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ABSTRACT

We present a conservative method for the three-dimensional coupling between an inviscid compressible
flow and a moving rigid solid. We consider an inviscid Euler fluid in conservative form discretized using
a high-order monotonicity-preserving Finite Volume method with a directional operator splitting. An
immersed boundary technique is employed through the modification of the Finite Volume fluxes in the
vicinity of the solid. The method yields exact conservation of mass, momentum and energy of the system,
and also exhibits important consistency properties, such as conservation of uniform movement of both
fluid and solid as well as the absence of numerical roughness on a straight boundary. The coupling scheme
evaluates the fluxes on the fluid side and the forces and torques on the solid side only once every time
step, ensuring the computational efficiency of the coupling. We present numerical results assessing the
robustness of the method in the case of rigid solids with large displacements.

1 Introduction

A large number of engineering problems involve fluid-structure interactions. The study of such phe-
nomena is motivated by the fact that the consequences are sometimes catastrophic for the mechanical
structure. In the military or safety domains, the effects of an explosion on a building or on a submarine
involve complex non-linear phenomena (shock waves, cracking, rupture, ...) [26, 28]. The characteristic
time scale of these phenomena is extremely short and the driving effect of the interaction is the overpres-
sure. Viscous effects therefore play a lesser role in the dynamics of this type of coupled system. With an
eye toward these applications, we consider in this paper an inviscid compressible flow model on the fluid
side with shock waves and a rigid object on the solid side.

Fully Eulerian [12, 19] and fully Lagrangian methods [16] have been proposed for the simulation of
fluid-structure interaction. However, monolithic Eulerian or Lagrangian approaches are in general limited
to the case where the fluid and the solid behave according to similar equations with different parameters.
In most numerical schemes, the fluid is classically described in Eulerian formulation and the solid in
Lagrangian formulation. In this framework, the main challenges in fluid-structure interaction are the
computation of the fluid forces that act on the solid and the modification of the fluid domain due to
the displacement of the solid. Two main classes of methods have been developed: Arbitrary Lagrangian-
Eulerian (ALE) methods [7, 17] and fictitious domain methods [8, 10, 22, 23]. The ALE method deforms
the fluid domain in order to follow the movement of the structure. Such a method hinges on a mesh
fitting the solid boundaries, and this often involves costly remeshing of the fluid domain when the solid
goes through large displacements or rupture. For these reasons, we choose to use a fictitious domain
method.

In fictitious domain methods, the solid is superimposed to the fixed fluid grid and additional terms
are introduced in the fluid formulation to impose the fluid boundary conditions at the solid boundary.
Various types of fictitious domain methods have been proposed. Non-conservative Immersed Boundary
methods have been first developed for incompressible flows [6, 9, 23]. An important issue in compressible
fluid-structure interaction is the conservation of mass, momentum, and energy. The accurate capture of
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shocks is based on conservation properties, and the preservation of physical properties is an important
ingredient towards an effective numerical method. In addition, verifying conservation at the discrete level
is a natural means to assess the numerical stability of the scheme. Conservative Immersed Boundary
methods [4, 10, 22, 25] and Ghost Fluid methods [11, 13, 27] have been proposed for elliptic problems
and compressible fluids. Conservative Immersed Boundary methods are built in such a way that the
spatial discretization satisfies mass, momentum, and energy conservation. Ghost Fluid methods consist
in modifying the value of ghost cells (covered by the solid) in order to compute the fluid fluxes accurately
at the interface. Ghost Fluid methods often eliminate the constraint of energy conservation in order to
eliminate spurious numerical oscillations at the material interface in compressible multifluid interaction
problems [2].

In this work, we use the Conservative Immersed Boundary method developed in [22] in combination
with a Finite Volume method for the fluid and a Discrete Element method for the solid. The Finite
Volume method is computed on a Cartesian grid, using high-order upwind fluxes computed with a Lax-
Wendroff approach [5]. The Discrete Element method [18, 21] is a particle method for elastodynamics,
in which particles interact through forces and torques yielding the macroscopic behaviour of the assem-
bly. Herein, the solid being rigid, is consists of a single particle. Both methods being time-explicit and
computationally expensive, we develop a coupling algorithm based on an explicit time-marching proce-
dure. The two-dimensional version of these ideas was presented in [20]. Herein, we extend the results to
the three-dimensional case. This is by no means straightforward since the three-dimensional extension
poses numerous challenges at the computational and algorithmic levels. The present method yields ex-
act conservation of mass, momentum and energy of the system, and also exhibits important consistency
properties, such as conservation of uniform movement of both fluid and solid as well as the absence of
numerical roughness on a straight boundary.

This paper starts in Section 2 with a brief description of the discretization methods for the inviscid
compressible fluid and the moving rigid solid. In Section 3, we present the conservative coupling method
based on an explicit time-marching procedure. In Section 4, we derive several properties of the coupling
method. In Section 5, we describe the main geometric algorithms required for the implementation of the
three-dimensional coupling scheme. In Section 6, we present numerical results showing in particular the
energy and mass conservation achieved by the coupling scheme and the ability of the method to compute
the interaction of strong discontinuities with rigid solids undergoing large displacement. Comparisons
with two-dimensional numerical results are presented. Finally, conclusions are made in Section 7.

2 Fluid and solid description

2.1 Inviscid compressible flow

The fluid is modelled by the Euler equations expressing conservation of mass, momentum, and energy
for an inviscid compressible flow, which are written in Cartesian coordinates as follows:

∂

∂t
U +

∂

∂x
F (U) +
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,

where ρ is the mass density, p the pressure, (u, v, w) the Cartesian components of the velocity vector
~u and E the total energy. The pressure in the fluid is modelled by the state equation of a perfect gas:

p = (γ − 1)ρe, e being the specific internal energy with E = e+
1

2
(u2 + v2 +w2) and γ = 1.4 the ratio of

specific heats, assumed to be constant.
The discretization of these equations is based on an explicit Finite Volume method on a Cartesian grid

with directional operator splitting. For the flux calculation we use the OSMP numerical scheme which
is a one-step monotonicity-preserving high-order scheme [5]. It is derived using a coupled space-time
Lax-Wendroff approach, where the formal order of accuracy in the scalar case can be set to an arbitrary
order. In the present work, we use order 11. The coupling method is actually independent from the
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numerical scheme used for the flux calculation. The time step, which is subjected to a CFL stability
condition, is taken constant for simplicity and is denoted ∆t. We introduce the discrete times tn = n∆t,
for all n ≥ 0.

2.2 Rigid moving solid

We consider a polyhedral rigid body. The solid is assumed to be star-shaped with respect to its
center of mass and its faces are assumed to be star-shaped with respect to their center of mass. Working
with triangular faces simplifies the geometric algorithms. Thus, up to a preliminary subdivision of the
polygonal faces, we consider that the solid faces are triangles. We define the thickness of the solid as the
radius of the inscribed sphere. Thereafter, we assume that the solid has a thickness greater than or equal
to two fluid grid cells.

Various quantities are attached to the solid body, namely the position of his center of mass ~X, the
rotation matrix Q, the velocity of the center of mass ~V , the angular momentum matrix P, the mass m,

and the principal moments of inertia I1, I2 and I3. Let D = diag(d1, d2, d3) with di =
1

2

(

I1 + I2 + I2
)

−

Ii, i ∈ {1, 2, 3}. We recall the explicit solid time-integration scheme used in [20], consisting of the Verlet
scheme for translation and the RATTLE scheme for rotation:

~V n+ 1
2 = ~V n +

∆t

2m
~Fn
fluid, (2)

~Xn+1 = ~Xn +∆t~V n+ 1
2 , (3)

Pn+ 1
2 = Pn +

∆t

4
j( ~Mn

fluid)Q
n +

∆t

2
ΛnQn, (4)

Qn+1 = Qn +∆tPn+ 1
2D−1, (5)

~V n+1 = ~V n+ 1
2 +

∆t

2m
~Fn
fluid, (6)

Pn+1 = Pn+ 1
2 +

∆t

4
j( ~Mn

fluid)Q
n+1 +

∆t

2
Λ̃n+1Qn+1, (7)

where in (4), Λn is a symmetric matrix such that

(Qn+1)
t
Qn+1 = I, (8)

with I the identity matrix in R
3, and in (7), Λ̃n+1 a symmetric matrix such that

(Qn+1)
t
Pn+1D−1 +D−1(Pn+1)

t
Qn+1 = 0. (9)

The matrices Λn and Λ̃n+1 are the Lagrange multipliers associated with the constraints (8) and (9),

see [20]. In addition, ~Fn
fluid and ~Mn

fluid denote the fluid forces and torques applied to the solid and the
map j : R3 → R

3×3 is such that j(~x)~y = ~x ∧ ~y for all ~x, ~y ∈ R
3.

The time-integration scheme for the solid being explicit, the time step is restricted by a CFL stability
condition, which is in general less stringent than the fluid CFL stability condition.

3 Coupling method

In the immersed boundary method, the solid is superimposed to the fluid grid, leading to fluid-solid
mixed cells, thereafter called “cut-cells”. The solid faces are collected in the set F, and a generic element
of F is denoted by F . Owing to the movement of the solid, the solid faces, as set of points in R

3, are
time-dependent, and we set Fn = F(tn) for all n ≥ 0. Each solid face F(t) is assigned a unit normal
vector ~νF (t) (pointing from the solid to the fluid). Finally, we denote by Ωsolid(t) the solid domain and
by Ωfluid the fluid domain.

3.1 Treatment of the cut-cells

Recalling that we use a Cartesian grid for the fluid, we denote with integer subscripts i, j, k quantities
related to the center of cells and with half-integer subscripts quantities related to the center of faces of
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the fluid grid cells. For instance, the interface between cells Ci,j,k and Ci+1,j,k is denoted by ∂Ci+ 1
2
,j,k.

Let Ci,j,k be a cut-cell of size (∆xi,j,k, ∆yi,j,k, ∆zi,j,k). The relevant geometric quantities describing
the intersection between the moving solid and the cell Ci,j,k are (see Fig. 1):
• The volume fraction 0 6 Λi,j,k(t) 6 1 occupied by the solid in the cell Ci,j,k at time t:

Λi,j,k(t) =
Vi,j,k(t)

Vi,j,k

,

Vi,j,k = (∆x∆y∆z)i,j,k being the volume of Ci,j,k where the solid occupies the volume Vi,j,k(t) at
time t:

Vi,j,k(t) =

∫

Ci,j,k∩Ωsolid(t)

dx dy dz.

When the volume fraction is evaluated at the discrete time tn, we use the notation Λn
i,j,k.

• The side area fraction 0 6 λ
n+ 1

2

i± 1
2
,j,k

, λ
n+ 1

2

i,j± 1
2
,k
, λ

n+ 1
2

i,j,k± 1
2

6 1 of each fluid grid cell face averaged over

the time interval
[

tn, tn+1
]

; for example, on the face ∂Ci+ 1
2
,j,k, we define

λ
n+ 1

2

i+ 1
2
,j,k

=
A

n+ 1
2

i+ 1
2
,j,k

(∆y∆z)i,j,k
,

where

A
n+ 1

2

i+ 1
2
,j,k

=
1

∆ t

∫ tn+1

tn





∫

∂C
i+1

2
,j,k

∩Ωsolid(t)

dy dz



 dt.

• The boundary area, denoted by A
n+ 1

2

i,j,k,F , is the area of the intersection of the solid face F(t) with

Ci,j,k averaged over the time interval
[

tn, tn+1
]

:

A
n+ 1

2

i,j,k,F =
1

∆ t

∫ tn+1

tn

(

∫

Ci,j,k ∩F(t)

ds

)

dt.

Ai,j,k,F

~νF

Vi,j,k

Ci,j,k

Solid

Fluid

A i+
1
2
,j
,k

~νF ′

~νF

Ai,j,k,F

A i+
1
2
,j
,k

Ai,j,k,F ′

Vi,j,k

Ci,j,k

Solid

Fluid

Figure 1: Two illustrations of a cut-cell. Left panel: the cell is intersected by one solid face. Right
panel: the cell is intersected by two solid faces.

We take into account the position of the solid in the fluid domain by modifying the fluid fluxes in
cut-cells. Consider such a cut-cell partially intersected by the solid, see Fig. 1. Integrating (1) on this
cut-cell over the time interval

[

tn, tn+1
]

and applying the divergence theorem yields

(

1− Λn+1
i,j,k

)

Un+1
i,j,k =

(

1− Λn
i,j,k

)

Un
i,j,k +∆tΦ

n+ 1
2

i,j,k, fluid +∆tΦ
n+ 1

2

i,j,k, solid, (10)
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with the fluid flux

Φ
n+ 1

2

i,j,k, fluid =
(1− λ

n+ 1
2

i− 1
2
,j,k

)

∆xi,j,k

F
n+ 1

2

i− 1
2
,j,k
−

(1− λ
n+ 1

2

i+ 1
2
,j,k

)

∆xi,j,k

F
n+ 1

2

i+ 1
2
,j,k

+
(1− λ

n+ 1
2

i,j− 1
2
,k
)

∆yi,j,k
G

n+ 1
2

i,j− 1
2
,k
−

(1− λ
n+ 1

2

i,j+ 1
2
,k
)

∆yi,j,k
G

n+ 1
2

i,j+ 1
2
,k

+
(1− λ

n+ 1
2

i,j,k− 1
2

)

∆zi,j,k
H

n+ 1
2

i,j,k− 1
2

−
(1− λ

n+ 1
2

i,j,k+ 1
2

)

∆zi,j,k
H

n+ 1
2

i,j,k+ 1
2

,

and the solid flux

Φ
n+ 1

2

i,j,k, solid =
1

Vi,j,k

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

φ
n+ 1

2

i,j,k,F .

The solid flux Φ
n+ 1

2

i,j,k, solid in (10) results from the presence of the solid boundaries in the cell Ci,j,k. This
flux takes into account the exchange of energy and momentum between the solid and the fluid resulting
from the pressure forces.

The computation of the time-average of the side area fractions λn+ 1
2 (for simplicity, subscripts related

to the fluid grid cells or faces are omitted when they play no relevant role) and of the solid flux φ
n+ 1

2

F

attached to F (involving the computation of the boundary area A
n+ 1

2

F ), as considered in [10], can be very

complex in three dimensions. Instead, as in [20], we evaluate the side area fraction at time tn+1 in Φ
n+ 1

2

fluid ,
which we now denote Φn+1

fluid, and we evaluate the solid flux, which we now denote Φn
solid, by using the

boundary area An
F . This leads to the following approximation of (10):

(

1− Λn+1
i,j,k

)

Un+1
i,j,k =

(

1− Λn+1
i,j,k

)

Un
i,j,k +∆tΦn+1

i,j,k, fluid +∆tΦn
i,j,k, solid +∆U

n,n+1
i,j,k , (11)

where the fluid flux Φn+1
i,j,k, fluid is now given by

Φn+1
i,j,k, fluid =

(1− λn+1
i− 1

2
,j,k

)

∆xi,j,k

F
n+ 1

2

i− 1
2
,j,k
−

(1− λn+1
i+ 1

2
,j,k

)

∆xi,j,k

F
n+ 1

2

i+ 1
2
,j,k

+
(1− λn+1

i,j− 1
2
,k
)

∆yi,j,k
G

n+ 1
2

i,j− 1
2
,k
−

(1− λn+1
i,j+ 1

2
,k
)

∆yi,j,k
G

n+ 1
2

i,j+ 1
2
,k

+
(1− λn+1

i,j,k− 1
2

)

∆zi,j,k
H

n+ 1
2

i,j,k− 1
2

−
(1− λn+1

i,j,k+ 1
2

)

∆zi,j,k
H

n+ 1
2

i,j,k+ 1
2

,

the solid flux Φn
i,j,k, solid is now given by

Φn
i,j,k, solid =

1

Vi,j,k

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

φn
i,j,k,F , (12)

and the so called swept amount

∆U
n,n+1
i,j,k =

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

∆U
n,n+1
i,j,k,F ,

where ∆U
n,n+1
F denotes the amount of U swept by the movement of the solid face F during the time

step from tn to tn+1. The detailed procedure to compute these quantities is described in Section 3.3. To
maintain global consistency, we require that

∑

Ci,j,k

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

∆U
n,n+1
i,j,k,F =

∑

Ci,j,k

(Λn+1
i,j,k − Λn

i,j,k)U
n
i,j,k. (13)
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One possible difficulty with immersed boundary methods is that they can involve small cells (in the
sense that the solid volume fraction is greater than, say, 0.5). In order to ensure the CFL stability
condition of the fluid scheme on these cells, the time step should be decreased to an unacceptably small
value. To deal with this issue, we use a conservative mixing process following the ideas developed in [15].
Let p be a small cell and let g be a neighbouring cell with Λg < Λp. We define the following exchange
terms:

Epg =
(1− Λg)

(2− Λp − Λg)
(Ug − Up), Egp =

(1− Λp)

(2− Λp − Λg)
(Up − Ug),

and we set

Up ← Up + Epg, Ug ← Ug + Egp.

The mixing procedure is conservative since (1−Λp)Epg+(1−Λg)Egp = 0 and ensures that the equivalent
volume of a small cell is compatible with the usual CFL condition using the standard-size cells.

Another issue is the overlap of the stencil used in the Finite Volume method with the solid. Indeed,
near the solid, the states needed to calculate the fluid fluxes may be located in cells completely occupied
by the solid (“ghost-cells”). To deal with this issue we define within these cells an artificial state from
the states associated with the mirror cells relatively to the fluid-solid interface.

3.2 Main steps of the coupling algorithm

The time-integration scheme for fluid-structure interaction is based on a partitioned approach where
the coupling is achieved through boundary conditions at the fluid-solid interface. In our case, for an
inviscid fluid, we consider perfect slip boundary conditions at the fluid-solid interface:

~ufluid · ~νfluid + ~usolid · ~νsolid = 0, σfluid · ~νfluid + σsolid · ~νsolid = 0,

where ~ufluid and ~usolid, σfluid and σsolid, ~νfluid and ~νsolid are respectively the velocities, stresses and
outward pointing normals for the fluid and solid.

At the beginning of the time step from tn to tn+1, we know the state of the fluid Un, the position and
rotation of the solid ( ~Xn,Qn), as well as the velocity of its center of mass and its angular momentum

(~V n,Pn). The general procedure for the conservative coupling method can be described by the following
five steps:

1. The fluid fluxes Fn+ 1
2 , Gn+ 1

2 , Hn+ 1
2 are precomputed at all the cell faces of the fluid grid, without

taking into account the presence of the solid. We use the OSMP11 scheme with directional operator
splitting:

Un+6
i,j,k =Lx,y,z(∆t)Lx,z,y(∆t)Ly,x,z(∆t)Ly,z,x(∆t)Lz,x,y(∆t)Lz,y,x(∆t)Un

i,j,k,

where Lx,y,z(∆t) = Lx(∆t)Ly(∆t)Lz(∆t) and Lx, Ly, Lz are respectively the operators correspond-
ing to the integration of a time step ∆t in the x, y and z directions. For instance,

Lx(∆t)W = W −∆t

(

Fi+ 1
2
,j,k(W )− Fi− 1

2
,j,k(W )

∆x

)

.

Thus, second-order time accuracy is recovered every six time steps if the directional operators do
not commute. We denote by pnx , p

n
y and pnz the pressures used in the application of the operators

Lx, Ly andLz respectively. These pressures are used to determine the forces exerted by the fluid on
the solid during the time step.

2. The fluid force ~Fn
F, fluid acting on the solid face Fn is equal to the force exerted by these pressures

on the surface in contact with the fluid:

~Fn
F, fluid =

(

−

∫

Fn

p̄nx ν
n
x,F , −

∫

Fn

p̄ny ν
n
y,F , −

∫

Fn

p̄nz ν
n
z,F

)t

. (14)
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The total fluid pressure force acting on the solid is the sum of the contributions on each face:

~Fn
fluid =

∑

F∈F

~Fn
F,fluid. (15)

The fluid torques ~Mn
fluid are the sum of the torques of the pressure forces at the center of mass of

the solid:

~Mn
fluid =

∑

F∈F

~Fn
F,fluid ∧ ( ~Xn

F − ~Xn), (16)

where ~Xn
F is the center of mass of the solid face Fn and ~Xn the center of mass of the solid.

3. The solid is advanced in time. The position of the solid (submitted to a constant external fluid
force) is integrated using the Verlet scheme for translation and the RATTLE scheme for rotation
(see Section 2.2).

4. The volume fractions Λn+1 and side area fractions λn+1 can then be computed using the new
position of the solid boundary. The fluid fluxes are modified using Λn+1, Λn, λn+1, the pressures
pnx , p

n
y and pnz and the velocity of the boundary in order to enforce the conservation of fluid mass

and of the total momentum and energy of the system. At this stage, we can also calculate the swept
amount ∆U

n,n+1
F .

5. The final value of the state Un+1
i,j,k in the cell is calculated using (11). Owing to the perfect slip

conditions at the solid boundary, the flux φn
F is given by

φn
F =

(

0, Πn
x,F , Π

n
y,F , Π

n
z,F ,

~V
n+ 1

2

F · ~Πn
F

)t

, (17)

where

~Πn
F =

(∫

Fn

p̄nx ν
n
x,F ,

∫

Fn

p̄ny ν
n
y,F ,

∫

Fn

p̄nz ν
n
z,F

)t

= −~Fn
F, fluid,

and ~V
n+ 1

2

F is the velocity of the center of mass of the solid face Fn:

~V
n+ 1

2

F = V n+ 1
2 + ~Ωn+ 1

2 ∧ ( ~Xn
F − ~Xn), (18)

where V n+ 1
2 and ~Ωn+ 1

2 are, respectively, the average velocity and rotation velocity of the solid in
the time interval

[

tn, tn+1
]

. We define the angular velocity ~Ωn+ 1
2 at time (n + 1

2 )∆t using the
relation

j(~Ωn+ 1
2 ) =

1

2
Pn+ 1

2D−1(Qn +Qn+1)
t
.

We finish by mixing the small cut-cells, and we fill the ghost-cells in order to prepare the next time
step (see Section 3.1). The general structure of the coupling scheme is presented in Fig. 2.

3.3 Swept amount

To facilitate the computation of the swept amount ∆U
n,n+1
F , we subdivide each solid face F into a set

of triangles (called sub-faces) that are contained in one fluid grid cell (not necessary the same) at times tn

and tn+1. We define a piecewise affine map Ψn,n+1 from Fn to Fn+1. If a triangular sub-face has vertices
an1 , a

n
2 and an3 , we can express a point x of the sub-face at time tn as the weighted combination:

x = α1(x)a
n
1 + α2(x)a

n
2 + α3(x)a

n
3 ,

α1(x), α2(x), α3(x) ≥ 0, α1(x) + α2(x) + α3(x) = 1.

The local map Ψn,n+1 is then defined as

Ψn,n+1(x) = α1(x)a
n+1
1 + α2(x)a

n+1
2 + α3(x)a

n+1
3 . (19)

Let us consider the case of Fig. 3: in panel 3a, we have drawn the intersection of the solid face F
with a fluid grid cell Ci,j,k at time tn and in panel 3b, the intersection at time tn+1. Using the map (19),

7



SOLID FLUIDCOUPLING

~Xn, Qn, ~V n, Pn

(1) Computation
of fluid fluxes

ρn, ~un, pn

(2) Predicted pressure is
transferred to the solid
boundary

(5) Fluid update

Fn+ 1
2 , Gn+ 1

2 , Hn+ 1
2

(3) Solid update

pnx , p
n
y , p

n
z

(4) Boundary update:
Λn+1, λn+1, An+1

F , ~νn+1
F

~Xn+1, Qn+1, ~V n+1, Pn+1 ρn+1, ~un+1, pn+1

Figure 2: Structure of the coupling scheme

we now can draw the intersection on the same plane, see Fig. 4, where we have also drawn the whole
face F . If we now consider the intersection of F with all the fluid grid cells, we can obtain the result
shown in Fig. 5: the intersections at time tn mapped by Ψn,n+1 are drawn in continuous lines, and the
intersections at time tn+1 in dashed lines. We denote these polygonal meshes respectively with Sn

F and
Sn+1
F . The idea is now to intersect Ψn,n+1(S

n
F ) with Sn+1

F . We triangulate the polygonal mesh obtained
by the previous intersections at time tn and tn+1 in order to build a sub-mesh of both Sn

F and Sn+1
F

(see Fig.6). Thus, the solid face F is decomposed into a set of triangles, called sub-faces, denoted by f ,
so that F = ∪ f .

(a) Ci,j,k ∩ Fn (b) Ci,j,k ∩ Fn+1

Figure 3: Intersections between a fluid grid cell and a solid face at time tn (a) and tn+1 (b).
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Ci,j,k ∩ F
n+1

Ψn,n+1 (Ci,j,k ∩ F
n)

Figure 4: Intersections between a solid face and one fluid grid cell at time tn (continuous line) and tn+1

(dashed line).

Figure 5: Position of the two intersections: the
corresponding meshes at time tn (continuous
line) and tn+1 (dashed line).

Figure 6: Triangular sub-mesh

The swept amount ∆U
n,n+1
i,j,k,f is the integral of Un on the prism (possibly twisted) Kf whose bases are

fn and fn+1:

∆U
n,n+1
i,j,k,f =

1

Vi,j,k

∫

Kf

U (tn, x, y, z) dx dy dz.

Since Un is piecewise constant, the integral over the prism Kf is equal to

∫

Kf

U (tn, x, y, z) dx dy dz =
∑

{Cp,q,r |Kf ∩Cp,q,r 6=∅ }

Vp,q,r U
n
p,q,r,

where Vp,q,r is the signed volume of the intersection between the prism Kf and the fluid grid cell Cp,q,r.

Thus, the swept amount ∆U
n,n+1
i,j,k,f is given by

∆U
n,n+1
i,j,k,f =

1

Vi,j,k

∑

{Cp,q,r |Kf ∩Cp,q,r 6=∅ }

Vp,q,r U
n
p,q,r,

and, finally,

∆U
n,n+1
i,j,k =

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

∑

{f⊂Fn+1| fn+1 ⊂Ci,j,k}

∆U
n,n+1
i,j,k,f .

It can be shown that condition (13) is satisfied.
Finally, we notice that we could have computed directly the integration over the polyhedron ∪t∈[tn,tn+1]F∩

Ci,j,k, without finding a sub-triangular mesh. However, this integration is far more complex computa-
tionally than on triangular prisms and the distribution of ∆Un,n+1 over cells would become less accu-
rate.
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3.4 Evaluation of the fluid pressure forces

In order to ensure the conservation of momentum and energy of the system during the time-step, we
need to use the same geometric quantities for the computation of the fluid forces acting on the solid,
see (14), and for the solid flux, see (17). We choose here an explicit method which also satisfies consistency
properties. The fluid force acting on the solid face F is evaluated using Fn, and we split this face among
all the sub-faces contained in Fn. This yields

~Fn
F,fluid = −~Πn

F =
∑

f⊂Fn

~Fn
f,fluid,

with

~Fn
f,fluid =

(

−p̄nxA
n
f ν

n
x,f , −p̄

n
yA

n
f ν

n
y,f , −p̄

n
zA

n
f ν

n
z,f

)t
:= −~Πn

f .

The reason for the computation of the p̄nx , p̄
n
y , p̄

n
z on fn is the fact that each sub-face fn is contained

only in one cell at time tn.
In the computation of the solid flux Φn

solid, we also use a spiting among the sub-faces,

φn
i,j,k,F =

∑

{fn ⊂Fn | fn+1 ⊂Ci,j,k}

φn
i,j,k, f ,

where

φn
i,j,k, f =

(

0, Πn
x,f , Π

n
y,f , Π

n
z,f ,

~V
n+ 1

2

f · ~Πn
f

)t

,

and the velocity ~V
n+ 1

2

f is evaluated as

~V
n+ 1

2

f = V n+ 1
2 + ~Ωn+ 1

2 ∧ ( ~Xn
f − ~Xn),

where ~Xn
f is the center of mass of the sub-face fn and ~Xn the center of mass of the solid.

4 Properties of the coupling scheme

4.1 Conservation of mass, momentum, and energy

Conservation of mass, momentum, and energy holds for periodic boundary conditions and more gen-
erally in all the cases where such properties hold at the continuous level (i.e. mass and energy with fixed
boundaries, conservation when boundaries are far ...).

For simplicity, we assume that the fluid grid is uniform and we denote by V the volume of the fluid
grid cells, V = (∆x∆y∆z). We sum (11) over all the fluid grid cells Ci,j,k; owing to the cancellation of
fluxes on each fluid grid cell face, we infer that

∑

Ci,j,k

(

1− Λn+1
i,j,k

)

Un+1
i,j,k =

∑

Ci,j,k

(

1− Λn+1
i,j,k

)

Un
i,j,k

+
∆t

V

∑

Ci,j,k

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

φn
i,j,k,F +

∑

Ci,j,k

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

∆U
n,n+1
i,j,k,F .

Using (13) yields

∑

Ci,j,k

(

1− Λn+1
i,j,k

)

Un+1
i,j,k =

∑

Ci,j,k

(

1− Λn
i,j,k

)

Un
i,j,k +

∆t

V

∑

F∈F

φn
F .
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We finally obtain

1

V

∫

Ωn+1

fluid

Un+1 =
1

V

∫

Ωn
fluid

Un +
∆t

V

∑

F∈F

φn
F . (20)

The expression of φn
F in (17) shows that the first component is equal to zero. Hence, the first

component of (20) expresses the fluid mass conservation. Replacing the expression of φn
F from (17) in

the fluid momentum and energy equations, leads to

∫

Ωn+1

fluid

ρn+1~un+1 =

∫

Ωn
fluid

ρn~un +∆t
∑

F∈F

∫

Fn

~Πn
F ,

∫

Ωn+1

fluid

ρn+1En+1 =

∫

Ωn
fluid

ρnEn +∆t
∑

F∈F

∫

Fn

~V
n+ 1

2

F · ~Πn
F .

The fluid pressure force applied on the solid face F ∈ F during the time step is given by (14). The solid
momentum variation induced by the pressure forces on F , denoted ∆PF , and the corresponding energy
variation, denoted ∆EF , are given by

∆PF = ∆t ~Fn
F,fluid = −∆t

∫

Fn

~Πn
F , (21)

∆EF = ∆t ~Fn
F,fluid · ~V

n+ 1
2

F = −∆t ~V
n+ 1

2

F ·

∫

Fn

~Πn
F . (22)

Thus, the balance of momentum and energy in the fluid domain results in

∫

Ωn+1

fluid

ρn+1 ~un+1 +
∑

F∈F

∆PF =

∫

Ωn
fluid

ρn~un,

∫

Ωn+1

fluid

ρn+1En+1 +
∑

F∈F

∆EF =

∫

Ωn
fluid

ρnEn.

This proves the balance of the momentum and energy on each time step.

4.2 Consistency

4.2.1 Perfect slipping along a wall

We consider a rigid, fixed solid consisting of a semi-infinite half-space and a constant fluid state such
that ρn = ρ0, ~u

n = ~u0 = (u0, v0, w0), p
n = p0. The fluxes are such that

Fi− 1
2
,j,k = Fi+ 1

2
,j,k =

(

ρ0 u0, ρ0 u
2
0 + p, ρ0 u0 v0, ρ0 u0 w0, (ρ0 E + p)u0

)t
,

Gi,j− 1
2
,k = Gi,j+ 1

2
,k =

(

ρ0 v0, ρ0 u0 v0, ρ0 v
2
0 + p, ρ0 v0 w0, (ρ0 E + p)v0

)t
,

Hi,j,k− 1
2
= Hi,j,k+ 1

2
=
(

ρ0 w0, ρ0 u0 w0, ρ0 v0 w0, ρ0 w
2
0 + p, (ρ0 E + p)w0

)t
.

The pressure on the boundary of the solid is p̄x = p̄y = p̄z = p0. The solid boundary is a straight
planar boundary with a constant normal vector ~ν such that ~ν · ~u0 = 0. Since the solid is fixed, Λ, λ, AF

remain constant in time, the swept amount ∆U
n, n+1
F is equal to zero, and we obtain

(1− Λi,j,k)U
n+1
i,j,k =(1− Λi,j,k)U0 −

∆t

Vi,j,k

∑

{F ∈F | F ∩Ci,j,k 6= ∅}

AF

(

Fi+ 1
2
,j,kν

x +Gi,j+ 1
2
,kν

y +Hi,j,k+ 1
2
νz
)

+
∆t

Vi,j,k

∑

{F ∈F | F ∩Ci,j,k 6= ∅}

φi,j,k,F .
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The flux on the solid face F is calculated using (17), so the system (11) reduces to

(1− Λi,j,k) ρ
n+1
i,j,k = (1− Λi,j,k) ρ0 −

∆t

Vi,j,k

∑

{F ∈F | F ∩Ci,j,k 6= ∅}

AFρ0(~ν · ~u0),

(1− Λi,j,k) (ρ~u)
n+1
i,j,k = (1− Λi,j,k) ρ0~u0 −

∆t

Vi,j,k

∑

{F ∈F | F ∩Ci,j,k 6= ∅}

AF ((~ν · ~u0)ρ0 ~u0 + p0 ~ν)

+
∆t

Vi,j,k

∑

{F ∈F | F ∩Ci,j,k 6= ∅}

AFp0 ~ν,

(1− Λi,j,k) (ρE)n+1
i,j,k = (1− Λi,j,k) ρ0E0 −

∆t

Vi,j,k

∑

{F ∈F | F ∩Ci,j,k 6= ∅}

AF (~ν · ~u0)(ρ0e0 + p0).

We finally obtain Un+1
i,j,k = U0. This result shows that the coupling algorithm preserves exactly a uniform

constant flow parallel to a rigid half-plane, even in the case where the solid faces is are aligned with the
fluid grid. In other words, no artificial roughness appears on the solid walls.

4.2.2 Consistency with uniform solid translation

We consider an arbitrarily shaped rigid body moving at constant velocity and without rotation,
immersed in a uniform fluid flowing at the same velocity.

The volume swept by the solid face F during the time step is ∆t AF~u0 · ~νF (the solid moves without
rotation, so the normal vector ~νF (t) to the F(t) is constant in time), so the swept amount is

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

∆U
n,n+1
i,j,k,F =

∆t

Vi,j,k

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

AF (~u0 · ~νF )U0.

The first component of system (11) is given by

(

1− Λn+1
i,j,k

)

ρn+1
i,j,k =

(

1− Λn+1
i,j,k

)

ρ0 −
∆t

Vi,j,k

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

AFρ0(~u0 · ~νF )

+
∆t

Vi,j,k

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

AF (~u0 · ~νF )ρ0 =
(

1− Λn+1
i,j,k

)

ρ0.

The second component of system (11) is equal to

(1− Λi,j,k) (ρu)
n+1
i,j,k =(1− Λi,j,k) ρ0u0 −

∆t

Vi,j,k

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

AF ((~νF · ~u0)ρ0u0 + p0 ν
x
F )

+
∆t

Vi,j,k

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

p0 ν
x
F

+
∆t

Vi,j,k

∑

{F ∈F | Fn+1 ∩Ci,j,k 6= ∅}

AF (~νF · ~u0)ρ0u0 = (1− Λi,j,k) ρ0 u0.

Similarly, we obtain Un+1
i,j,k = U0. This shows that the constant flow is left unchanged by the coupling

algorithm. Since the solid is a closed set,
∑

F∈F
AF~νF = 0. Using (15), the fluid forces are

~Fn
fluid = −

∑

F∈F

p0AF~νF = 0.

In the same way, the fluid torques cancel. This shows that the uniform movement of the fluid and of the
solid is conserved by the coupling algorithm.
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4.3 Quasi-conservation of energy for the rigid solid

Let Ens be the solid energy at time tn defined as

Ens =
1

2
m‖~V n‖

2
+

1

2
tr
(

PnD−1(Pn)t
)

.

Proposition 4.1. The variation of the solid energy over a time step in terms of the fluid forces and

torques and of the velocity of the solid is

En+1
s = Ens +∆t ~Fn

fluid · ~V
n+ 1

2 +∆t ~Mn
fluid · ~Ω

n+ 1
2 +

1

2∆t
tr
(

j(~Ωn+1 − ~Ωn)Qn+1D(Qn)
t
)

.

Using the expression of ~Mn
fluid in (18) and the expression of ~V

n+ 1
2

F in (16), leads to

En+1
s = Ens +∆t

∑

F∈F

~Fn
F,fluid · ~V

n+ 1
2

F +
1

2∆t
tr
(

j(~Ωn+1 − ~Ωn)Qn+1D(Qn)
t
)

.

The works of fluid forces and torques cancel with their discrete counterpart in the fluid integration
scheme already computed in Section 4.1, see (22). Concerning the last term, in the two-dimensional case,
it vanishes due to the commutation of the rotation matrices with the matrix D. In the three-dimensional
case, the conservation of energy is not exact anymore. However, the discrepancy is limited: the product
Qn+1D(Qn)

t
is almost symmetric when the rotation matrices are close, and the term j(~Ωn+1− ~Ωn) is of

order ∆t. Therefore, we obtain a quasi-conservation of energy in that case.

Proof. Recall that if A and S are respectively a skew-symmetric and a symmetric matrix, then

tr(AS) = 0. (23)

Developing En+1
s using equations (2)–(7), we obtain

En+1
s =

1

2
m‖~V n‖2 +∆t ~Fn

fluid · ~V
n+ 1

2 +
1

2
tr
(

Pn+ 1
2D−1(Pn+ 1

2 )
t
)

+
∆t

4
tr
(

j( ~Mn
fluid)Q

n+1D−1(Pn+ 1
2 )

t
)

+
∆t

2
tr
(

Pn+1D−1(Qn+1)
t
Λ̃n+1

)

−
∆t2

8
tr
(

Λ̃n+1Qn+1D−1(Qn+1)
t
Λ̃n+1

)

−
∆t2

32
tr
(

j( ~Mn
fluid)Q

n+1D−1(Qn+1)tj( ~Mn
fluid)

)

.

Using (23), (9) and the symmetry of Λ̃n+1, the fifth term on the right-hand side is equal to 0. Developing

Pn+ 1
2 , we obtain

En+1
s =

1

2
m‖~V n‖2 +∆t ~Fn

fluid · ~V
n+ 1

2 +
1

2
tr
(

PnD−1(Pn)
t
)

+
∆t

2
tr
(

j( ~Mn
fluid)Q

n+1D−1(Pn+ 1
2 )

t
)

+
∆t

2
tr
(

PnD−1(Qn)
t
Λn
)

+
∆t2

8
tr
(

ΛnQnD−1(Qn)
t
Λn
)

−
∆t2

8
tr
(

Λ̃n+1Qn+1D−1(Qn+1)
t
Λ̃n+1

)

.

Again, applying (23), (9) at time tn and the symmetry of Λn , the fifth term vanishes. We now prove a
technical result on the trace of the Lagrange multipliers.

Lemma 4.2. The following holds:

∆t2

8
tr
(

ΛnQnD−1(Qn)
t
Λn
)

−
∆t2

8
tr
(

Λ̃n+1Qn+1D−1(Qn+1)
t
Λ̃n+1

)

=
1

2∆t
tr
(

j(~Ωn+1 − ~Ωn)Qn+1D(Qn)
t
)

.

Proof. Using equations (4), (5), (7) and the fact that the Lagrange multipliers are symmetric matrices,
we obtain the following expression for Λn and Λ̃n+1:

Λn =
2

∆t2
(Qn+1 −Qn)D(Qn)

t −
2

∆t
Pn(Qn)

t
,

Λ̃n+1 = −
2

∆t2
(Qn+1 −Qn)D(Qn+1)

t
+

2

∆t
Pn+1(Qn+1)

t
.
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Inserting these equalities in the trace and using (23) as well as the constraints on Pn and Pn+1, we infer
that

∆t2

8
tr
(

ΛnQnD−1(Qn)
t
Λn
)

−
∆t2

8
tr
(

Λ̃n+1Qn+1D−1(Qn+1)
t
Λ̃n+1

)

=
1

2∆t
tr
(

(Qn+1 −Qn)(Pn+1 −Pn)
t
)

.

The final result is obtained by using the relation j(~Ωn) = PnD−1(Qn)
t
.

Let us note that equations (5) and (23) imply that

∆t

2
tr
(

j( ~Mn
fluid)Q

n+1D−1(Pn+ 1
2 )

t
)

=
∆t

4
tr
(

j( ~Mn
fluid)(Q

n +Qn+1)D−1(Pn+ 1
2 )

t
)

.

Lemma 4.3. Pn+ 1
2D−1(Qn +Qn+1)

t
is a skew-symmetric matrix, so that we can define the angular

velocity vector ~Ωn+ 1
2 at time (n+ 1

2 )∆t by

j(~Ωn+ 1
2 ) =

1

2
Pn+ 1

2D−1(Qn +Qn+1)
t
.

Proof. Let us note that Pn+ 1
2D−1 = 1

∆t
(Qn+1 −Qn). It follows that

Pn+ 1
2D−1(Qn +Qn+1)

t
=

1

∆t
(Qn+1 −Qn)(Qn +Qn+1)

t
,

=
1

∆t
(Qn+1(Qn)

t −Qn(Qn+1)
t
).

which proves the result.

We can now finish the proof. It is straightforward to see that

tr
(

j( ~Mn
fluid)j(~Ω

n+ 1
2 )
)

= −2 ~Mn
fluid · ~Ω

n+ 1
2 .

Finally, we obtain the variation of the discrete solid energy in terms of the fluid forces and torques and
of the velocity of the solid as follows:

En+1
s = Ens +∆t ~Fn

fluid · ~V
n+ 1

2 +∆t ~Mn
fluid · ~Ω

n+ 1
2 +

1

2∆t
tr
(

j(~Ωn+1 − ~Ωn)Qn+1D(Qn)
t
)

.

5 Geometric algorithms for the coupling scheme

In this section, we present the geometric algorithms required for the implementation of the coupling
scheme. We first describe the algorithms used for the detection of the cut-cells as well as the computation
of the required informations for each of them. Afterwards, the algorithm used for the evaluation of the
swept amount due to the movement of the solid faces during a time step is presented.

5.1 Cut-cell volume

At each time step, intersections between the solid boundary and the fluid grid cells need to be com-
puted. The Immersed Boundary method uses various geometric quantities (the volume occupied by the
solid in the cut-cell, the occupation of the cut-cell faces, and the boundary areas, see Fig. 1) generated by
these intersections. The fluid is discretized and solved on a Cartesian grid. If the solid is not convex, we
decompose it into a finite number of convex polyhedral particles. The algorithm introduced here operates
on individual fluid grid cells, one at a time. The first part identifies the cut-cells, and the second part
computes the polyhedron resulting from the intersection between the fluid grid cell C and each particle
P composing the solid S.
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We distinguish intersection tests which do not construct any intersection objects and intersection
algorithms which construct the intersection objects. The first type of algorithm tests if the objects
intersect and is fast as it stops after the first encountered intersection. The second type of algorithm
constructs all intersection objects. Checking for intersection is easier and much faster than actually
computing the intersection result. The algorithm hinges on two major tasks:

1. Do convex 3d polyhedra P and Q intersect?

For the intersection detection tests, a classical efficient algorithm consists in approximating the
geometric primitives (the polyhedra P and Q) with their axis-aligned bounding boxes. If the
bounding boxes do not intersect, then the objects do not either. Only when a pair of boxes
intersect, the exact answer is tested on the complex geometric primitives contained in the boxes.

2. Given intersecting convex 3d polyhedra P and Q, compute their intersection.
The polyhedra being convex, we triangulate all the faces of P and Q and compute the intersection
between the triangular faces from P and the triangular faces from Q. Thus the problem can be
reduced to the computation of the intersection between triangles in three-dimensional space. The
intersection can be empty, a point, a segment, a triangle, or a polygon. Finally, the polyhedron
resulting from the intersection of P and Q is obtained by the computation of the convex hull of all
the end points of the segments, triangles and polygons resulting from the intersection between all
the triangular faces of P and Q.

The algorithm for computing the intersection between a fluid grid cell C and a convex solid particle
P is described in Algorithm 1. All the three-dimensional geometric tasks are handled by CGAL (Com-
putational Geometry Algorithms Library) which is an open source C++ library that contains primitives,
data structures and algorithms for computational geometry, as well as a comprehensive documenta-
tion [1].

Algorithm 1 Intersection between a fluid grid cell C and a convex solid particle P (intersection between
3d convex objects)

1: Associate a bounding Box to C =⇒ Box C

2: Associate a bounding Box to P =⇒ Box P

3: if (Box C ∩Box P 6= ∅) then
4: if (C ⊂ P ) then
5: Intersection result is C

6: else

7: Search vertices of P contained in C: V ertex P ∈ C

8: for Faces P = 0 to Faces P = Nb faces P do ⊲ Loop over the triangular faces of P
9: if (Box C ∩ Faces P 6= ∅) then

10: for Faces C = 0 to Faces C = Nb faces C do ⊲ Loop over the triangular faces of C
11: Search vertices of C contained in P : V ertex C ∈ P

12: if (Faces C ∩ Faces P 6= ∅) then
13: Compute the intersection between Faces C and Faces P

14: ⊲ Intersections between triangles in 3d
15: end if

16: end for

17: end if

18: end for

19: end if

20: end if

The time required for the determination of the intersections between the solid and the Cartesian fluid
grid and for the computation of the volume of the resulting cut-cells, the occupation of the cut-cells faces
and the boundary areas, appears to be comparable to the CPU time required for a fluid flux calculation
on one time step in the present test cases. As the cut-cell volume calculation is performed for each cut-cell
separately, the CPU time required for the volume calculation routine scales linearly with the number of
cut-cells and the number of the triangles describing the surface of the solid.
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5.2 Swept amount

For the computation of the amount swept by the movement of the solid face during a time step, we
use the following algorithm which we decompose into two major steps:

1. The first step consists in decomposing the solid faces into triangular sub-faces entirely contained
in a cell at the discrete times n and n + 1 (not necessarily the same). The detailed procedure is
described in Section 3.3.

2. The second step consists in calculating the amount swept by the movement of the triangular sub-face
between the discrete times n and n+ 1.

The amount swept by the movement of a triangular sub-face over the time step is the integral of Un

over the prism Kf whose bases are the triangular sub-faces at the discrete times n and n+1, denoted by
Tn and Tn+1 respectively. The lateral faces of the prism are not necessarily planar. In the case where the
prism is entirely contained in one cell we can calculate its signed volume by using the following formula
for a prism P (A1B1C1, A2B2C2) whose bases are the triangles T (A1B1C1) and T (A2B2C2):

V ol(P ) =
1

36

(

2
−−−→
A1B1 ∧

−−−→
A1C1 + 2

−−−→
A2B2 ∧

−−−→
A2C2 +

−−−→
A1B1 ∧

−−−→
A2C2 +

−−−→
A2B2 ∧

−−−→
A1C1

)

·
(−−−→
A1A2 +

−−−→
B1B2 +

−−−→
C1C2

)

Otherwise, since Un is piecewise constant, the integral of Un over the prism is computed by first deter-
mining the intersection between the prism and the Cartesian fluid grid. Due to the CFL condition, at
most eight fluid grid cells intersect the prism Kf . In order to compute these intersections, we triangu-
late the lateral faces of the prism with respect to the barycenter of the end-points, and we decompose
the prism into tetrahedra (see Fig. 7). Supposing that the prism bases are the triangles T (A1B1C1)
and T (A2B2C2), we define the points (A,B,C) as barycenters of the four end points of the possibly
non-planar faces:

A =
1

4
(B1 +B2 + C1 + C2), B =

1

4
(A1 +A2 + C1 + C2) and C =

1

4
(A1 +A2 +B1 +B2)

The tetrahedra composing the prism are: T (A1A2CB), T (B1B2AC), T (C1C2BA), T (A1CC1B), T (B1AC1C),
T (ACBC1), T (ABCC2), T (AB2C2C), T (A1B1C1C), T (A2C2CB) and T (A2B2CC2). Finally, we com-
pute the intersections of these tetrahedra with the fluid grid cells. In particular, we reduce the computa-
tion of the intersection between the prism and the Cartesian fluid grid, by proceeding as in Section 5.1,
to the computation of intersection between triangles in tree-dimension by considering the intersection
between the faces of tetrahedra and the triangulated cell faces.

A1

B1 C1

A2

B2 C2

Tn

Tn+1

•C •B

Figure 7: Cutting the “prism” whose bases are Tn (continuous line) and Tn+1 (dashed line) into tetra-
hedra.
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6 Numerical results

In this section we present numerical results. We first verify the conservation properties of the scheme.
Then, we consider the interaction of a shock wave with comparison to 2D results and with a sphere.

6.1 Conservation of mass and energy

In order to verify the conservation of mass and energy by the coupling scheme, we consider a test case
consisting of a simple shock tube in a straight rectangular channel and a rigid mobile solid inside this
channel. The computational domain is the rectangular box [0, 2] × [0, 1] × [0, 1]m and the initial flow
field is given by

{

ρ = 1.4 kg.m−3, u = v = w = 0m.s−1, p = 5Pa, ifx < 0.16m,

ρ = 1.4 kg.m−3, u = v = w = 0m.s−1, p = 1Pa, ifx ≥ 0.16m.

The initial position of the solid corresponds to the cuboid (x, y, z) ∈ [0.4, 0.9]×[0.4, 0.6]×[0.4, 0.6]m. The
computation is performed on a (140× 70× 70) grid with periodic boundary conditions. The simulation
time is t = 1s.

The pressure and density distribution along the line {y = 0.5m, z = 0.75m} are shown in Fig. 8.
We observe that the shocks and rarefaction waves are well captured, without spurious oscillations. The
resolution of the shocks is obviously moderate due to the relative coarseness of the fluid grid.

(a) (b)

Figure 8: Pressure distribution (a) and density distribution (b) along the line {y = 0.5m, z = 0.75m} at
time t = 1s.

In Fig. 9a we present the relative conservation error of fluid mass, computed from the difference
between the initial total mass and the total mass computed at the different time steps. This mass
difference is normalized by the maximum amount of mass swept by the movement of the solid. In
Fig. 9b we present the relative energy conservation error, computed as the difference between the initial
energy and the energy computed at the different time steps. This energy difference is normalized by the
maximum energy exchange between the fluid and the solid, which is the relevant quantity to evaluate the
relative effect of coupling on energy conservation. We observe a small variation of both mass and energy,
without any clear growth or decrease of either quantity. The variation of mass is as low as 0.01% of the
mass swept by the solid and the variation of energy is as low as 0.01% of the energy exchange in the
system. The main effect accounting for these variations are the rounding errors involved in the evaluation
of geometric quantities in cut-cells, since both mass and energy are impacted at similar levels.

6.2 Interaction of a shock wave and a cylinder

This moving body test case was first proposed in two space dimensions in [10] using a conservative
method and has been studied both with conservative [15, 20] and nonconservative methods [3, 14, 24].
We treat it here in three space dimensions, the third coordinate being degenerate.

A planar shock interacts with a rigid mobile cylinder of density 7.6 kg.m−3 in a channel. The side
boundaries of the domain are rigid walls while the left and right boundaries are respectively inflow and
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Figure 9: Relative conservation error on (a) fluid mass and (b) system energy.

outflow boundaries. The computational domain is the parallelepiped box [0, 1]× [0, 0.2]× [0, 0.2]m. The
shock is initially set up to a Mach number of 3, so that the initial values are

{

ρ = 3.857 kg.m−3, p = 10.333Pa, u = 2.6929m.s−1, v = w = 0m.s−1, ifx < 0.08m,

ρ = 1 kg.m−3, p = 1Pa, u = v = w = 0m.s−1, ifx ≥ 0.08m.

The cylinder lies on the lower wall of the channel with its axis along the z-axis. The initial position of
the center of mass of the cylinder is (0.15, 0.05, 0.1)m, the radius of the cylinder is R = 0.05m and its
length is L = 0.2m. The circular section of the cylinder is approximated by a regular polygon with 50
faces.

The computation is performed on a 200 × 40 × 40 grid. We impose inflow and outflow boundary
conditions at x = 0m and x = 1m respectively and mirror boundary conditions on the remaining outer
boundaries of the fluid domain. The simulation time is t = 0.255 s.
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Three-dimensional cylinder
Two-dimensional results [20]

Figure 10: Trajectory of the center of mass of the cylinder in the (x, y)-plane.

The impinging shock wave impacts the cylinder and is partially reflected, while part of the shock
wave moves over the cylinder and part of its energy is transferred as kinetic energy to the cylinder. The
reflected shock then reflects on the lower wall (y = 0), creating an overpressure under the cylinder and
lifting it up. Subsequently, a fluid flow develops under the cylinder, resulting in a contact discontinuity
which exhibits Kelvin-Helmholtz instabilities. Complex interactions between the cylinder, the walls and
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the reflected shocks then occur. In Fig. 10 we display the trajectory of the cylinder in the plane (x, y)
compared to the two-dimensional trajectory of [20] with the same fluid discretization. The final position
of the center of mass of the cylinder is (0.6465, 0.1406, 0.099994)m. In comparison, the two-dimensional
results in [20] yield (0.643, 0.144)m with a similar fluid discretization. This discrepancy is related to the
small number of faces (50) of the polygon approximating the circular section in the three-dimensional
case compared to the 1240 faces used in the two-dimensional case.

The system is symmetric with respect to the plane z = 0.1m. We note that the final position of the
center of mass of the cylinder remains close to z = 0.1m. In addition, the velocity of the fluid in the
z direction remains small and limited to the Kelvin-Helmholtz instability zones where three-dimensional
structures occur. Apart from these features, the invariance in the z direction is well preserved. 30 iso-
contours of density and pressure at the final time are plotted in Fig. 11a and Fig. 11b, respectively. The
position of the shocks agrees very well with [20].

(a)

(b)

Figure 11: Shock wave/cylinder interaction: 30 iso-contours of density (a) and pressure (b) at time
t = 0.255 s.

6.3 Interaction of a shock wave and a sphere

In this problem, a planar shock interacts with a rigid mobile sphere in a channel. The side boundaries
of the domain are rigid walls while the left and right boundaries are respectively inflow and outflow
boundaries. The computational domain is the parallelepiped box [0, 1]× [0, 0.2]× [0, 0.2]m. The shock
is initially set up to a Mach number of 3, so that the initial values are

{

ρ = 3.857 kg.m−3, p = 10.333Pa, u = 2.6929m.s−1, v = w = 0m.s−1, ifx < 0.08m,

ρ = 1 kg.m−3, p = 1Pa, u = v = w = 0m.s−1, ifx ≥ 0.08m.

The initial position of the center of mass of the sphere is (0.15, 0.05, 0.1)m, and the radius of the sphere
is R = 0.05m. The sphere is approximated by a polyhedron discretized with 236 faces.
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The computation is performed on a 400 × 80 × 80 grid. We impose inflow and outflow boundary
conditions at x = 0m and x = 1m respectively and mirror boundary conditions on the remaining outer
boundaries of the fluid domain. The simulation time is t = 0.255 s.
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Figure 12: Trajectory of the center of mass of the sphere in the (x, y)-plane.

In the same way that the cylinder interacted with the shock wave in the previous test case (Section 6.2),
complex interactions between the sphere, the walls and the reflected shocks occur, creating an overpressure
under the sphere and lifting it up. In Fig. 12 we display the trajectory of the sphere in the plane (x, y).
The final position of the center of mass of the sphere is (0.529m, 0.0776m, 0.0984m). The physical system
is symmetric with regard to the plane z = 0.1m. This feature is fairly well preserved by the numerical
results, even though the polyhedron itself is not perfectly symmetric. As a result, the sphere mass center
is no longer exactly at z = 0.1m at t = 0.255 s. 30 iso-contours of density and pressure at the final time
are plotted in Fig. 13a and Fig. 13b, respectively. This computation shows the ability of the coupling
algorithm to compute the interaction of strong discontinuities with irregular moving boundaries.

7 Conclusion

We have developed a coupling method between a three-dimensional moving rigid solid and an inviscid
compressible fluid, extending the explicit coupling scheme with a two-dimensional rigid solid of [20]. The
extension has been achieved through exact geometric intersections of the solid boundary and the fluid
grid. The method yields exact conservation of mass, momentum and energy of the system, and also
exhibits important consistency properties, such as conservation of uniform movement of both fluid and
solid as well as the absence of numerical roughness on a straight boundary.

The computational cost of the fluid and solid methods essentially results from the evaluation of fluxes
on the fluid side and of forces and torques on the solid side. We emphasize that the coupling algorithm
evaluates these only once per time step, ensuring computational efficiency. Regarding surface coupling,
the algorithm overhead scales as the number of solid faces and as N

2
3 , N being the number of fluid grid

cells. In comparison, the fluid flux computation time scales as N .
The presented test-cases allowed us to verify the main properties of the coupling scheme and to il-

lustrate the ability of the method to compute the interaction of strong discontinuities with rigid solids
undergoing large displacement. The next step is to move on to more complex test cases and to enrich
the algorithm to take into account the deformation and the fracture of the solid. The algorithm has
been designed in order to facilitate the extension of these results to solid deformation and fracture. This
would require the discretization of the solid body using particles in the context of the Discrete Element
method, an adequate reconstruction of the solid boundary resulting from the relative movement between
the particles composing the solid, an appropriate procedure to fill the ghost-cells and the definition of a
map (not necessarily bijective due to the opening of the fracture in one point) providing the correspon-
dence from the position of the boundary at time tn to its position at time tn+1. These developments are
the subject of ongoing work.
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(a)

(b)

Figure 13: Shock wave/sphere interaction: 30 iso-contours of density (a) and pressure (b) at time t = 0.255
s.
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