting the “prism” whose bases are Tn (continuous line) and Tn+1 (dashed line) into tetrahedra.

5 Numerical results

In this section we present numerical results. We first verify the conservation properties of the scheme.
Then, we consider the interaction of a shock wave with comparison to 2D results and with a sphere. We
then examine the interaction of doors with a shock wave.

5.1 Conservation of mass and energy

In order to verify the conservation of mass and energy by the coupling scheme, we consider a
test case consisting of a simple shock tube in a straight rectangular channel and a rigid mobile solid
inside this channel. The computational domain is the rectangular box [0, 2] × [0, 1] × [0, 1]m and

the initial flow field is given by
(
ρ = 1.4 kg.m−3, p = 5Pa, ~u = ~0m.s−1

)
, when x < 0.16m, and by(

ρ = 1.4 kg.m−3, p = 1Pa, ~u = ~0m.s−1
)

otherwise. The initial position of the solid corresponds to the

cuboid (x, y, z) ∈ [0.4, 0.9]× [0.4, 0.6]× [0.4, 0.6]m. The computation is performed on a (140× 70× 70)
grid with periodic boundary conditions. The simulation time is t = 1s.

The pressure and density distribution along the line {y = 0.5m, z = 0.75m} are shown in Fig. 11.
We observe that the shocks and rarefaction waves are well captured, without spurious oscillations. The
resolution of the shocks is obviously moderate due to the relative coarseness of the fluid grid. In Fig. 12a
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(a) (b)

Figure 11: Pressure distribution (a) and density distribution (b) along the line
{y = 0.5m, z = 0.75m} at time t = 1s.

we present the relative conservation error of fluid mass, computed from the difference between the initial
total mass and the total mass computed at the different time steps. This mass difference is normalized
by the maximum amount of mass swept by the movement of the solid. In Fig. 12b we present the
relative energy conservation error, computed as the difference between the initial energy and the energy
computed at the different time steps. This energy difference is normalized by the maximum energy
exchange between the fluid and the solid, which is the relevant quantity to evaluate the relative effect
of coupling on energy conservation. We observe a small variation of both mass and energy, without any
clear growth or decrease of either quantity. The variation of mass is as low as 0.01% of the mass swept
by the solid and the variation of energy is as low as 0.01% of the energy exchange in the system. The
main effect accounting for these variations are the rounding errors involved in the evaluation of geometric
quantities in cut-cells, since both mass and energy are impacted at similar levels.
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Figure 12: Relative conservation error on (a) fluid mass and (b) system energy.

5.2 Interaction of a shock wave and a cylinder

This moving body test case was first proposed in two space dimensions in [11] using a conservative
method and has been studied both with conservative [16, 20] and nonconservative methods [4, 26]. We
treat it here in three space dimensions, the third coordinate being degenerate.

A planar shock interacts with a rigid mobile cylinder of density 7.6 kg.m−3 in a channel. The side
boundaries of the domain are rigid walls while the left and right boundaries are respectively inflow and
outflow boundaries. The computational domain is the parallelepiped box [0, 1]× [0, 0.2]× [0, 0.2]m. The
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shock is initially set up to a Mach number of 3, so that the initial values are{
ρ = 3.85 kg.m−3, p = 10.33Pa, u = 2.6929m.s−1, v = w = 0m.s−1, ifx < 0.08m,

ρ = 1 kg.m−3, p = 1Pa, ~u = ~0m.s−1, ifx ≥ 0.08m.

The cylinder lies on the lower wall of the channel with its axis along the z-axis. The initial position of
the center of mass of the cylinder is (0.15, 0.05, 0.1)m, the radius of the cylinder is R = 0.05m and its
length is L = 0.2m. The circular section of the cylinder is approximated by a regular polygon with 50
faces. The computation is performed on a 200 × 40 × 40 grid. We impose inflow and outflow boundary
conditions at x = 0m and x = 1m respectively and mirror boundary conditions on the remaining outer
boundaries of the fluid domain. The simulation time is t = 0.255 s. The impinging shock wave impacts
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Two-dimensional results [20]

Figure 13: Trajectory of the center of mass of the cylinder in the (x, y)-plane.

the cylinder and is partially reflected, while part of the shock wave moves over the cylinder and part
of its energy is transferred as kinetic energy to the cylinder. The reflected shock then reflects on the
lower wall (y = 0), creating an overpressure under the cylinder and lifting it up. Subsequently, a fluid
flow develops under the cylinder, resulting in a contact discontinuity which exhibits Kelvin-Helmholtz
instabilities. Complex interactions between the cylinder, the walls and the reflected shocks then occur.
In Fig. 13 we display the trajectory of the cylinder in the plane (x, y) compared to the two-dimensional
trajectory of [20] with the same fluid discretization. The final position of the center of mass of the cylinder
is (0.6465, 0.1406, 0.099994)m. In comparison, the two-dimensional results in [20] yield (0.643, 0.144)m
with a similar fluid discretization. This discrepancy is related to the small number of faces (50) of the
polygon approximating the circular section in the three-dimensional case compared to the 1240 faces used
in the two-dimensional case.

The system is symmetric with respect to the plane z = 0.1m. We note that the final position of the
center of mass of the cylinder remains close to z = 0.1m. In addition, the velocity of the fluid in the
z direction remains small and limited to the Kelvin-Helmholtz instability zones where three-dimensional
structures occur. Apart from these features, the invariance in the z direction is well preserved. 30 iso-
contours of density in the plane z = 1m at the final time are plotted in Fig. 14. The position of the
shocks agrees very well with [20].

Figure 14: Shock wave/cylinder interaction: 30 iso-contours of density in the plane z = 1m at time t = 0.255 s.
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5.3 Interaction of a shock wave and a sphere

In this problem, a planar shock interacts with a rigid mobile sphere in a channel. The side boundaries
of the domain are rigid walls while the left and right boundaries are respectively inflow and outflow
boundaries. The computational domain is the parallelepiped box [0, 1]× [0, 0.2]× [0, 0.2]m. The shock
is initially set up to a Mach number of 3, so that the initial values are{

ρ = 3.85 kg.m−3, p = 10.33Pa, u = 2.6929m.s−1, v = w = 0m.s−1, ifx < 0.08m,

ρ = 1 kg.m−3, p = 1Pa, ~u = ~0m.s−1, ifx ≥ 0.08m.

The initial position of the center of mass of the sphere is (0.15, 0.05, 0.1)m, and the radius of the sphere
is R = 0.05m. The sphere is approximated by a polyhedron discretized with 236 faces. The computation
is performed on a 400 × 80 × 80 grid. We impose inflow and outflow boundary conditions at x = 0m
and x = 1m respectively and mirror boundary conditions on the remaining outer boundaries of the
fluid domain. The simulation time is t = 0.255 s. In the same way that the cylinder interacted with
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Figure 15: Trajectory of the center of mass of the sphere in the (x, y)-plane.

the shock wave in the previous test case (§ 5.2), complex interactions between the sphere, the walls
and the reflected shocks occur, creating an overpressure under the sphere and lifting it up. In Fig. 15
we display the trajectory of the sphere in the plane (x, y). The final position of the center of mass of
the sphere is (0.529m, 0.0776m, 0.0984m). The physical system is symmetric with regard to the plane
z = 0.1m. This feature is fairly well preserved by the numerical results, even though the polyhedron
itself is not perfectly symmetric. As a result, the sphere mass center is no longer exactly at z = 0.1m at
t = 0.255 s. 30 iso-contours of density at the final time are plotted in Fig. 16. This computation shows
the ability of the coupling algorithm to compute the interaction of strong discontinuities with irregular
moving boundaries.

Figure 16: Shock wave/sphere interaction: 30 iso-contours of density at time t = 0.255 s.

5.4 Interaction of a shock wave with rotating doors

This case is a three-dimensional analogue of the two-dimensional case presented in [20]. It demon-
strates the ability of the method to deal with separating or closing solid boundaries and fluid cells
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including several moving boundaries. These features are of foremost importance in view of being able to
deal with fracturing solids.

Four doors initially close a canal and are impacted from the left by a Mach 3 shock. The canal
is bounded by four fixed rigid walls on the sides while the two ends along the x axis have inflow and
outflow boundary conditions. The fluid domain is the parallelepiped box [0, 2]× [0, 0.5]× [0, 0.5]m and
is discretized using a 200× 50× 50 grid. The shock is initialized as follows:{

ρ = 3.85 kg.m−3, p = 10.33Pa, u = 2.6929m.s−1, v = w = 0m.s−1, ifx < 0.43m,

ρ = 1 kg.m−3, p = 1Pa, ~u = ~0m.s−1, ifx ≥ 0.43m.

The doors are four prisms based on rectangle isoceles triangles, completed on their boundaries by half
cylinders. They are presented in Fig. 17(a). Each of them rotates freely around a rotation axis aligned
with the axis of the half cylinder on the hypotenuse of the rectangle triangle while its other degrees of
freedom are fixed. The diameter of the cylinders is equal to the width of the doors and is 0.05m. The
density of the doors is 0.5kg.m−3. The doors entirely block the canal initially.

After the incident shock hits the doors, it reflects to the left and the doors open due to the increase
in pressure. The rotation of one of the doors is presented in Fig. 17(b). Due to the symmetry of the
problem, the rotation of each door should be the same, and we have verified that the solution is almost
symmetric. We observe that the doors are rotated all the way to 90 degrees, at which point they stop,
having removed the fluid from the cells next to the boundary wall. In Fig. 18 and 19, we present the
evolution of the fluid density field in planes z = 0.25m and y = z, respectively, at times 0.02s, 0.05s,
0.1s and 0.25s. In order to help visualize the fluid flow, we have removed the particule with rotation
axis (x = 0.5m, z = 0.45m) in Fig. 18. The opening of the doors results in compression waves being
created by the movement of the doors, while the pressure and density decrease in the center of the canal.
Complex interactions of waves occur due to door movements and interaction with walls. Once the doors
are rotated at 90 degrees, the fluid evolution is similar to a nozzle flow due to the static presence of the
doors. We note the fact that the symmetry of the flow about the planes of symmetry of the canal is very
well preserved by the coupling method.
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Figure 17: Initial position of the doors (a), evolution of the rotation of the doors in time (b).

6 Conclusion

We have developed a coupling method between an inviscid compressible fluid and a three-dimensional
moving rigid solid, extending the explicit coupling scheme with a two-dimensional rigid solid of [20]. The
extension has been achieved through exact geometric intersections of the solid boundary and the fluid
grid. The method yields exact conservation of mass, momentum and energy of the system, and also
exhibits important consistency properties, such as conservation of uniform movement of both fluid and
solid as well as the absence of numerical roughness on a straight boundary.

The computational cost of the fluid and solid methods essentially results from the evaluation of fluxes
on the fluid side and of forces and torques on the solid side. We emphasize that the coupling algorithm
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(a)

(b)

(c)

(d)

Figure 18: Shock wave/doors interaction: 30 iso-contours of density in the plane z = 0.25 m at times t = 0.02 s

(a), t = 0.05 s (b), t = 0.1 s (c) and t = 0.25 s (d).

evaluates these only once per time step, ensuring computational efficiency. Regarding surface coupling,
the algorithm overhead scales as the number of solid faces and as N

2
3 , N being the number of fluid grid

cells. In comparison, the fluid flux computation time scales as N .
The presented test cases allowed us to verify the main properties of the coupling scheme and to il-

lustrate the ability of the method to compute the interaction of strong discontinuities with rigid solids
undergoing large displacement. The next step is to move on to more complex test cases and to enrich
the algorithm to take into account the deformation and the fracture of the solid. The algorithm has
been designed in order to facilitate the extension of these results to solid deformation and fracture. This
would require the discretization of the solid body using particles in the context of the DEM, an adequate
reconstruction of the solid boundary resulting from the relative movement between the particles compos-
ing the solid, an appropriate procedure to fill the ghost-cells and the definition of a map (not necessarily
bijective due to the opening of the fracture in one point) providing the correspondence from the position
of the boundary at time tn to its position at time tn+1, see [24, 25].
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Virginie Daru (LIMSI, CNRS), Alexandre Ern (CERMICS, Université Paris-Est), Christian Mariotti
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A Flux on mobile boundary

In this section, we present the Finite Volume discretization of a conservative law in the case when
the boundaries of the cell are mobile, as considered in [9]. This discretization is used in the Immersed
Boundary method in cut-cells, see 3.1. For simplicity, we consider the one-dimensional case. The Euler
equations (1) are given by

∂U

∂t
+
∂F (U)

∂x
= 0, (20)
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(a)

(b)

(c)

(d)

Figure 19: Shock wave/doors interaction: 30 iso-contours of density in the plane y = z at times t = 0.02 s (a),

t = 0.05 s (b), t = 0.1 s (c) and t = 0.25 s (d).

where the vector of conservative variables U is given by U = (ρ, ρu, ρE)
t

and the flux function is given

by F (U) =
(
ρu, ρu2 + p, (ρE + p)u

)t
.

We consider a grid in the plane (x, t) defined by the points xi+1/2 and the time step ∆t which is
supposed to be constant for simplicity. The space step is denoted by ∆xi = xi+1/2 − xi−1/2. We denote

by Uni an approximation of the average value of U in the cell Ci =
[
xi−1/2, xi+1/2

]
at time tn.

As described in Section 3, the solid is superimposed to the fluid grid. Thus, the cell
[
xi−1/2, xi+1/2

]
can

be partially covered by the solid. Let us consider the time-space cell B
n+1/2
i illustrated in Fig. 20, where

we consider that the point χi−1/2 is fixed in time at the point xi−1/2 and the point χi+1/2 varies in time

due to the presence of a solid boundary in the cell. We denote by Bni =
[
χni−1/2, χ

n
i+1/2

]
the cell at time tn,

and by Bn+1
i =

[
χn+1
i−1/2, χ

n+1
i+1/2

]
the cell at time tn+1. We integrate the conservation law (20) in the time-

space cell B
n+1/2
i , and by using the divergence formula, we obtain

∫
∂B

n+1/2
i

(Unt + F (U(t, x))nx) dγ = 0,

where the outward normal ~n on ∂B
n+1/2
i has the form ~n = (nt, nx). Taking into account the notation of
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Figure 20: Time-space cell

Fig. 20, we infer∫
∂B

n+1/2
i

(Unt + f(U(t, x))nx) dγ =

∫
Bn+1

i

Unt dγ +

∫
Bn

i

Unt dγ

+

∫
B

n+1/2

i−1/2

(Unt + F (U(t, x))nx) dγ +

∫
B

n+1/2

i+1/2

(Unt + F (U(t, x))nx) dγ.

The first two terms are evaluated as
∫
Bn+1

i
Unt dγ = |Bn+1

i |Un+1
i = (∆xi − (xi+1/2 − χn+1

i+1/2))Un+1
i

and
∫
Bn

i
Unt dγ = −|Bni |Uni = −(∆xi − (xi+1/2 − χni+1/2))Uni . We denote by Λn+1

i and Λni the vol-

ume fractions occupied by the solid in the cell at times tn+1 and tn, respectively given by: Λn+1
i =

xi+1/2−χn+1
i+1/2

∆xi
and Λni =

xi+1/2−χn
i+1/2

∆xi
. We infer:

∫
Bn+1

i
Unt dγ = ∆xi

(
1− Λn+1

i

)
Un+1
i and

∫
Bn

i
Unt dγ =

−∆xi (1− Λni )Uni . The flux of F on the boundary B
n+1/2
i−1/2 can be approximated by the usual nu-

merical flux Fni−1/2:
∫
Bn

i−1/2

F (U(t, x))nx dγ ' −∆tF
n+1/2
i−1/2 . The mean velocity of the point χi+1/2 be-

tween tn and tn+1 is given by w
n+1/2
i+1/2 = 1

∆t

(
χn+1
i+1/2 − χ

n
i+1/2

)
. The mobile boundary segment B

n+1/2
i+1/2

has a normal direction ~n such that nx = 1√
1+(w

n+1/2

i+1/2
)2

and nt = −
w

n+1/2

i+1/2√
1+(w

n+1/2

i+1/2
)2

. Thus, we obtain∫
B

n+1/2

i+1/2

(Unt + f(U(t, x))nx) dγ =∫ tn+1

tn

(
−wn+1/2

i+1/2 U(t, xi+1/2(t)) + F (U(t, xi+1/2(t)))
)
dt. Taking into account the particular form of the

flux function of F and the fact that the state velocity U
n+1/2
i+1/2 is exactly equal to w

n+1/2
i+1/2 , we infer∫

B
n+1/2

i+1/2

(Unt + F (U(t, x))nx) dγ = ∆t
(

0, p
n+1/2
i+1/2 , p

n+1/2
i+1/2 w

n+1/2
i+1/2

)t
,

where p
n+1/2
i+1/2 is the pressure of the state U

n+1/2
i+1/2 . Finally, gathering the four terms we obtain (1 −

Λn+1
i )Un+1

i = (1− Λni )Uni + ∆t
(

Φ
n+1/2
i, fluid + Φ

n+1/2
i, solid

)
,

where Φ
n+1/2
i, fluid = 1

∆xi
F
n+1/2
i−1/2 and Φ

n+1/2
i, solid = −1

∆xi

(
0, p

n+1/2
i+1/2 , p

n+1/2
i+1/2 w

n+1/2
i+1/2

)t
.
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B Conservation of mass, balance of momentum and energy

We denote by V = (∆x∆y∆z) the volume of the fluid grid cells. Summing (11) over all the fluid grid
cells Ci,j,k, the cancellation of fluxes on each fluid grid cell face implies∑

Ci,j,k

(
1− Λn+1

i,j,k

)
Un+1
i,j,k =

∑
Ci,j,k

(
1− Λn+1

i,j,k

)
Uni,j,k +

∆t

V

∑
Ci,j,k

∑
{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

φni,j,k,F

+
∑
Ci,j,k

∑
{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

∆Un,n+1
i,j,k,F .

Using (19) yields
∑
Ci,j,k

(
1− Λn+1

i,j,k

)
Un+1
i,j,k =

∑
Ci,j,k

(
1− Λni,j,k

)
Uni,j,k +

∆t

V

∑
F∈F φ

n
F . We finally ob-

tain

1

V

∫
Ωn+1

fluid

Un+1 =
1

V

∫
Ωn

fluid

Un +
∆t

V

∑
F∈F

φnF . (21)

The expression of φnF in (16) shows that the first component is equal to zero. Hence, the first component
of (21) expresses the fluid mass conservation. Replacing the expression of φnF from (16) in the fluid
momentum and energy equations, leads to∫

Ωn+1
fluid

ρn+1~un+1 =

∫
Ωn

fluid

ρn~un + ∆t
∑
F∈F

∫
Fn

~Πn
F ,∫

Ωn+1
fluid

ρn+1En+1 =

∫
Ωn

fluid

ρnEn + ∆t
∑
F∈F

∫
Fn

~V
n+ 1

2

F · ~Πn
F .

The fluid pressure force applied on the solid face F ∈ F during the time step is given by (13). The solid
momentum variation induced by the pressure forces on F , denoted ∆PF , and the corresponding energy
variation, denoted ∆EF , are given by

∆PF = ∆t ~FnF,fluid = −∆t

∫
Fn

~Πn
F , (22)

∆EF = ∆t ~FnF,fluid · ~V
n+ 1

2

F = −∆t ~V
n+ 1

2

F ·
∫
Fn

~Πn
F . (23)

Thus, the balance of momentum and energy in the fluid domain results in∫
Ωn+1

fluid

ρn+1 ~un+1 +
∑
F∈F

∆PF =

∫
Ωn

fluid

ρn~un,∫
Ωn+1

fluid

ρn+1En+1 +
∑
F∈F

∆EF =

∫
Ωn

fluid

ρnEn.

C Quasi-conservation of energy for the rigid solid

Proposition C.1. The variation of the solid energy over a time step in terms of the fluid forces and
torques and of the velocity of the solid is

En+1
s = Ens + ∆t ~Fnfluid · ~V n+ 1

2 + ∆t ~Mn
fluid · ~Ωn+ 1

2 +
∆t2

8
tr
(
ΥnQnD−1(Qn)

t
Υn
)

−∆t2

8
tr
(
Υ̃n+1Qn+1D−1(Qn+1)

t
Υ̃n+1

)
+

∆t2

32
tr
(
j( ~Mn

fluid)QnD−1(Qn)tj( ~Mn
fluid)

)
−∆t2

32
tr
(
j( ~Mn

fluid)Qn+1D−1(Qn+1)tj( ~Mn
fluid)

)
.
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Proof. Recall that if A and S are respectively a skew-symmetric and a symmetric matrix, then

tr(AS) = 0. (24)

Developing En+1
s using equations (2)–(5), we obtain

En+1
s =

1

2
m‖~V n‖2 + ∆t ~Fnfluid · ~V n+ 1

2 +
1

2
tr
(
PnD−1(Pn)

t
)

+
∆t

2
tr
(
Pn+1D−1(Qn+1)

t
Υ̃n+1

)
+

∆t

2
tr
(
PnD−1(Qn)

t
Υn
)

+
∆t

2
tr
(
j( ~Mn

fluid)(Qn + Qn+1)D−1(Pn+ 1
2 )
t
)

+
∆t2

8
tr
(
ΥnQnD−1(Qn)

t
Υn
)
− ∆t2

8
tr
(
Υ̃n+1Qn+1D−1(Qn+1)

t
Υ̃n+1

)
+

∆t2

32
tr
(
j( ~Mn

fluid)QnD−1(Qn)tj( ~Mn
fluid)

)
− ∆t2

32
tr
(
j( ~Mn

fluid)Qn+1D−1(Qn+1)tj( ~Mn
fluid)

)
.

Using (24), (7) at times tn and tn+1 and the symmetry of Υn and Υ̃n+1, the fourth and fifth term vanish.
We now prove the following result to estimate the sixth term on the right-hand side.

Lemma C.2. Pn+ 1
2 D−1(Qn + Qn+1)

t
is a skew-symmetric matrix, so that we can define the angular

velocity vector ~Ωn+ 1
2 at time (n+ 1

2 )∆t by

j(~Ωn+ 1
2 ) = 1

2Pn+ 1
2 D−1(Qn + Qn+1)

t
.

Proof. Let us note that Pn+ 1
2 D−1 = 1

∆t (Q
n+1 −Qn). It follows that

Pn+ 1
2 D−1(Qn + Qn+1)

t
=

1

∆t
(Qn+1 −Qn)(Qn + Qn+1)

t
=

1

∆t
(Qn+1(Qn)

t −Qn(Qn+1)
t
).

which proves the result.

We can now finish the proof. It is straightforward to see that tr
(
j( ~Mn

fluid)j(~Ωn+ 1
2 )
)

= −2 ~Mn
fluid · ~Ωn+ 1

2 .

Finally, we obtain the variation of the discrete solid energy in terms of the fluid forces and torques and
of the velocity of the solid as follows:

En+1
s = Ens + ∆t ~Fnfluid · ~V n+ 1

2 + ∆t ~Mn
fluid · ~Ωn+ 1

2 +
∆t2

8
tr
(
ΥnQnD−1(Qn)

t
Υn
)

− ∆t2

8
tr
(
Υ̃n+1Qn+1D−1(Qn+1)

t
Υ̃n+1

)
+

∆t2

32
tr
(
j( ~Mn

fluid)QnD−1(Qn)tj( ~Mn
fluid)

)
− ∆t2

32
tr
(
j( ~Mn

fluid)Qn+1D−1(Qn+1)tj( ~Mn
fluid)

)
.
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