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Abstract

Optimization of a point-to-point multiple-input single-output (MISO) communication system is con-

sidered when both the transmitter (TX) and the receiver (RX)have energy harvesting (EH) capabilities.

The RX is interested in feeding back the channel state to the TX to help improve the transmission rate.

The objective is to maximize the throughput by a deadline, subject to the EH constraints at the TX and

the RX. The throughput metric considered is an upper bound onthe ergodic rate of MISO channel with

beamforming and limited feedback. Feedback bit allocationand transmission policies that maximize an

upper bound on the ergodic rate are obtained. Tools from majorization theory are used to simplify the

formulated optimization problems. Optimal policies obtained for the modified problem outperform the

naive scheme in which no intelligent management of energy isperformed.

Index Terms

Energy harvesting, Limited feedback, MISO, Offline optimization.

I. I NTRODUCTION

Powering up terminals in communication networks by renewable energy is a promising approach in at

least two ways. The first and obvious advantage is that, it reduces the carbon footprint of the information

and communication technologies, which can no longer be neglected with the exponential growth in the

number of communication devices. The second reason is that itincreases the autonomy of battery-run

communication devices. In traditional wireless networks,nodes get their energy from the power grid by

always or periodically connecting to it. While it is easy to connect the terminals to the grid in some
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networks, in others, such as sensor networks, it cannot be done once after the deployment. Therefore,

in such networks a node’s lifetime, and hence, the network lifetime, is constrained by the limited initial

energy in the battery. Providing EH capabilities to the communication nodes is an attractive solution

to the network lifetime problem [2]. An EH node can scavenge energy from the environment (typical

sources are solar, wind, vibration, thermal, etc.) [3]. With EH nodes in the network, in principle, one can

guarantee perpetual lifetime without the need of replacingbatteries.

However, EH poses a new design challenge as the energy sourcesare typically sporadic and random.

The main challenge lies in ensuring Quality of Service (QoS) constraints of the network given the random

and time varying energy sources. This calls for the intelligent management of various parameters involved

in a communication system.

Recently, a significant number of works have appeared studying the optimal transmission schemes for

EH communication systems under different assumptions regarding the node’s knowledge about the un-

derlying EH process. Offline optimization framework deals with systems in which non-causal knowledge

of the EH process is available. Within this frame work, optimal transmission schemes are studied for the

point-to-point fading channel [4], broadcast channel [5],[6], [7] and relay channel [8]–[10]. Extensions,

taking into account the imperfections in battery [7] as wellas circuit power consumption [11], [12] are

also investigated. See [13] for an extensive overview.

To the best of our knowledge, a common aspect of all prior works on EH communication networks

is that the TX is assumed to have access to perfect CSI. Knowledge of the CSI at the TX is beneficial

in designing the optimal channel adaptation techniques, TX filters in multi-antenna systems. However,

recent studies have demonstrated that, although feedback enhances the system performance, feedback

resources, namely power and bandwidth, are limited, and must be spent wisely [14]. As a result, an

important question arises: How do the EH constraints affect the design of feedback enabled wireless

networks?

In this paper, we study the optimization of a feedback enabled EH MISO channel, where feedback is

used to improve the rate through array gain. In the first part ofthe paper, we consider the optimization

of the feedback policy under EH constraints at the RX, while the TX is assumed to have a constant

power supply. The motivation is to address the following: In the case of EH, the available energy at

the RX varies over time. Should the RX feedback same quality ofCSI at all times? If so, can the CSI

feedback quality be improved by using more bandwidth in the low energy scenario? In the second part of

this paper, we assume that both the TX and the RX harvest energy. In this case, the transmission power

policy and the feedback policy are coupled, and need to be jointly optimized. Results from multivariate
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majorization theory are used to devise simple algorithms.

The rest of the paper is organized as follows. In Section II, a brief preliminary description of majoriza-

tion theory is given. Section III presents the system model and summarizes the main assumptions in this

paper. In Section IV, the feedback optimization problem whenonly the RX harvests energy is considered.

Sections V deals with throughput optimization when both the TXand the RX harvest energy. Numerical

results are presented in Section VI to validate the analysis.Finally, Section VII concludes the paper.

Notation: Matrices are represented by uppercase bold letters, vectors are represented by bold slant

letters. The transpose and conjugate transpose of matrixA is denoted byAT and A
H, respectively.

We use{D}i,j to denote the element at thei-th row andj-th column of matrixD, and |S| to denote

the cardinality of the setS. The set of integers fromm to n, m < n, is represented by[m : n]. The

notation||x|| refers the Euclidean norm of the vectorx, and∠(x,y) refers to the angle between vectors

x and y. The algorithm with name “Algo” is represented as[O1, O2, ..., On] = Algo (I1, I2, ..., In),

whereI1, I2, ..., In are input arguments andO1, O2, ..., On are output arguments. Finally, a circularly-

symmetric complex Gaussian distributed random variableη with zero mean and varianceσ2 is denoted

by η ∼ CN(0, σ2).

II. PRELIMINARIES

In this section, the basic notion of majorization is introduced and some important results that are

used in this work are stated. The readers are referred to [15] for a complete reference on this subject.

Majorization theory formalizes the notion that the components of a vectorx are “less spread out” than

the components of a vectory.

Definition 1: Let x = [x1, . . . , xn] ,y = [y1, . . . , yn], x,y ∈ Rn and letx(i) denote thei-th largest

component ofx. Thenx is said to bemajorizedby y, denoted byx � y, if

l
∑

i=1

x(i) ≤

l
∑

i=1

y(i), 1 ≤ l < n,

n
∑

i=1

x(i) =

n
∑

i=1

y(i).

Definition 2: [15, 2.A.1] A n× n matrix D with elements{D}i,j is doubly stochasticif

{D}i,j ≥ 0, ∀i, j ∈ [1 : n] ,

n
∑

i=1

{D}i,j = 1, ∀j ∈ [1 : n] and
n
∑

j=1

{D}i,j = 1, ∀i ∈ [1 : n] .

Theorem 1: [15, 4.A.1, 4.B.1] Forx,y ∈ Rn, the following conditions are equivalent:

April 8, 2014 DRAFT



4

Tx 
  Rx 

�  

Feedback channel 

C � �  

       

Energy  

buffer 

  

Harvested 

Energy  

       

Energy  

buffer 

Harvested 

Energy  

Figure 1. MISO channel with EH nodes.

• x � y.

• x = yD for some doubly stochastic matrixD.

• For all continuous concave functionsg : R → R,
n
∑

i=1
g (xi) ≥

n
∑

i=1
g (yi).

Definition 3: [15, 15.A.2] LetX andY bem×n real matrices. ThenX is said to bemajorizedby

Y, written X � Y, if X = YD, where then× n matrix D is doubly stochastic.

Theorem 2: [15, 15.A.4] LetX andY bem× n real matrices. Then,X � Y if and only if
n
∑

i=1

g (xc
i ) ≥

n
∑

i=1

g (yc
i ) ,

for all continuous concave functionsg : Rm → R, wherexc
i andyc

i denotes thei-th column vector of

X andY, respectively.

III. SYSTEM MODEL

We consider a point-to-point MISO fading channel as shown in Fig. 1, where both the TX and the

RX harvest energy from the environment. Each node is equippedwith an individual energy buffer, i.e.,

a rechargeable battery, that can store the locally harvested energy.

A. Energy Harvesting Model

The total observation time is divided intoK equal length EH intervals. At the beginning of thek-th EH

interval,k ∈ [1 : K], new energy packets of sizeEt
k, E

r
k units arrive at the TX and the RX, respectively.

At each node, this energy is first stored in an infinite size energy buffer, and used only for communication

purposes, i.e., TX sending data to the RX, and the RX feeding back the CSI. We assume that allEt
k, E

r
k ’s
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Figure 2. Energy harvesting time frame structure.

are known in advance by both terminals. This model is suitablefor an EH system in which the amount

of harvested energy can be predicted in advance.

B. Communication System Model

Each EH interval consists ofL data frames, each of lengthT channel uses. We assume a block

fading channel model. The channel is constant duringT channel uses of each frame, but changes in an

independent and identically distributed (i.i.d) fashion from one frame to another. The time frame structure

is shown in Fig. 2. The TX hasM > 1 antennas. The received signal in a given channel use is given by

y = hHws+ η, (1)

whereh ∈ CM×1 represents the vector of channel coefficients from TX antenna array to the RX with i.i.d

CN(0, 1) elements,w ∈ CM×1 denotes the unit norm beamforming vector, the input symbol maximizing

the achievable ergodic rate in thek-th EH interval iss ∼ CN(0, Pk), andη ∼ CN(0, 1) represents the

noise at the RX.

C. Feedback Model

We assume that the RX perfectly estimates the channel state at the beginning of each data frame,

and feeds back the quantized CSI to the TX within the same frame.In the k-th EH interval, the frame

structure is as follows: The RX inτk channel uses sends the CSI through a feedback channel (uplink)

which is modeled as additive white Gaussian noise (AWGN) channel. In the remainingT − τk channel

uses, TX sends data to the RX (downlink) exploiting the obtained CSI. The feedback model represents the

Time-Division Duplex (TDD) system in which uplink and downlink use the same band in a time-sharing
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fashion, but the communication devices are not self-calibrated and hence induce non-reciprocal effects

[16], [17]. In the above model, although the feedback overhead incurs cost in the downlink bandwidth,

similar trade-off in resource allocation between the CSI feedback quality and uplink data rate also arise

in a Frequency-Division Duplex (FDD) system. Analytical results obtained in this paper are applicable in

general settings, and for instance, can be used to address the trade-off between CSI quality and effective

data rate in a FDD system.

In the k-th EH interval, quantization of the channel state is performed using a codebookCk known at

both the TX and RX. The receiver uses Random Vector Quantization (RVQ). The codebook consists of

M -dimensional unit vectorsCk , {w1, . . . ,w2Bk}, whereBk is the number of bits used for quantization.

The RX computes the quantization index according toĥ = arg max
w∈Ck

|h̃Hw|
2
, whereh̃ , h

||h|| . We assume

that the length of the EH interval is very large compared to thechannel coherence time (i.e.,L is very

large). As a result, the achievable ergodic rate in thek-th EH interval is given by

Rk =
(

1−
τk
T

)

Eh,W

[

log2

(

1 +
Pk

(

1− τk
T

) ‖h‖2 cos2
(

∠(h̃, ĥ)
)

)]

. (2)

By using the AWGN feedback channel model, the number of feedback bitsBk can be related to the

energy used by the RX,Qk, and the number of channel usesτk as follows:

Bk = τk log2

(

1 +
Qk

τkσ2

)

, (3)

whereσ2 is the noise variance in the uplink. For analytical tractability, we neglect the practical constraint

thatBk should be an integer. Using the ergodic rate expression given in [18, (27)] and (3), the ergodic

rateRk , R (Pk, Qk, τk) is given by

Rk =
(

1−
τk
T

)

log2 e

(

e

(

1−
τk
T

Pk

)

M−1
∑

l=0

El+1

(

1− τk
T

Pk

)

−

1
∫

ν=0

(

1− (1− ν)M−1
)

(

1+
Qk

τkσ2

)τk

M

ν
e

(

1−
τk
T

Pkν

)

EM+1

(

1− τk
T

Pkν

)

dν



 ,

(4)

whereEn (.) is then-th order exponential integral.
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D. Optimization Problem

The problem of maximizing the sum throughput by the end of theK-th EH interval can be formulated

as

max
Pk,Qk,τk

K
∑

k=1

Rk (5a)

s.t. L

l
∑

i=1

Qi ≤

l
∑

i=1

Er
i , l = 1, ...,K, (5b)

LT

l
∑

i=1

Pi ≤

l
∑

i=1

Et
i , l = 1, ...,K, (5c)

0 ≤ τk < T, Pk ≥ 0, and Qk ≥ 0, k = 1, ...,K. (5d)

The constraints (5b) and (5c) are known asenergy neutrality constraints, represent the fact that, at each

node, the energy consumed can not be more than the energy harvested till that time. Before tackling the

above problem, first, we consider a special case in which only the RX harvests energy. In this scenario,

the aim is to obtain the optimal feedback policy under the EH constraints at the RX. Latter, the general

case with both the TX and the RX harvesting energy is studied.

IV. EH RECEIVER

In this setting, the RX harvests energy from the environment, whereas the TX is connected to the

power grid so that it has a fixed power supply at all times. Therefore, there are no EH constraints at the

TX, and constraints (5c) can be ignored. However, there is nowa constraint on the average transmission

power at each data frame of thek-th EH interval i.e.,Pk ≤ P, ∀k.

The ergodic rate expression in (4) offers little insight intothe convexity of the problem which is

required to reduce the complexity of optimization. This motivates the use of a bound on the ergodic rate

as an objective function. By using the bound on the expected quantization error [19],

EW cos2
(

∠(h̃, ĥ)
)

≤ 1−

(

M − 1

M

)

2
−Bk
M−1 , (6)

and the Jensen’s inequality, an upper bound on the ergodic rate Ru
k , Ru (Pk, Qk, τk) is given by,

Ru
k =

(

1−
τk
T

)

log2

[

1 +
PkM
(

1− τk
T

)

(

1−

(

M − 1

M

)

2
−Bk
M−1

)

]

. (7)

From (3) and (7), the ergodic rate upper bound is expressed as

Ru
k =

(

1−
τk
T

)

log2

[

1 +
PkM
(

1− τk
T

)

(

1−
M − 1

M

(

1 +
Qk

τkσ2

)

−τk
M−1

)]

. (8)
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The modified optimization problem is as follows,

max
Pk,Qk,τk

U =

K
∑

k=1

Ru
k (9a)

s.t. L

l
∑

i=1

Qi ≤

l
∑

i=1

Ei, l = 1, ...,K, (9b)

Pk ≤ P, andPk ≥ 0, k = 1, ...,K, (9c)

0 ≤ τk < T, and Qk ≥ 0, k = 1, ...,K, (9d)

whereP is the power constraint at the transmitter.

As the objective function is monotonic inQk and Pk, the constraint in (9b) must be satisfied with

equality for l = K, the first constraint in (9c) must be satisfied with equality fork ∈ [1 : K], otherwise,

we can always increaseQK , Pk, and hence the objective function, without violating any constraints.

Therefore we can replace the variablePk by letting Pk = P, ∀k. Now it remains to optimize over the

variablesQk andτk.

The feasible set is represented as

F = {Q, τ |Qk, τk satisfy (9b), (9d)} , (10)

whereQ = [Q1, . . . , QK ] andτ = [τ1, . . . , τK ]. To show that the above problem is a convex optimization

problem, we make use of the following lemma.

Lemma 1: If the function f (x, t) : R2
+ → R+ is concave, andg (y, z) : R2

+ → R+ is concave and

monotonically increasing in each argument, then the function h (x, y, t) =
(

1− t
T

)

g
(

y

1− t

T

, f(x,t)
1− t

T

)

is

concave∀ (x, y) ∈ R2
+, t ∈ [0, T ).

Proof: The proof is similar to that of showing the perspective of a concave function is concave. See

Appendix.

Proposition 1: The objective function in optimization problem (9) is concave.

Proof: See Appendix.

Since the objective function in (9) is concave and the constraints are linear, it has a unique maximizer

[20]. Using the concavity of the objective function, we showthat the optimal energy allocation vector is

the most majorized feasible energy vector.

Proposition 2: The global optimum of (9) is obtained at(Q∗, τ ∗), whereQ∗ � Q, ∀ (Q, τ ) ∈ F, and

τ∗k is the solution of the following equation

∂Ru
k

∂τk
|(Q∗

k,τ
∗

k )
= 0, ∀k ∈ [1 : K] . (11)

April 8, 2014 DRAFT
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Proof: Consider the following equivalent form of (9), where the optimization is performed in two

steps.

max
Q

Ũ (Q) s.t. ∀ (Q, τ ) ∈ F, (12)

whereŨ (Q) is obtained by

Ũ (Q) = max
τ

U (Q, τ ) s.t. ∀ (Q, τ ) ∈ F. (13)

SinceU is a concave function over the convex setF, the functionŨ (Q) is concave, where the domain

of Ũ is the setF̃ = {Q| (Q, τ ) ∈ F} [20, 3.2.5].U =
K
∑

k=1

Ru
k is continuous, differentiable and concave

in τk ∈ [0, T ). Furthermore, for givenQk, Ru
k approacheslog2 (1 + P ) and0 asτk approaches0 andT ,

respectively. Therefore, the unique maximizer of (13) lies in [0, T ) and it is obtained at

∂U

∂τk
|τ∗

k
=

∂Ru
k

∂τk
|τ∗

k
= 0, ∀k ∈ [1 : K] . (14)

From above, asτ∗k is only a function ofQk,

Ũ (Q) =

K
∑

k=1

R̃u
k (15)

where R̃u
k , R̃u (Qk) = Ru (Qk, τ

∗
k (Qk)). Using (15) and Theorem 1,̃U (Q∗) ≥ Ũ (Q) , ∀Q ∈ F̃.

Finding the optimal energy allocation vectorQ∗ under the energy harvesting constraints turns out be a

well known problem, and the algorithm to constructQ∗ is given in various works [21]–[23]. The proof

that the algorithm constructs the most majorized feasible energy vector is given in [23]. Since the optimal

energy allocation vector isQ∗, the optimalτ ∗ is obtained by (11).

A brief description of the algorithm tailored to this work isgiven here, details can be found in [21]–[23].

Note that there is no closed form expression for the solutionof (11), therefore we use numerical methods

to obtainτ ∗.

A. Optimal Energy Allocation

The Optimal Energy Allocation (OEA) algorithm, given in Algorithm 1, divides the EH intervals into

|S| energy bands whose indices form the setS =
{

t0, t1, . . . t|S|
}

, whereti < tj , ∀i < j, t0 = 0, and

t|S| = K. The i-th energy band contains the EH intervals with indicesk ∈ [ti−1 + 1 : ti]. Moreover, the

optimal allocated energy in each EH interval belonging to thei-th energy band is equal and it is denoted

by Q∗
(i). The energy vectorQ∗ obtained by[Q∗, Sr] = OEA(K, {Er

i /L}), has the following properties:

(P1) Q∗
k = Q∗

(i) =

∑ti
l=ti−1+1

Er
l

L(ti−ti−1)
, ∀k ∈ [ti−1 + 1 : ti].

(P2) The entriesQ∗
(i) are strictly monotonic, i.e.,Q∗

(1) < Q∗
(2) < ... < Q∗

(|S|).
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Input : Number of EH intervalsK; Harvested energy{Hi}

Output: Energy allocationO⋆, Energy band indicesS =
{

t0, t1, . . . t|S|
}

// initialization

t0 := 0;

for i = 1 : K do

for k = K : −1 : (ti−1 + 1) do

(i) O⋆
l =

∑

k

j=ti−1+1
Hj

k−ti−1
, l ∈ {ti−1 + 1, . . . , k}

if
∑l

i=1O
⋆
i ≤

∑l
i=1Hi, l = 1, ...,K then

ti := k;

Save{O⋆
1, · · · , O

⋆
k}

break;

end

end

if ti = K then
break;

end

end

Algorithm 1: Optimal Energy Allocation (OEA)

V. EH TRANSMITTER AND RECEIVER

In this section, we consider the general case where both the TXand the RX harvest energy. The ergodic

rate upper bound in (8) is not concave, but concave in each variable given the other variables are fixed.

One standard approach is to apply an iterative optimization, known as block coordinate descent (BCD)

method, which is known to converge to the local maximum if theproblem is of the form

max
x

f (x1, x2, . . . , xn) s.t x ∈ X, (16)

f is continuously differentiable overX, which can be written as the Cartesian product of the sets

X1, . . . ,Xn. Further, for each blocki andx ∈ X, the maximum

max
ξ

f (x1, . . . , xi−1, ξ, xi+1, . . . , xn) s.t ξ ∈ Xi, (17)

exists and it is unique [24, 2.7.1]. The optimization problemin (9) with extra EH constraints at the TX

in (5c), has the structure given in (16) and satisfies the condition in (17). Therefore, we can use the BCD

April 8, 2014 DRAFT
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algorithm to find the transmission power and feedback policy.However, the algorithm is computationally

intensive. To obtain a simple algorithm, we follow similar approach as in the previous section, and use

a concave upper bound on (8) as the objective function for throughput optimization.

An upper boundRub
k , Rub (Pk, Qk, τk) is given by

Rub
k =

(

1−
τk
T

)

log2

[

1 +

(

1− τk
T
+ Pk

)

(

1− τk
T

)2

(

M − (M − 1)

(

1 +
Qk

τkσ2

)

−τk
M−1

)]

. (18)

We now illustrate the tightness of the upper bound in (18) in the low and high power regimes. Let

tk , 1 − τk
T

and fk , M − (M − 1)
(

1 + Qk

τkσ2

)

−τk
M−1

. For all feasibleτk, Pk andQk, we can see that

0 < tk ≤ 1 and1 ≤ fk ≤ M . Consider

Rub
k −Ru

k = tk log2

(

1 +

(

1 +
Pk

tk

)

fk
tk

)

− tk log2

(

1 +
Pkfk
tk

)

= tk log2

(

t2k + tkfk + Pkfk
tk + Pkfk

)

− tk log2 (tk)

(19)

Note that (19) is decreasing inPk for fixed τk andQk. Sinceτk, fk are bounded, for fixedτk andQk at

low SNR,

lim
Pk→0

Rub
k −Ru

k = tk log2

(

1 +
fk
tk

)

,

≤ log2 (1 +M) .

(20)

For fixedτk andQk at high SNR,

lim
Pk→∞

Rub
k −Ru

k = −tk log2(tk),

≤ 0.5.

(21)

From the above analysis, it can be seen that, (19) decreases asthe power is increased, and bounded by

a constant in the high power regime.

By using (18), the modified throughput maximization problem is formulated as

max
Pk,Qk,τk

U1 =

K
∑

k=1

Rub
k (22a)

s.t. L

l
∑

i=1

Qi ≤

l
∑

i=1

Er
i , l = 1, ...,K, (22b)

LT

l
∑

i=1

Pi ≤

l
∑

i=1

Et
i , l = 1, ...,K, (22c)

0 ≤ τk < T, Pk ≥ 0, and Qk ≥ 0, k = 1, ...,K. (22d)
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Since the objective function is monotonic inQk and Pk, the constraints in (22b) and (22c) must be

satisfied with equality forl = K, otherwise, we can always increaseQK , PK , and hence the objective

function, without violating any constraints. The feasible set is represented as,

J = {(P ,Q, τ ) |Pk, Qk, τk satisfy (22b), (22c) and (22d)} , (23)

whereP = [P1, . . . , PK ], Q = [Q1, . . . , QK ] andτ = [τ1, . . . , τK ].

Proposition 3: The objective function in optimization problem (22) is concave.

Proof: See Appendix.

Since the objective function in (22) is concave and the constraints are linear, it has a unique maximizer

[20]. Consider the following equivalent form of (22), wherethe optimization is performed in two steps.

max
P ,Q

Ũ1 (P ,Q) s.t. ∀ (P ,Q, τ ) ∈ J, (24)

whereŨ1 (P ,Q) is obtained by

Ũ1 (P ,Q) = max
τ

U1 (P ,Q, τ ) s.t. ∀ (P ,Q, τ ) ∈ J. (25)

SinceU1 is a concave function over the convex setJ, the functionŨ1 is concave with domaiñJ =

{(P ,Q) | (P ,Q, τ ) ∈ J} [20, 3.2.5].U1 =
K
∑

k=1

Rub
k is continuous, differentiable and concave inτk ∈

[0, T ). Furthermore, for givenPk andQk, Rub
k approacheslog2 (2 + Pk) and0 as τk approaches0 and

T , respectively. Therefore, the unique maximizer of (25),τ∗k , ∀k lies in [0, T ), and it is obtained at

∂U1

∂τk
|τ∗

k
=

∂Rub
k

∂τk
|τ∗

k
= 0, ∀k ∈ [1 : K] . (26)

As τ∗k is only a function ofQk andPk, (24) can be written as

max
Pk,Qk

Ũ1 =

K
∑

k=1

R̃ub
k s.t. ∀k, (Pk, Qk) ∈ J̃, (27)

whereR̃ub
k , R̃ub (Pk, Qk) = Rub (Pk, Qk, τ

∗
k (Pk, Qk)).

In order to get an insight on how the optimal solution of (24) may look like, consider a simple scenario

in which there is only a sum power constraint at the TX and the RX, i.e., the constraints in (22b), (22c)

has to be satisfied for onlyl = K. In this case, by Jensen’s inequality, the uniform power allocation at

the TX and the RX is optimal1. However, due to the EH constraints, this may not be feasible.Using

this intuition, we can see that the optimal policy tries to equalize the powers as much as possible, while

satisfying the EH constraints.

1In this section, with slight abuse of terminology we use the terms RX power and RX energy interchangeably.
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First, we consider the case where the EH profiles at the TX and the RXare similar and show that the

optimization problem is considerably simplified.

A. Similar EH Profiles

The EH profiles are similar in the sense that the most majorized feasible vectors obtained from the

EH profiles of the TX and RX,P ∗ andQ∗, have same structure, i.e., ifP ∗
i = c1, ∀i ∈ [m : n], then

Q∗
i = c2, ∀i ∈ [m : n] for some constantsc1, c2 ≥ 0. We now give a formal definition.

Definition 4: By using theOEA algorithm, let[Q∗, Sr] = OEA(K, {Er
i /L}) and[P ∗, St] = OEA(K, {Et

i/LT}).

EH profiles at the TX and the RX are said to be similar ifSr = St.

In the case where only the RX is harvesting energy, the optimal energy allocation vector is the most

majorized feasible energy vector, and it is obtained by using the OEA algorithm. The algorithm essentially

try to make the energy vector as equalized as possible, whilesatisfying the EH constraints. From section

II, we can see that the definition of majorization for the vector case does not directly extend to the matrix

case. If OEA algorithm is used at the TX and RX separately, we getthe most individually majorized

power vectors, which in general may not be the optimal solution of (24). However, we now show that if

the EH profiles are similar, the above mentioned approach is indeed optimal.

Proposition 4: If the EH profiles at the TX and the RX are similar then(Q∗,P ∗, τ ∗) is the global

optimum of (22), whereQ∗ � Q,P ∗ � P , ∀ (Q,P , τ ) ∈ J, andτ∗k is the solution of

∂Rub
k

∂τk
|(P ∗

k ,Q
∗

k,τ
∗

k )
= 0, ∀k ∈ [1 : K] . (28)

Proof: See Appendix.

B. Different EH Profiles

Unfortunately, we could not find a simple algorithm to solve (22) in a general setting where the

EH profiles are not similar. In (27), if one variable is fixed, optimizing over the other variable has a

directional water-filling interpretation [4], however, the difficulty lies in the fact that there is no closed

form expression for̃Rub
k . Nonetheless, using convexity of the objective function, some properties of the

optimal solution are given below.

Lemma 2:Under the optimal policy, the transmission powerPk, and the energy used to send the

feedbackQk are non-decreasing ink, ∀k ∈ [1 : K].

Lemma 3:Under the optimal policy, at the instants whereRub changes, the energy buffer of either

the TX or the RX is emptied.

The proofs of the above lemmas are given in Appendix.
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VI. RESULTS

In this section, numerical results are obtained for a MISO system with the assumptions described in the

system model. We start by a small note on how the results obtained by solving the optimization problems

are used to evaluate the bounds on the throughput. Throughoutthe paper, due to the intractability and

non-convexity of the exact ergodic rate expression in (4), upper bounds on (4) are used as the objective

function in the formulated optimization problems. Hence, solving these modified optimization problems

gives an upper bound on the throughput. Since the constraintsin the original and the modified problem

are kept same, the solution obtained for the modified optimization problem is also feasible in the original

problem, and if used in evaluating the exact ergodic rate expression in (4), we get a lower bound on the

throughput.

First, we compare different feedback bit allocation schemeswhen the RX harvests energy, while the

TX has constant power supply. We assume that the RX is equippedwith a solar EH device. Following

[25], solar irradiance data is taken from the database reported in [26]. Each EH interval is of duration

∆ = 1 hour,T = 200 ms, resulting inL = 18000 frames.

The harvested power from the irradiance data can be calculated as,Pharv = I[Watt/m2]×Area[m2]×ρ,

whereρ is the efficiency of the harvester. A hypothetical solar panelof variable area is assumed. The

area of the panel is adjusted such that we have the EH profile shownin Fig. 3 at the RX. In Fig. 3, the

harvested power to noise ratio (HPN) in each EH intervalEr
k

∆σ2 is shown. Fig. 4 shows the throughput

for different downlink signal to noise ratios (SNRs), withM = 4 antennas. In Fig. 4, OEA represents

the proposed policy in which the energy vector is obtained byusing the OEA algorithm. In the greedy

scheme, optimization is performed only overτ , given Qk = Er
k/L. In Fig. 5, feedback bit allocation

is shown for the above mentioned policies for a downlink SNR of10 dB, with M = 4 antennas. From

Fig. 5, we can see that the proposed feedback bit allocation isequalized as much as possible, i.e., follows

the majorization property.

We now consider the case when both the TX and the RX harvest energy, and their EH profiles are

similar. The TX and RX are equipped with a solar EH device. The sameEH profile in Fig. 3 is used at

both the RX and the TX. However, the mean HPN at the TX is varied by increasing the harvester area

at the TX, i.e., the EH profile is multiplied by a positive number (area), while keeping the same shape.

Fig. 6 shows the throughput for different mean HPN at the TX, withM = 4. In the greedy scheme,

optimization is performed only overτ givenQk = Er
k/L andPk = Et

k/LT . In Fig. 6, BCD represents

the iterative optimization algorithm, and OEA represents the proposed policy in which the energy vectors
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Figure 3. Model for solar energy harvesting profile.

are obtained by using the OEA algorithm. We can see that both OEAand BCD have similar performance,

however, BCD is computationally intensive. The difference in throughput between the greedy and OEA

is small when the average HPN is low, and it increases with increasing the HPN. In contrast to the OEA

power allocation algorithm/scheme, using the greedy approach with the solar EH profile results in some

EH intervals being allocated zero energy, and therefore doesnot scale by increasing the harvester area.

This particularly hurts the greedy policy’s throughput in the high HPN regime as the multiplexing gain

(pre-log factor) of the throughput is reduced.

Finally, in the case of different EH profiles, these profiles are generated independently at the TX and

the RX, and they are i.i.d with exponential distribution. EH profiles are verified so that they are not

similar according to definition 4. EH profiles of the TX and the RX are shown in Fig. 7.

In Fig. 6, energy allocation of OEA algorithm and Similar to Fig. 6, in Fig. 8, the mean HPN at the

TX is varied by multiplying the EH profile, while keeping the sameshape. As we can see, the heuristic

of using OEA approach performs quite well in the different EH profile scenario. Since we could not find

a simple algorithm, CVX solver is used to solve the optimization problem [20]. The energy allocation at

the TX and the RX is shown in Fig. 9 for the above mentioned policies at an average per frame HPN of
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Figure 4. Ergodic rate with EH RX.

0.5 dB at the TX. Different from Fig. 6, the rate scaling with average HPN is same in both the greedy

and OEA policies. For the greedy policy, the allocated energyin the EH interval scales with increasing

the mean HPN, in contrast to the solar EH profile, where the allocated energy is zero in some intervals.

VII. C ONCLUSION

We have studied the problem of feedback design with EH constraints in a point-to-point MISO channel

with an EH RX and EH TX. Since the exact expressions of throughput are complicated, concave upper

bounds are used in the optimization problems. We first considered the case in which only the RX harvests

energy, and optimize the feedback policy. Latter, the general case in which both the TX and the RX

harvesting energy is analyzed. We showed that, if EH profiles are similar, the optimization problem can

be considerably simplified. We note the result obtained in Proposition 4, with some assumptions, can be

used in a general setting that may arise when a concave objective is to be maximized with the EH nodes

in a communication network. Numerical results show that theproposed policies not only outperform the
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Figure 5. Feedback load at SNR of10 dB.

greedy policies, but also achieve the performances which are quite close to the upper bound. Finally,

we believe that our work sheds light on the design of feedbackenabled multi-antenna systems when the

nodes depend on EH devices for their energy.
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Figure 6. Ergodic rate for similar EH profiles.

APPENDIX

A. Proof of Lemma 1

Let X1 = [x1 y1 t1]
T , X2 = [x2 y2 t2]

T, we have

h (λX1 + (1− λ)X2) = Θg

(

λy1 + (1− λ) y2
Θ

,
f (λx1 + (1− λ)x2, λt1 + (1− λ) t2)

Θ

)

(a)

≥ Θg

(

λy1 + (1− λ) y2
Θ

,
λf (x1, t1) + (1− λ) f (x2, t2)

Θ

)

= Θg

(

Θ1

Θ

y1
(

1− t1
T

) +
Θ2

Θ

y2
(

1− t2
T

) ,
Θ1

Θ

f (x1, t1)
(

1− t1
T

) +
Θ2

Θ

f (x2, t2)
(

1− t2
T

)

)

(b)

≥ Θ1g

(

y1
(

1− t1
T

) ,
f (x1, t1)
(

1− t1
T

)

)

+Θ2g

(

y2
(

1− t2
T

) ,
f (x2, t2)
(

1− t2
T

)

)

= λh (X1) + (1− λ)h (X2) ,

(29)
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Figure 7. Energy harvesting profiles.

whereΘ1 , λ
(

1− t1
T

)

andΘ2 , (1− λ)
(

1− t2
T

)

,Θ = Θ1 +Θ2, and

(a) follows from the fact thatf (x, t) is concave, andg (y, z) is monotonically increasing in each

argument.

(b) follows from the fact thatΘ1

Θ + Θ2

Θ = 1, andg (y, z) is concave.

B. Proof of Proposition 1

The ergodic rate bound in (8) withPk = P, ∀k can be written as,

Ru (Qk, τk) =
(

1−
τk
T

)

log2

(

1 +
f (Qk, τk)

1− τk
T

)

, (30)

wheref (Qk, τk) , PM

(

1− M−1
M

(

1 + Qk

τkσ2

)

−τk
M−1

)

. SinceBk in (3) is concave inQk andτk, it can be

easily seen that2−
Bk

M−1 =
(

1 + Qk

τkσ2

)

−τk
M−1

is convex, and hence,f (Qk, τk) is concave. Using Lemma 1

with g (y, z) = log2 (1 + z) andf (Qk, τk), we can see thatRu
k is concave. Since the objective function

in (9) is the summation ofRu
k ’s, it is also concave.
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Figure 8. Ergodic rate for different EH profiles.

C. Proof of Proposition 3

First, we show thatg (y, z) = log (1 + (1 + y) z) , (y, z) ∈ R2
+ is concave fory ≥ 0, z ≥ 1. The

Hessian ofg is given by

J =
1

β





−z2 1

1 − (1 + y)2



 , (31)

where β = (1 + (1 + y) z)2 > 0. ConsideruT
Ju = − 1

β

(

a2z2 + b2 (1 + y)2 − 2ab
)

, where u =

[a b]T ∈ R2. It can be easily seen thatuT
Ju ≤ 0 for ab ≤ 0. For ab > 0, since z (1 + y) ≥ 1,

uT
Ju = − 1

β

[

(az − b (1 + y))2 + 2ab (z (1 + y)− 1)
]

≤ 0. As Hessian is negative semidefinite,g (y, z)

is concave.

Reproducing the ergodic rate bound in (18),

Rub (Qk, τk) =
(

1−
τk
T

)

log2

(

1 +

(

1 +
Pk

1− τk
T

)

f (Qk, τk)

1− τk
T

)

, (32)
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Figure 9. Energy allocation at the TX and the RX.

wheref (Qk, τk) , M − (M − 1)
(

1 + Qk

τkσ2

)

−τk
M−1

. SinceBk in (3) is concave inQk and τk, it can be

easily seen that2−
Bk

M−1 =
(

1 + Qk

τkσ2

)

−τk
M−1

is convex, and hence,f (Qk, τk) is concave. Using Lemma 1

with g (y, z) = log (1 + (1 + y) z) and f (Qk, τk), we can see thatRub
k is concave. Since the objective

function in (22) is the summation ofRub
k ’s, it is also concave.

D. Proof of Proposition 4

First, (P ∗,Q∗) is shown to be the solution of (27) and thenτ ∗ is obtained by (28). Before solving

(27), we prove that

(P ∗, Q∗) =arg max
g,Pk,Qk

K
∑

k=1

g (Pk, Qk) s.t. ∀k, (Pk, Qk) ∈ J̃, g ∈ C, (33)

whereC is the set of all continuous concave functions. Since (27) is aspecial case of (33),(P ∗,Q∗) is

also the solution of (27).
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Before starting, we note that the notations and properties of the OEA algorithm discussed in Sec

IV-A are used throughout the proof. By contradiction, let usassume that there exists a[P̂T Q̂T]
T

6=

[P ∗T Q∗T]
T

and (P̂ , Q̂) be the solution of (33). Then, by Theorem 2 we have,
[

P̂T Q̂T
]T

�
[

PT QT
]T

, ∀ (P ,Q) ∈ J̃. (34)

Since(P ∗,Q∗) ∈ J̃, by (34) and Definition 3,
[

P̂T Q̂T
]T

=
[

P ∗T Q∗T
]T

D. (35)

By feasibility (22b),
ti
∑

j=ti−1+1

Q̂j ≤ Vi =

ti
∑

j=ti−1+1

Er
j /L. (36)

Applying (36) ati = 1,
t1
∑

j=1

Q̂j =

t1
∑

j=1

K
∑

i=1

Q∗
i {D}i,j ≤ V1. (37)

By (P1) and (P2),Q∗
i = Q∗

(1) + Li, where

Li = 0 ∀i ∈ [1 : t1] ,

Li > 0 ∀i ∈ [t1 + 1 : K] .

(38)

From (37) and (38)
t1
∑

j=1

K
∑

i=1

Q∗
(1){D}i,j +

t1
∑

j=1

K
∑

i=t1+1

Li{D}i,j ≤ V1. (39)

Using the fact thatD is doubly stochastic and by (P1),t1Q∗
(1) = V1, in (39)

t1
∑

j=1

K
∑

i=t1+1

Li{D}i,j ≤ 0, Li > 0. (40)

From (40),

{D}i,j = 0, ∀i ∈ [t1 + 1 : K] , ∀j ∈ [1 : t1] . (41)

As D is doubly stochastic, using (P1) and (41),

Q̂j =

t1
∑

i=1

Q∗
(1){D}i,j = Q∗

(1) = Q∗
j , ∀j ∈ [1 : t1] . (42)

SinceD double stochastic and using (41),

t1
∑

i=1

K
∑

j=1

{D}i,j = t1,

t1
∑

i=1

{D}i,j = 1, ∀j ∈ [1 : t1] .

(43)
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Using (43),
t1
∑

i=1

K
∑

j=1

{D}i,j =

t1
∑

i=1

t1
∑

j=1

{D}i,j +

t1
∑

i=1

K
∑

j=t1+1

{D}i,j , (44)

From (44), we can see that
t1
∑

i=1

K
∑

j=t1+1

{D}i,j = 0, (45)

hence,

{D}i,j = 0, ∀i ∈ [1 : t1] , ∀j ∈ [t1 + 1 : K] . (46)

Applying (36) ati = 2,
t2
∑

j=t1+1

Q̂j =

t2
∑

j=t1+1

K
∑

i=1

Q∗
i {D}i,j ≤ V2. (47)

By (P1) and (P2),Q∗
i = Q∗

(2) + Li, where

Li < 0 ∀i ∈ [1 : t1] ,

Li = 0 ∀i ∈ [t1 + 1 : t2] ,

Li > 0 ∀i ∈ [t2 + 1 : K] .

(48)

From (47) and (48),
t2
∑

j=t1+1

K
∑

i=1

Li{D}i,j +

t2
∑

j=t1+1

K
∑

i=1

Q∗
(2){D}i,j ≤ V2. (49)

SinceD is doubly stochastic, by (P1),(t2 − t1)Q
∗
(2) = V2, and using (46), (48) in (49),

t2
∑

j=t1+1

K
∑

i=t2+1

Li{D}i,j ≤ 0, Li > 0. (50)

From (50),

{D}i,j = 0, ∀i ∈ [t2 + 1 : K] , ∀j ∈ [t1 + 1 : t2] . (51)

As D is doubly stochastic, using (P1), (46) and (51),

Q̂j = Q∗
(2)

t2
∑

i=t1+1

{D}i,j = Q∗
(2) = Q∗

j , ∀j ∈ [t1 + 1 : t2] . (52)

SinceD is doubly stochastic, using (46) and (51),

t2
∑

i=t1+1

K
∑

j=1

{D}i,j = t2 − t1,

t2
∑

i=t1+1

{D}i,j = 1, ∀j ∈ [t1 + 1 : t2] .

(53)
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Using (53),
t2
∑

i=t1+1

K
∑

j=1

{D}i,j =

t2
∑

i=t1+1

t2
∑

j=t1+1

{D}i,j +

t2
∑

i=t1+1

K
∑

j=t2+1

{D}i,j , (54)

From (54) we can see that
t2
∑

i=t1+1

K
∑

j=t2+1

{D}i,j = 0, (55)

hence,

{D}i,j = 0, ∀i ∈ [t1 + 1 : t2] and∀j ∈ [t2 + 1 : K] . (56)

Continuing this approach fori = 3, ..., (|S| − 1), we getQ̂ = Q∗. Since the EH profiles are similar,

replacingQ̂ by P̂ andEr
j by Et

j/T in the above proof, we reach similar conclusion forP̂ i.e., P̂ = P ∗.

Therefore,[P̂T Q̂T]
T
= [P ∗T Q∗T]

T
.

E. Proof of Lemma 2

Assuming that at least one of thePk, Qk is not monotonically increasing ink. Without loss of generality

(w.l.o.s) we consider the cases wherePk > Pk+1, Qk ≥ Qk+1 andPk < Pk+1, Qk > Qk+1. In the case

of Pk > Pk+1, Qk ≥ Qk+1, we can construct a new feasible policy,

P
′

k = P
′

k+1 =
Pk + Pk+1

2
,

Q
′

k = Q
′

k+1 =
Qk +Qk+1

2
.

(57)

Since the objective function is concave, by Jensen’s inequality, the new policy strictly increases the

objective. Finally considering the case wherePk < Pk+1, Qk > Qk+1, we can construct another feasible

policy,

P
′

k = Pk, P
′

k+1 = Pk+1,

Q
′

k = Qk+1, Q
′

k+1 = Qk.

(58)

The functionRub with variablesP,Q, τ can be written as,

Rub (P,Q, τ) = t log2

(

1 +

(

1

t
+

P

t2

)

f

)

, (59)

wheref , M − (M − 1)
(

1 + Q
τσ2

)
−τ

M−1

, t , 1− τ
T

and0 ≤ τ < T . The second order partial derivative

of Rub (P,Q, τ) is given by,

∂2Rub

∂P∂Q
=

∂f
∂Q

t (1 + f/t+ Pf/t2)2
. (60)

Sincef is monotonic inQ, (60) is positive. As∂
2Rub

∂P∂Q
> 0, by the definition of derivative,

Rub (P,Q, τ) +Rub (P + δ,Q+ α, τ) > Rub (P + δ,Q, τ) +Rub (P,Q+ α, τ) , δ, α > 0. (61)
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Since (61) holds∀ 0 ≤ τ < T , we have

R̃ub (P,Q) + R̃ub (P + δ,Q+ α) > R̃ub (P + δ,Q) + R̃ub (P,Q+ α) , (62)

whereR̃ub is obtained by,

R̃ub (P,Q) = max
τ

Rub (P,Q, τ) . (63)

From (62) and (58),

R̃ub
(

P
′

k, Q
′

k

)

+ R̃ub
(

P
′

k+1, Q
′

k+1

)

> R̃ub (Pk, Qk) + R̃ub (Pk+1, Qk+1) . (64)

F. Proof of Lemma 3

Let us assume that the transmission rates in thek-th andk+1-th intervals are different, i.e.,̃Rub (Pk, Qk) 6=

R̃ub (Pk+1, Qk+1). Before thek + 1-th interval, the energy in the buffers of TX and the RX are∆r ,
k
∑

i=1
Er

i − L
k
∑

i=1
Qi and∆t ,

k
∑

i=1
Et

i − LT
k
∑

i=1
Pi, respectively. W.l.o.s, we assume that∆r ≤ ∆t. We can

construct another feasible policy

P
′

k = Pk + δ, P
′

k+1 = Pk+1 − δ,

Q
′

k = Qk + δ, Q
′

k+1 = Qk+1 − δ,

(65)

whereδ is chosen such thatδ < ∆r andQ
′

k < Q
′

k+1. Now, (65) can be written as

P
′

k = αPk + (1− α)Pk+1, P
′

k+1 = (1− α)Pk + αPk+1,

Q
′

k = αQk + (1− α)Qk+1, Q
′

k+1 = (1− α)Qk + αQk+1,

(66)

whereα = 1− δ/ (Qk+1 −Qk). From (66) and Jensen’s inequality,

R̃ub
(

P
′

k, Q
′

k

)

+ R̃ub
(

P
′

k+1, Q
′

k+1

)

≥ R̃ub (Pk, Qk) + R̃ub (Pk+1, Qk+1) . (67)
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