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Optimization of Energy Harvesting MISO

Communication Channels

Rajeev GangulaStudent Member, IEEBDavid GesbertFellow, IEEE and Deniz Gundlz,
Member, IEEE

Abstract

Optimization of a point-to-point multiple-input singlasput (MISO) communication system is con-
sidered when both the transmitter (TX) and the receiver (Ra)e energy harvesting (EH) capabilities.
The RX is interested in feeding back the channel state to ¥¢oThelp improve the transmission rate.
The objective is to maximize the throughput by a deadlinbejexi to the EH constraints at the TX and
the RX. The throughput metric considered is an upper bountherergodic rate of MISO channel with
beamforming and limited feedback. Feedback bit allocatind transmission policies that maximize an
upper bound on the ergodic rate are obtained. Tools from nmajeon theory are used to simplify the
formulated optimization problems. Optimal policies ohtd for the modified problem outperform the

naive scheme in which no intelligent management of energyerformed.
Index Terms

Energy harvesting, Limited feedback, MISO, Offline optiatian.

I. INTRODUCTION

Powering up terminals in communication networks by renewalnergy is a promising approach in at
least two ways. The first and obvious advantage is that, it esitiee carbon footprint of the information
and communication technologies, which can no longer beectgd with the exponential growth in the
number of communication devices. The second reason is tlatriéases the autonomy of battery-run
communication devices. In traditional wireless networksges get their energy from the power grid by

always or periodically connecting to it. While it is easy tonoect the terminals to the grid in some

R. Gangula, D. Gesbert are with the Mobile Communications Dept.,, EURECOivance (email: {gan-
gula,gesbert}@eurecom.fr). D. Gunduz is with Dept. of Electrical Biettronic Engineering, Imperial College London, UK
(email: d.gunduz@imperial.ac.uk). Part of this work was presenté&labalSIP 2013 in Austin, U.S.A, [1].
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networks, in others, such as sensor networks, it cannot he dace after the deployment. Therefore,
in such networks a node’s lifetime, and hence, the netwdekinie, is constrained by the limited initial
energy in the battery. Providing EH capabilities to the comication nodes is an attractive solution
to the network lifetime problem [2]. An EH node can scavengergy from the environment (typical
sources are solar, wind, vibration, thermal, etc.) [3].W\EH nodes in the network, in principle, one can
guarantee perpetual lifetime without the need of replatiatjeries.

However, EH poses a new design challenge as the energy sa@reggically sporadic and random.
The main challenge lies in ensuring Quality of Service (QoSktraints of the network given the random
and time varying energy sources. This calls for the intefligaanagement of various parameters involved
in a communication system.

Recently, a significant number of works have appeared stgdhi@ optimal transmission schemes for
EH communication systems under different assumptions dagaithe node’s knowledge about the un-
derlying EH process. Offline optimization framework dealswgystems in which non-causal knowledge
of the EH process is available. Within this frame work, optitnansmission schemes are studied for the
point-to-point fading channel [4], broadcast channel [B], [7] and relay channel [8]-[10]. Extensions,
taking into account the imperfections in battery [7] as vaslcircuit power consumption [11], [12] are
also investigated. See [13] for an extensive overview.

To the best of our knowledge, a common aspect of all prior wank EH communication networks
is that the TX is assumed to have access to perfect CSIl. Knowletithe CSI at the TX is beneficial
in designing the optimal channel adaptation techniques, T&rdilin multi-antenna systems. However,
recent studies have demonstrated that, although feedbdwnees the system performance, feedback
resources, namely power and bandwidth, are limited, and Imeisspent wisely [14]. As a result, an
important question arises: How do the EH constraints affieetdesign of feedback enabled wireless
networks?

In this paper, we study the optimization of a feedback erhBld MISO channel, where feedback is
used to improve the rate through array gain. In the first pathefpaper, we consider the optimization
of the feedback policy under EH constraints at the RX, whilke TX is assumed to have a constant
power supply. The motivation is to address the following: e tase of EH, the available energy at
the RX varies over time. Should the RX feedback same qualit¢®f at all times? If so, can the CSI
feedback quality be improved by using more bandwidth in tve énergy scenario? In the second part of
this paper, we assume that both the TX and the RX harvest enargyis case, the transmission power

policy and the feedback policy are coupled, and need to lmlyooptimized. Results from multivariate
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majorization theory are used to devise simple algorithms.

The rest of the paper is organized as follows. In Section Ili&f preliminary description of majoriza-
tion theory is given. Section Il presents the system moddlsarmmarizes the main assumptions in this
paper. In Section 1V, the feedback optimization problem wbely the RX harvests energy is considered.
Sections V deals with throughput optimization when both theand the RX harvest energy. Numerical
results are presented in Section VI to validate the analifiglly, Section VIl concludes the paper.

Notation: Matrices are represented by uppercase bold letters, rgeate represented by bold slant
letters. The transpose and conjugate transpose of maAtris denoted byA™ and A", respectively.
We use{D}, ; to denote the element at thieh row andj-th column of matrixD, and|8| to denote
the cardinality of the se8. The set of integers fromn to n, m < n, is represented bym : n]. The
notation||x|| refers the Euclidean norm of the vectey and Z(x, y) refers to the angle between vectors
x and y. The algorithm with name “Algo” is represented #3;,0a,...,0,] = Algo (I, I, ..., I,),
where I, I», ..., I,, are input arguments and;, O-, ..., O,, are output arguments. Finally, a circularly-
symmetric complex Gaussian distributed random variab¥gth zero mean and varianeg’ is denoted

by n ~ CN(0, 0?).

I[I. PRELIMINARIES

In this section, the basic notion of majorization is introdd and some important results that are
used in this work are stated. The readers are referred to {5k tomplete reference on this subject.
Majorization theory formalizes the notion that the compuseof a vectore are “less spread out” than
the components of a vectay.

Definition 1. Letx = [21,...,2n],y = [y1,...,¥n], T,y € R" and letz(; denote thei-th largest

component ofc. Thenx is said to bemajorizedby vy, denoted byx < vy, if

l l
va(i)ﬁzy(i), 1<l<n,
=1 i=1
Zm(i) = Zy(i)-
=1 i=1

Definition 2: [15, 2.A.1] An x n matrix D with elements{D}; ; is doubly stochastidf

{D}i; >0,  Vi,je[l:n],

zn:{D}Z'J =1, Vj € [1 : n} and zn:{D}z’] =1, Vi € [1 : n] .

i=1 j=1
Theorem 1: [15, 4.A.1, 4.B.1] Forx,y € R", the following conditions are equivalent:
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Figure 1. MISO channel with EH nodes.

o r=Xy.
o x = yD for some doubly stochastic matriR.

n

« For all continuous concave functiogs R — R, Z g (z;) > Z (yi)-
=1 =
Definition 3: [15, 15.A.2] LetX andY bem x n real matrlces TheiX is said to bemajorizedby
Y, written X <Y, if X = YD, where then x n matrix D is doubly stochastic.

Theorem 2: [15, 15.A.4] LetX andY bem x n real matrices. Then X <Y if and only if

Zg >Zg i),

for all continuous concave functions: R — R, Wherea:i andy; denotes the-th column vector of

X andY, respectively.

IIl. SYSTEM MODEL

We consider a point-to-point MISO fading channel as shown  Ej where both the TX and the
RX harvest energy from the environment. Each node is equippétdan individual energy buffer, i.e.,

a rechargeable battery, that can store the locally hawestergy.

A. Energy Harvesting Model

The total observation time is divided inf6 equal length EH intervals. At the beginning of theh EH
interval, k € [1: K], new energy packets of siZg}, E} units arrive at the TX and the RX, respectively.
At each node, this energy is first stored in an infinite size gneuaffer, and used only for communication

purposes, i.e., TX sending data to the RX, and the RX feediog thee CSI. We assume that &}, E}’s
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Figure 2. Energy harvesting time frame structure.

are known in advance by both terminals. This model is suitidien EH system in which the amount

of harvested energy can be predicted in advance.

B. Communication System Model

Each EH interval consists of. data frames, each of length channel uses. We assume a block
fading channel model. The channel is constant dufihghannel uses of each frame, but changes in an
independent and identically distributed (i.i.d) fashiooni one frame to another. The time frame structure

is shown in Fig. 2. The TX has/ > 1 antennas. The received signal in a given channel use is given b
y = h"ws + 1, (1)

whereh ¢ CM*! represents the vector of channel coefficients from TX antemag #o the RX with i.i.d
CN(0,1) elementsw € CM*! denotes the unit norm beamforming vector, the input symbolimizing
the achievable ergodic rate in tieth EH interval iss ~ CN(0, Py), andn ~ CN(0,1) represents the

noise at the RX.

C. Feedback Model

We assume that the RX perfectly estimates the channel stétee ebeginning of each data frame,
and feeds back the quantized CSI to the TX within the same frémihe k-th EH interval, the frame
structure is as follows: The RX im;, channel uses sends the CSI through a feedback channel (uplink
which is modeled as additive white Gaussian noise (AWGNNokh In the remaining” — 7, channel
uses, TX sends data to the RX (downlink) exploiting the ole@i@SI. The feedback model represents the

Time-Division Duplex (TDD) system in which uplink and dowmiti use the same band in a time-sharing
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fashion, but the communication devices are not self-catldat and hence induce non-reciprocal effects
[16], [17]. In the above model, although the feedback ovadhimcurs cost in the downlink bandwidth,
similar trade-off in resource allocation between the CStHbeek quality and uplink data rate also arise
in a Frequency-Division Duplex (FDD) system. Analytical fiéswbtained in this paper are applicable in
general settings, and for instance, can be used to addessatte-off between CSI quality and effective
data rate in a FDD system.

In the k-th EH interval, quantization of the channel state is perftusing a codebook, known at

both the TX and RX. The receiver uses Random Vector QuantizdRvY Q). The codebook consists of

M-dimensional unit vectorsy, = {wy, ..., wys, }, whereBy, is the number of bits used for quantization.
The RX computes the quantization index according te arg max ]fz”w]Q, whereh £ ﬁ We assume
WECk

that the length of the EH interval is very large compared todhannel coherence time (i.d.,is very
large). As a result, the achievable ergodic rate iniktd EH interval is given by
Tk P 9 9 -~ A
Re=(1- 7) Enw [log2 (HH 1|2 cos 4(h,h)>>
( T (1-%) (

By using the AWGN feedback channel model, the number of faekltbits B, can be related to the

. )

energy used by the RXQ, and the number of channel usgsas follows:

By, = 71 1ogy (1 + ng) ; (3)

TLO
whereo? is the noise variance in the uplink. For analytical tradibiwe neglect the practical constraint
that B, should be an integer. Using the ergodic rate expressiomdivé¢l8, (27)] and (3), the ergodic
rate R, = R (Py, Qx, 71) iS given by

n ) S (o F
Rk:<1—?)log26 e X:EZJr < 2 >

=

[y

(4)

1

0
- / (1 o (1 - V)M_l) (1+Tf§2>% %e<1;}%)EM+1 ( 7 7%> dv ],

v P.v

v=0
where E,, (.) is then-th order exponential integral.
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D. Optimization Problem

The problem of maximizing the sum throughput by the end ofAh#h EH interval can be formulated

as
K
Plngak:}::Tk ZRk (Sa)
k=1
s.t. LZQZ < ZE’" 1=1,. (5b)
LTZP <ZEtz_1 (5¢)
0<m<T, P,>0, and Q, >0, k=1,...K. (5d)

The constraints (5b) and (5¢) are knowneaergy neutrality constraintgepresent the fact that, at each
node, the energy consumed can not be more than the energsteatill that time. Before tackling the

above problem, first, we consider a special case in which dr@dyRX harvests energy. In this scenario,
the aim is to obtain the optimal feedback policy under the EHstraints at the RX. Latter, the general
case with both the TX and the RX harvesting energy is studied.

IV. EH RECEIVER

In this setting, the RX harvests energy from the environmesereas the TX is connected to the
power grid so that it has a fixed power supply at all times. Tleegfthere are no EH constraints at the
TX, and constraints (5c) can be ignored. However, there is a@onstraint on the average transmission
power at each data frame of tiieth EH interval i.e.,P, < P,Vk.

The ergodic rate expression in (4) offers little insight inte convexity of the problem which is
required to reduce the complexity of optimization. This mafies the use of a bound on the ergodic rate

as an objective function. By using the bound on the expectreahtigation error [19],

Eq cos? (Z(fz,fz)) <1-— <M _ 1) Qifiﬁ’

e ©)

and the Jensen’s inequality, an upper bound on the ergotdiofﬂzaé R" (Py, Q, ) IS given by,

;;:(1—%)1%2 1+%(1—(MM_1)2MB’3>]. 7)

From (3) and (7), the ergodic rate upper bound is expressed as

P.M M—1 Qp \ 71
1+(1_¥)<1— i <1+Tk02> )] (8)
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The modified optimization problem is as follows,

K

max U= R} 9a

Pkanka k:z_l k ( )
l !

sit. LY Q<Y Eil=1,..K (9b)
i=1 i=1

P.<P, andP, >0, k=1,... K, (9¢)

0<7<T, and Q, >0, k=1,...K, (9d)

where P is the power constraint at the transmitter.

As the objective function is monotonic i@, and P, the constraint in (9b) must be satisfied with
equality fori = K, the first constraint in (9c) must be satisfied with equality #of [1 : K], otherwise,
we can always increas@x, P, and hence the objective function, without violating anysioaints.
Therefore we can replace the varialite by letting P, = P,Vk. Now it remains to optimize over the
variablesQ; and 7.

The feasible set is represented as

§ ={Q, 7|Qx, 7 satisfy (9b), (9d), (10)

whereQ = [Q1,...,Qk] andT = |7, ..., 7x]. To show that the above problem is a convex optimization
problem, we make use of the following lemma.

Lemma 1:If the function f (z,¢) : R2 — R, is concave, ang (y, z) : R2 — R, is concave and

monotonically increasing in each argument, then the foncti(z,y,t) = (1— %) g (17%, @) is
concavey (z,y) € R%,t € [0,7). : '
Proof: The proof is similar to that of showing the perspective of acame function is concave. See
Appendix. [ ]
Proposition 1: The objective function in optimization problem (9) is coneav
Proof: See Appendix. [ ]
Since the objective function in (9) is concave and the comttare linear, it has a uniqgue maximizer
[20]. Using the concavity of the objective function, we shthat the optimal energy allocation vector is
the most majorized feasible energy vector.
Proposition 2: The global optimum of (9) is obtained &0*, 7*), whereQ* < Q,V (Q, ) € §, and
7 is the solution of the following equation

OR}!
0T,
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Proof: Consider the following equivalent form of (9), where theiopzation is performed in two

steps.

max U(Q) st.V(Q,T) €3, (12)

wherell (Q) is obtained by

uU(Q) = max U(Q,7) st.¥(Q,7)€F. (13)

Sincell is a concave function over the convex §ethe functionl (@) is concave, where the domain
of U is the setf = {Q|(Q, 7) € §} [20, 3.2.5].U = f R} is continuous, differentiable and concave
in 7, € [0,T). Furthermore, for giverd);,, R} approaclfia%sl;og2 (1+ P) and0 ast, approache® andT,
respectively. Therefore, the unique maximizer of (13) lie$0i 7") and it is obtained at

aRu
ou e = —& |Tk =0, Vke[l: K]. (14)
0Ty,

From above, as; is only a function of);,
~ K ~
Q) => R (15)
k=1

where RY £ R"(Qp) = R"(Qg, 77 (Q1)). Using (15) and Theorem 1{ (Q*) > U(Q),VQ <€ .
Finding the optimal energy allocation vect@* under the energy harvesting constraints turns out be a
well known problem, and the algorithm to constrégt is given in various works [21]-[23]. The proof
that the algorithm constructs the most majorized feasib&gy vector is given in [23]. Since the optimal
energy allocation vector i*, the optimalr* is obtained by (11). [ ]

A brief description of the algorithm tailored to this workds/en here, details can be found in [21]-[23].
Note that there is no closed form expression for the solutiofil), therefore we use numerical methods

to obtainT*.

A. Optimal Energy Allocation

The Optimal Energy Allocation@EA) algorithm, given in Algorithm 1, divides the EH intervaldan
8| energy bands whose indices form the 8et {to,1,...ts}, wheret; < t;,Vi < j, to = 0, and
tis| = K. The i-th energy band contains the EH intervals with indiées [t;_1 + 1 : ¢;]. Moreover, the
optimal allocated energy in each EH interval belonging to:tktie energy band is equal and it is denoted

by Q- The energy vecto@* obtained by[Q*,8,] = OEA(K,{E]/L}), has the following properties:

* * thLll
(Pl)Qk:Q( L(f_iti)Vk?G[z 1+ 1:t).

(P2) The entrieQz}) are strictly monotonic, i.e-Qf Q(z) Q?ISI)'
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Input : Number of EH intervalds’; Harvested energyH,;}
Output: Energy allocationD*, Energy band indice8 = {to,t1,...%s| }

[/ initialization
tg :=0;

for i =1: K do

for k=K:—1:(t;-1+1)do
. ?—t, 1Hj
() Of = =550 Le {tia+ 1, k)
if S o< Hyl=1,.., K then
t; := k;
SaVG{O)f,--- 702}
break;
end
end
if t; = K then
| break;
end

end

Algorithm 1. Optimal Energy Allocation QEA)

V. EH TRANSMITTER AND RECEIVER

In this section, we consider the general case where both thentiXhe RX harvest energy. The ergodic
rate upper bound in (8) is not concave, but concave in eadhblargiven the other variables are fixed.
One standard approach is to apply an iterative optimizattaown as block coordinate descent (BCD)

method, which is known to converge to the local maximum if pneblem is of the form
max f(z1,22,...,2,) StxeX, (16)
X

/ is continuously differentiable ovell, which can be written as the Cartesian product of the sets

X1,...,X,. Further, for each block andz € X, the maximum
max fr, w1, 8 w4, 1) SEEE X, (17)

exists and it is unique [24, 2.7.1]. The optimization problien{9) with extra EH constraints at the TX

in (5c), has the structure given in (16) and satisfies the t¢iomdin (17). Therefore, we can use the BCD
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algorithm to find the transmission power and feedback polimwever, the algorithm is computationally
intensive. To obtain a simple algorithm, we follow similggproach as in the previous section, and use
a concave upper bound on (8) as the objective function fautjinput optimization.

An upper boundR¥’ £ R (Py, Qy,71) is given by
1+W<M(M )(1+§§2>Ml>]. (18)

We now illustrate the tightness of the upper bound in (18)hi& flow and high power regimes. Let

u Tk
R = (1—?)log2

.
ty21-Zrandf, & M — (M —1) (1 + Qe )”H. For all feasibler;, P, and Q;, we can see that

TRO?

0<tp, <1 andl < fi < M. Consider

P
R¥ — RY = t;.log, <1+ <1 + k) fk) — ty log, <1+ kfk)
te | th th

t2 4+ tifr + Pof (19)
=tz lo (’“ bk kk)—tkIng(tk)

tk + Prfx
Note that (19) is decreasing i, for fixed 7, and Q. Sincery, fi are bounded, for fixed, and Q) at

low SNR,
hm R — RY =t} log, < + fk)

<logy (14+M).
For fixed, and Q. at high SNR,
lim RY% — RY = —t;, log,(tx),

< 0.5.
From the above analysis, it can be seen that, (19) decreashs pswer is increased, and bounded by
a constant in the high power regime.

By using (18), the modified throughput maximization problesriarmulated as

Pg&)fm Uy = iR}éb (22a)
s.t. LZQl < ZET 1=1,. (22b)
LTZP <2Etz_1 (22c)
0<7,<T, P,>0, and Q;, >0, k=1,.. K. (22d)
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Since the objective function is monotonic @, and P, the constraints in (22b) and (22c) must be
satisfied with equality foi = K, otherwise, we can always increag,, Px, and hence the objective

function, without violating any constraints. The feasibét & represented as,
J={(P,Q,1)|Px, Qr, 7 satisfy (22b), (22c) and (22}) (23)

whereP = [Py,...,Px|, Q =[Q1,...,Qk] andT = [y, ..., Tx].
Proposition 3: The objective function in optimization problem (22) is conea
Proof. See Appendix. [ ]
Since the objective function in (22) is concave and the camgl are linear, it has a uniqgue maximizer

[20]. Consider the following equivalent form of (22), whetes optimization is performed in two steps.

max 1 (P,Q) SLY(P.Q.7) €3, (24)

wherell; (P, Q) is obtained by
U (P,Q) = max Uy (P,Q,7) stV (P,Q,7)€3. (25)

SinceU; is a concave function over the convex $etthe functionl; is concave with domai =
{(P,Q)|(P,Q,T) €J} [20, 3.25].U; = f sz is continuous, differentiable and concave7in €
[0,T). Furthermore, for giverP, and Q, Rg’):1approache$og2 (2+ P) and0 as T approache$ and
T, respectively. Therefore, the unique maximizer of (23),vk lies in [0,7), and it is obtained at

NG ORW
L=k L0, Vhe[1: K]. 26
Gl = gl =0, ke [1: K] (26)

As 7 is only a function ofQ;, and P, (24) can be written as
K
) [ Hub ~
= t. ‘ 27
max U ;Rk S.LVE, (Pe, Q) € 3, (27)
where R £ R (P, Q1) = R" (Py, Q. 7 (Pry Q).

In order to get an insight on how the optimal solution of (24)rt@ok like, consider a simple scenario
in which there is only a sum power constraint at the TX and the iRX, the constraints in (22b), (22c)
has to be satisfied for only= K. In this case, by Jensen’s inequality, the uniform powescallion at
the TX and the RX is optimat. However, due to the EH constraints, this may not be feasiliing
this intuition, we can see that the optimal policy tries tau@e the powers as much as possible, while

satisfying the EH constraints.

1In this section, with slight abuse of terminology we use the terms RX poweiRatenergy interchangeably.
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First, we consider the case where the EH profiles at the TX and tharBXimilar and show that the

optimization problem is considerably simplified.

A. Similar EH Profiles

The EH profiles are similar in the sense that the most majorizasitiie vectors obtained from the
EH profiles of the TX and RXP* and Q*, have same structure, i.e., i = ¢;,Vi € [m : n], then
Qf = ¢2,Vi € [m : n] for some constants;, co > 0. We now give a formal definition.

Definition 4: By using theOEA algorithm, let{Q*, 8,] = OEA(K,{E!/L}) and[P*,8;] = OEA(K,{E!/LT}).
EH profiles at the TX and the RX are said to be simila8,if= 8;.

In the case where only the RX is harvesting energy, the optimargy allocation vector is the most
majorized feasible energy vector, and it is obtained bygi#ie OEA algorithm. The algorithm essentially
try to make the energy vector as equalized as possible, wailsfying the EH constraints. From section
II, we can see that the definition of majorization for the vectase does not directly extend to the matrix
case. If OEA algorithm is used at the TX and RX separately, wetlgetmost individually majorized
power vectors, which in general may not be the optimal smutf (24). However, we now show that if
the EH profiles are similar, the above mentioned approach eithabptimal.

Proposition 4: If the EH profiles at the TX and the RX are similar thé®*, P*, *) is the global
optimum of (22), whereQ* < Q, P* < P, V(Q, P, T) € J, and} is the solution of

8sz
0T,

\(Pr.irp) =0, VEE[1: K]. (28)

Proof: See Appendix. |

B. Different EH Profiles

Unfortunately, we could not find a simple algorithm to solv@)(2n a general setting where the
EH profiles are not similar. In (27), if one variable is fixed, amtiing over the other variable has a
directional water-fillinginterpretation [4], however, the difficulty lies in the fattat there is no closed
form expression foré",;b. Nonetheless, using convexity of the objective functiamme properties of the
optimal solution are given below.

Lemma 2:Under the optimal policy, the transmission powey, and the energy used to send the
feedback®; are non-decreasing ih, vk € [1: K].

Lemma 3:Under the optimal policy, at the instants whelR&® changes, the energy buffer of either
the TX or the RX is emptied.

The proofs of the above lemmas are given in Appendix.

April 8, 2014 DRAFT



14

VI. RESULTS

In this section, numerical results are obtained for a MISQesyswith the assumptions described in the
system model. We start by a small note on how the resultsraadddy solving the optimization problems
are used to evaluate the bounds on the throughput. Througheutaper, due to the intractability and
non-convexity of the exact ergodic rate expression in (ppen bounds on (4) are used as the objective
function in the formulated optimization problems. Henaglyimg these modified optimization problems
gives an upper bound on the throughput. Since the constriainte original and the modified problem
are kept same, the solution obtained for the modified optitisizgroblem is also feasible in the original
problem, and if used in evaluating the exact ergodic rateesgon in (4), we get a lower bound on the
throughput.

First, we compare different feedback bit allocation schemben the RX harvests energy, while the
TX has constant power supply. We assume that the RX is equipjtada solar EH device. Following
[25], solar irradiance data is taken from the database tegan [26]. Each EH interval is of duration
A =1 hour, T = 200 ms, resulting inL, = 18000 frames.

The harvested power from the irradiance data can be calduat@), ., = I|Watt/m?] x Area[m?]x p,
wherep is the efficiency of the harvester. A hypothetical solar pasfeVariable area is assumed. The
area of the panel is adjusted such that we have the EH profile simofig. 3 at the RX. In Fig. 3, the
harvested power to noise ratio (HPN) in each EH inte%& is shown. Fig. 4 shows the throughput
for different downlink signal to noise ratios (SNRs), willi = 4 antennas. In Fig. 4, OEA represents
the proposed policy in which the energy vector is obtainediing the OEA algorithm. In the greedy
scheme, optimization is performed only ovey given Q;, = E /L. In Fig. 5, feedback bit allocation
is shown for the above mentioned policies for a downlink SNR®UB, with M = 4 antennas. From
Fig. 5, we can see that the proposed feedback bit allocatiegualized as much as possible, i.e., follows
the majorization property.

We now consider the case when both the TX and the RX harvest)yerend their EH profiles are
similar. The TX and RX are equipped with a solar EH device. The sahigrofile in Fig. 3 is used at
both the RX and the TX. However, the mean HPN at the TX is variednbyeasing the harvester area
at the TX, i.e., the EH profile is multiplied by a positive numbare@), while keeping the same shape.
Fig. 6 shows the throughput for different mean HPN at the TX, with= 4. In the greedy scheme,
optimization is performed only over given Q; = E}/L and P, = E! /LT. In Fig. 6, BCD represents

the iterative optimization algorithm, and OEA represenésgioposed policy in which the energy vectors
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Figure 3. Model for solar energy harvesting profile.

are obtained by using the OEA algorithm. We can see that both @#PBCD have similar performance,
however, BCD is computationally intensive. The differencehiroughput between the greedy and OEA
is small when the average HPN is low, and it increases witreasing the HPN. In contrast to the OEA
power allocation algorithm/scheme, using the greedy aagravith the solar EH profile results in some
EH intervals being allocated zero energy, and therefore doescale by increasing the harvester area.
This particularly hurts the greedy policy’s throughput ire thigh HPN regime as the multiplexing gain
(pre-log factor) of the throughput is reduced.

Finally, in the case of different EH profiles, these profiles aneegated independently at the TX and
the RX, and they are i.i.d with exponential distribution. Ekbfiles are verified so that they are not
similar according to definition 4. EH profiles of the TX and the RX ahown in Fig. 7.

In Fig. 6, energy allocation of OEA algorithm and Similar to Fig.i6 Fig. 8, the mean HPN at the
TX is varied by multiplying the EH profile, while keeping the sastepe. As we can see, the heuristic
of using OEA approach performs quite well in the different Eldfie scenario. Since we could not find
a simple algorithm, CVX solver is used to solve the optimaaproblem [20]. The energy allocation at

the TX and the RX is shown in Fig. 9 for the above mentioned pedicit an average per frame HPN of
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Figure 4. Ergodic rate with EH RX.

0.5 dB at the TX. Different from Fig. 6, the rate scaling with averadPN is same in both the greedy
and OEA policies. For the greedy policy, the allocated enémgyne EH interval scales with increasing

the mean HPN, in contrast to the solar EH profile, where the d@#dcanergy is zero in some intervals.

VIlI. CONCLUSION

We have studied the problem of feedback design with EH cansdre a point-to-point MISO channel
with an EH RX and EH TX. Since the exact expressions of throughputamplicated, concave upper
bounds are used in the optimization problems. We first considne case in which only the RX harvests
energy, and optimize the feedback policy. Latter, the gérmase in which both the TX and the RX
harvesting energy is analyzed. We showed that, if EH profilessamilar, the optimization problem can
be considerably simplified. We note the result obtained in &sijpn 4, with some assumptions, can be
used in a general setting that may arise when a concave bjécto be maximized with the EH nodes

in a communication network. Numerical results show thatgh@osed policies not only outperform the
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Figure 5. Feedback load at SNR b dB.

greedy policies, but also achieve the performances whiehgaite close to the upper bound. Finally,
we believe that our work sheds light on the design of feedleabled multi-antenna systems when the

nodes depend on EH devices for their energy.
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APPENDIX

Let X; = [xl Y1 tl]T ,XQ = [I‘Q Y2 tQ]T, we have

h()\Xl—l-(l—)\)XQ):@g(

April 8, 2014

Ayt + (1 =N ya f Az + (1 — ) z2, My + (1 —)\)t2)>

(C] ' ©
(“)9 ()\y1+(1—)\)yg )\f(l‘l,tl)‘l‘(l—)\)f(xg,tg))
= 99 [ ) o

_ @g <@1 Y1 O9 Y2 @91 f(xlatl) %f(l‘g,tg)) (29)

Te-H e -9 e 0-%

(b Y1 f(z1,t1) Y2 f(z2,t2)
>0 , I © N0 1.
- ”(a—m u—w)* ”<@—ﬂ <—ﬂ>

= A (X1) + (1= A) h(X2),

T
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Figure 7. Energy harvesting profiles.

where®©; 2 X (1 - %) and©; £ (1 - 1)) (1-%),0 =06, + 65, and
(a) follows from the fact thatf (z,¢) is concave, andy(y,z) iS monotonically increasing in each
argument.

(b) follows from the fact thaf + & =1, andg (y, z) is concave.

B. Proof of Proposition 1

The ergodic rate bound in (8) witR, = P,Vk can be written as,

R (Qp., ) = (1 _ %) log, <1 + W) : (30)

— Tk

wheref (Qy, 7v) & PM <1 — % (1 + e )””) Since By, in (3) is concave i, andry, it can be

TRO?

B Syl . .
easily seen tha ™ 71 = (1 + T?;) """ is convex, and hencef, (Qy, 1) is concave. Using Lemma 1

with g (y, z) = log, (1 + z) and f (Q, 1), we can see thaR} is concave. Since the objective function

in (9) is the summation ofz}'’s, it is also concave.
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Figure 8. Ergodic rate for different EH profiles.

C. Proof of Proposition 3

First, we show thay (y,z) = log (1+ (1+y)z2),(y,2z) € R? is concave fory > 0,z > 1. The

Hessian ofg is given by

1 [ =22 1
E N - (1+1y)?
where 8 = (1+(1+y)z)* > 0. Consideru™Ju = —3 (a222 +02(14y)% - 2ab), whereu =

[a )" € R2. It can be easily seen that™Ju < 0 for ab < 0. For ab > 0, sincez(1+y) > 1,
ulJu = —% (az—b(1+y))* +2ab(z (1 +y) — 1)} < 0. As Hessian is negative semidefinitg(y, z)
iS concave.

Reproducing the ergodic rate bound in (18),

R (Qum) = (1- 7 ) logy <1 + (1 + P’%) ! (Qk’ff’“)> , (32)

11— 11—
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Figure 9. Energy allocation at the TX and the RX.

?{;) Y™ SinceB; in (3) is concave inQ; and Ty, it can be

T

where f (Qp, ) = M — (M — 1) (1 +

easily seen tha~ 7-1 = (1 %)m is convex, and hence, (Q, 71,) is concave. Using Lemma 1

with g (y,2) = log (1 + (1 +y) 2) and f (Q,7%), we can see thak!’ is concave. Since the objective

function in (22) is the summation dﬁgb’s, it is also concave.

D. Proof of Proposition 4

First, (P*,Q*) is shown to be the solution of (27) and the is obtained by (28). Before solving

(27), we prove that

K

(P, Q) =arg max > 9(Pe,Qr) Stk (Pr,Qk) €3,9 €€, (33)
9,5k, Jk k)zl

where€ is the set of all continuous concave functions. Since (27)$pexial case of (33),P*, Q") is

also the solution of (27).
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Before starting, we note that the notations and propertfeth@ OEA algorithm discussed in Sec

IV-A are used throughout the proof. By contradiction, letassume that there exists[ﬁ’T QT}T #+
(P*T @*T]" and (P, Q) be the solution of (33). Then, by Theorem 2 we have,
i 1T -

PTQT] 2 [PTQT v(P.@cd (34)

Since (P*,Q*) € J, by (34) and Definition 3,
o AT T
By feasibility (22b),
Y Q<Vi= ) Ej/L (36)
j=ti—1+1 j=ti—1+1

Applying (36) ati = 1,

t1

tK
Z Q; = Z Z Qi{D}:; < V1. (37)

j=1 j=11i=1
By (P1) and (P2)Q; = Qfl) + L;, where

L;,=0 \V/’iE[litl],

(38)
L;>0 Vie[ti +1: K].
From (37) and (38)
tl K tl K
YYD +Y . Y LD <V (39)
Jj=1i=1 j=1li=t;+1
Using the fact thaD is doubly stochastic and by (P]t),QE*l) = Vi, in (39)
t1 K
> Y Li{D}i; <0, L > 0. (40)
j=1i=t,+1
From (40),
{D}Z‘J‘:O, ViE[tl-f—l:K], VjG[l:tl]. (41)
As D is doubly stochastic, using (P1) and (41),
A~ tl
Qj=> Qy{Dlij=Qhy=Q;Viel:t]. (42)
i=1
SinceD double stochastic and using (41),
tl K
> > (Dl =t,
=1 j=1 (43)

t1
(Dl =1, Vjel:t].
=1
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Using (43),

tl t1 tl

ti1 K K
D3 DL =) (DY +>. Y. {D}i,

i=1 j=1 i=1 j=1 i=1 j=t,+1

From (44), we can see that

ty K
> ) {Dh;=0,

i=1 j=t,+1

hence,

{D}iyjzoa Vi € [11751},Vj€ [t1+1:K].

Applying (36) ati = 2,

to to K
Y. Qi= > > QiD}i; <V

j=t1+1 j=ti+1i=1
By (P1) and (P2)(); = Qa) + L;, where
L; <0 Vie[l:t],
L;,=0 \V/’iE[tl-f‘thQ],

L;>0 ViE[tQ—Fl:K}.
From (47) and (48),

to K to K
> > LifDlii+ Y D QD < Ve

j=ti4+1 i=1 j=ti+1i=1

SinceD is doubly stochastic, by (P1)t{> — t1) Q7,, = Va2, and using (46), (48) in (49),

(2)

K
Z Z Li{D};; <0,L; > 0.

j=t1+1i=ts+1
From (50),

{D}i,j:Oa \V/’L'G{tg—i-lZK], VjG[t1+1ZtQ].

As D is doubly stochastic, using (P1), (46) and (51),

ta
Qi =Qly > {D}i;j=Q =Q; Vi€ ti+1:1].

SinceD is doubly stochastic, using (46) and (51),

t, K
Z Z{D}zj =19 — 11,

i=ti+1 j=1

to
> {Dlij=1,Vj€ti+1:tg].
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(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)
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Using (53),

to K to to to K
3 DLy= > Y {Dh+ >, Y {D}i (54)

i=t1+1 j=1 i=t141 j=t,+1 i=t141 j=ts+1
From (54) we can see that

to K
> > (D=0, (55)

hence,

{D}@j =0,Vi €[t +1:to) andVj € [ta+1: K]. (56)
Continuing this approach far= 3, ..., (|8| — 1), we getQ = Q*. Since the EH profiles are similar,

replacing@ by P and E by E!/T in the above proof, we reach similar conclusion fii.e., P = P*.
Therefore,[PT Q"] = [P*T @*"]".

E. Proof of Lemma 2

Assuming that at least one of tli&, Q. is not monotonically increasing i Without loss of generality
(w.l.0.s) we consider the cases whete > Pyi1,Qr > Qi1 and P, < Pii1, Qr > Qr+1. In the case

of P, > P11, Qr > Qr+1, We can construct a new feasible policy,

/ / Py + Py
Pk:PkH:f’ (57)
/ / Qr + Qrt1
Qr = Qpi1 = — s

Since the objective function is concave, by Jensen’s inéguahe new policy strictly increases the

objective. Finally considering the case whéte< P11, Qr > Qr11, We can construct another feasible

policy,
P];:ka P];+1:Pk+17

(58)
Qk - Qk+1, Qk+1 = Qk.
The functionR* with variablesP, Q, T can be written as,
1 P
R (PQr) =tlogs (1+ (433 ) 1) (59)

wheref £ M — (M — 1) (1 + %)m t£1— 7 and0 < 7 < T. The second order partial derivative
of R¥ (P,Q, ) is given by,

62Rub - %

OPOQ  t(1+4 f/t+ Pf/t2)*

Since f is monotonic in@, (60) is positive. Asgzp—% > 0, by the definition of derivative,

(60)

R®(P,Q,7)+R"” (P+46,Q+a,7) > R®(P+46,Q,7)+ R*®(P,Q+ o, 7), 6,a>0. (61)

April 8, 2014 DRAFT



25

Since (61) holds/ 0 < 7 < T, we have
R™(P,Q) + R®(P+4,Q +a) > R* (P +6,Q) + R (P,Q + a), (62)
where R“ is obtained by,
R"(P,Q) = max R" (P,Q, 7). (63)

From (62) and (58),

R (Pl Qi) + B (Piyrs Q) > B (P Qi)+ B (P, Qi) (64)

F. Proof of Lemma 3

Let us assume that the transmission rates irkttreandk-+1-th intervals are different, i.eRv (Pr, Qi) #
R“b (Prt1, Qkﬂ) Before thek -+ 1-th mterval the energy in the buffers of TX and the RX axg £
Z El —L Z Q; and A, = Z E!—LT Z P;, respectively. W.l.o.s, we assume that < A;. We can

=1 =1
construct another feasible pollcy

P, =P+, P,;+1:Pk+1—5,

(65)
Q= Qr+0, Qi1 =Qri1—
whered is chosen such that < A, and Q}g < Q}gﬂ. Now, (65) can be written as
P,=aPy+ (1 —a)Piy1, Popqy = (1—a)Ps+aPgy, )
Qr = Qi + (1= ) Qr1, Qg = (1 —a) Qp + aQpo1,
wherea =1 -6/ (Qr+1 — Qr). From (66) and Jensen'’s inequality,
R (P Qy) + R (Piyr Qupr) = B (Pry Qi) + R (P, Q) (67)
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