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Finite-Volume analysis for the Cahn-Hilliard
equation with dynamic boundary conditions

Flore NABET

Abstract This work is devoted to the convergence analysis of a finite-volume ap-

proximation of the 2D Cahn-Hilliard equation with dynamic boundary conditions.

The method that we propose couples a 2d-finite-volume method in a bounded,

smooth domain Ω ⊂ R
2 and a 1d-finite-volume method on ∂Ω . We prove con-

vergence of the sequence of approximate solutions. One of the main ingredient is

a suitable space translation estimate that gives a limit in L∞
(
0,T,H1(Ω)

)
whose

trace is in L∞
(
0,T,H1(∂Ω)

)
.

1 Introduction

We consider a smooth, connected and bounded domain Ω ⊂ R
2 and Γ = ∂Ω its

boundary. Let T > 0 be given.

We are interested here in the following phase separation model in material science

(refered to as the Cahn-Hilliard equation with dynamic boundary conditions):

Find the concentration of one of the two phases c : (0,T )×Ω → R satisfying:





∂tc = ∆ µ, in (0,T )×Ω ;

µ =−∆c+ f ′b(c), in (0,T )×Ω ;

∂tcpΓ = ∆‖cpΓ − f ′s (cpΓ )−∂nc, on (0,T )×Γ ;

∂nµ = 0, on (0,T )×Γ ;

c(0, .) = c0, in Ω ;

(1)

where we have introduced an intermediate unknown: the chemical potential µ .
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The trace of c on Γ is noted cpΓ , ∆‖ is the Laplace-Beltrami operator on Γ and ∂n

is the normal derivative at the boundary. The Cahn-Hilliard potentials fb and fs are

nonlinear and they correspond respectively to the bulk and the surface free energy

densities. In fact, several physical parameters should appear in the Cahn-Hilliard

equation to account for physical properties of the studied system. However, these

constants affect the readability of the problem. Thus, we have chosen to write the

Problem (1) without these parameters.

We impose the homogeneous Neumann boundary condition for the chemical po-

tential since no mass exchange can occur through the boundary. For many years,

different authors studied the Cahn-Hilliard equation associated with the Neumann

boundary condition for the order parameter c. In some cases, however, this condi-

tion is too restrictive to account for the interaction of the mixture with the walls. For

this reason, physicists [4, 7] have recently introduced the Cahn-Hilliard system with

dynamic boundary conditions (1). The associated free energy is the sum of a bulk

free energy Fb and a surface free energy Fs:

F (c) =
∫

Ω

(
1

2
|∇c|2 + fb(c)

)

︸ ︷︷ ︸
:=Fb(c)

+
∫

Γ

(
1

2

∣∣∇‖cpΓ
∣∣2 + fs(cpΓ )

)

︸ ︷︷ ︸
:=Fs(c)

. (2)

The dynamic boundary condition on c is chosen in such a way that the total free

energy decreases with respect to time:

d

dt
F (c(t, .)) =−

∫

Ω
|∇µ(t, .)|2 −

∫

Γ
|∂tcpΓ (t, .)|

2 , t ∈ [0,T [.

The potentials are supposed to satisfy standard assumptions:

Assumptions 1. :

• Dissipativity: liminf
|c|→∞

f ′′b (c)> 0 and liminf
|c|→∞

f ′′s (c)> 0.

• Polynomial growth for fb: there exist Cb > 0 and a real p ≥ 2 such that:

∣∣∣ f
(m)
b (c)

∣∣∣≤Cb

(
1+ |c|p−m

)
, m ∈ {0,1,2}.

A typical choice for fb is the double-well function fb(c) = c2(1− c)2.

From a theoretical point of view, this system has already been studied (see for

exemple [6] and the references therein). From a numerical point of view, we have

several results. In [4, 7], authors propose a finite-difference framework but without

proof of convergence. A convergence result is proved in [2] with a finite element

space semi-discretization, but in a slab with periodic boundary conditions in lat-

eral directions. In this paper, we propose a convergence analysis of a finite-volume

scheme for the space discretization. This method is well adapted to the coupling be-

tween the dynamics in the domain and those on the boundary by the flux term ∂nc.

Moreover, this kind of scheme preserves the mass and accounts naturally for the

non-flat geometry of the boundary and the associated Laplace-Beltrami operator.
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2 The discrete setting

2.1 The Finite-Volume meshes and notation

We recall that the domain Ω is not polygonal and that we have to solve an equation

on Γ . Thus, our notation will be slightly different than the usual finite-volume nota-

tion (see for example [3]). Let M be a decomposition of Ω into polygonal subsets

(called control volumes and noted K ∈M) except perhaps for those on the bound-

ary which can have a curved edge. For each control volume K ∈M, we associate a

point xK which satisfies the orthogonality condition (see [3]). The main differences

with the usual finite-volume notation are those on the boundary mesh ∂M. This

mesh is constituted of the set of curved edges σ on the boundary Γ . With respect to

the interior mesh, we keep the usual notation (Figure 1) except for control volumes

K ∈M with one edge σ , at least, belonging to the boundary. In this case, K is not

polygonal (σ is curved), we note K̃ the polygon formed by the vertices of K and

by m
K̃

its Lebesgue measure. Note that K̃ may not be included in Ω . We will use

two different notations for an element of ∂M: we note e when we consider it as a

control volume belonging to ∂M and we note σ when we consider it as the edge of

an interior control volume K ∈M.

Let e ∈ ∂M be a boundary control volume and ẽ the corresponding chord. Their

length are respectively noted me and mẽ. If K ∈M is the control volume such that

e⊂ ∂K , we set xe as the intersection between Γ and the straight line passing through

xK and orthogonal to ẽ. Let ye be the intersection between the line (xK xe) and the

chord ẽ. We define dK ,e as the distance between the centers xK and ye. Let V be the

set of the vertices included in Γ and de,v be the distance between the center ye and

the vertex v ∈ V . For a vertex v = e|e′ ∈ Γ which separates the control volumes e

and e′, we note de,e′ the sum of de,v and de′,v.

We can notice that all these quantities are computed by just knowing the coordi-

nates of the vertices of the mesh in Γ . Thus, we do not need to know the equation

of the boundary Γ .

Vertex v ∈ V

Interior mesh M

Boundary mesh ∂M

Centers

xe

dK ,L xL

v = e|e′

de,v

ye′

xK

de′,v

dK ,e

xe′

ye

nK e

nK L

Fig. 1: Finite-volume meshes

We define the mesh size by: hT = sup{diam(K ),K ∈M}. In the results below,

all the constants depend on a certain measure of regularity of the mesh. This is

classical and for the sake of simplicity, we do not give here its explicit value. In

short, if this quantity is bounded when the mesh size tends to 0, this amounts to

assume that the control volumes do not become flat when the mesh is refined.
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2.2 Discrete unknowns

With respect to the time discretization, we introduce a positive integer N. Then, we

uniformly partition the temporal interval [0,T ] with the time step: ∆ t = T/N. Thus,

for n ∈ {0, · · · ,N}, we define tn = n∆ t.

For each time step tn, we denote the concentration unknowns by cn
T
=(cn

M
,cn

∂M)∈ R
T

and the chemical potential unknowns by µn
T
= (µn

M
,µn

∂M) ∈ R
T . Regarding the

chemical potential, we have the homogeneous Neumann boundary condition; thus

we can define the boundary unknown µn
∂M ∈ R

∂M as follows:

µn
e = µn

K
, ∀e ∈ ∂M such that e = σ ∈ EK .

Finally, let u∆ t
M

(respectively u∆ t
∂M) be the piecewise constant function in ]0,T [×Ω

(respectively ]0,T [×Γ ) such that for all t ∈ [tn, tn+1[:

u∆ t
M
(t,x) = un+1

K
if x ∈ K and u∆ t

∂M(t,x) = un+1
e if x ∈ e.

2.3 Inner products and norms

• Discrete L2 inner products: For all uM,vM ∈R
M and u∂M,v∂M ∈R

∂M, we define:

(uM,vM)
M
= ∑

K ∈M
m

K̃
uK vK and (u∂M,v∂M)∂M = ∑

e∈∂M

mẽueve.

The associated discrete L2 norms are noted ‖uM‖
0,M and ‖u∂M‖

0,∂M.

• Discrete H1 semi-definite inner products: For all uT ,vT ∈R
T and u∂M,v∂M ∈ R

∂M:

JuT ,vT K1,T = ∑
σ∈Eint

mσ

dK ,L
(uK −uL )(vK − vL )+ ∑

σ∈Eext

mẽ

dK ,e
(uK −ue)(vK − ve)

and Ju∂M,v∂MK1,∂M = ∑
v=e|e′∈V

1

de,e′
(ue −ue′)(ve − ve′).

The associated seminorms are noted |uT |1,T and |u∂M|
1,∂M.

3 Numerical scheme and discrete energy

3.1 Finite-Volume scheme

In this section, we give the finite-volume scheme used to solve the Cahn-Hilliard

equation (1). In the interior mesh M, we use the usual finite-volume approximation

based on a consistent two-point flux approximation for Laplace operators. As re-
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gards the equation on the boundary mesh ∂M, we use a 1d-finite-volume scheme

on a curved domain and a consistent two-point flux approximation for the Laplace-

Beltrami operator.

We assume that cn
T
∈ R

T is given, the scheme is then written as follows:

Find (cn+1
T

,µn+1
T

) ∈ R
T ×R

T such that ∀uT ,vT ∈ R
T :





(
cn+1
M

− cn
M

∆ t
,vM

)

M

=− Jµn+1
T

,vT K1,T

(
µn+1
M

,uM

)
M
= ∑

σ∈Eint

mσ

dK ,L
(cn+1

K
− cn+1

L
)(uK −uL )

+ ∑
σ∈Eext

mẽ

dK ,e
(cn+1

K
− cn+1

e )uK +∑
K ∈M

m
K̃

d fb(cn
K
,cn+1

K
)uK

(
cn+1

∂M − cn
∂M

∆ t
,u∂M

)

∂M

=− Jcn+1
∂M ,u∂MK1,∂M− ∑

e∈∂M

mẽd fs(cn
e ,c

n+1
e )ue

− ∑
σ∈Eext

mẽ

dK ,e
(cn+1

e − cn+1
K

)ue

(3)

With the aim of obtaining convergence result without any condition on the step time

∆ t, we use a semi-implicit discretization for nonlinear terms:

d fb(x,y) =
fb(y)− fb(x)

y− x
and d fs(x,y) =

fs(y)− fs(x)

y− x
, ∀x,y. (4)

We can note that we mostly use in practice polynomial functions for fb and fs.

Then, the term d f (x,y) can be written as a polynomial function in the variables x,y.

Thus, we do not have numerical instability if x is too close to y. If we choose non

polynomial functions for nonlinear terms, we have to adapt our discretization (see

[1] for more details).

We remark that we can also choose an implicit discretization for nonlinear terms but

in that case the same results hold only for ∆ t ≤ ∆ t0, with a small enough ∆ t0 which

only depends on the parameters on the equation.

In each case, we have to use a Newton method at each time step; its convergence is

achieved in a few inner iterations.

We can notice that the finite-volume scheme is a low-order method. Thus, the

approximation of the boundary does not influence the order of the method and it is

not necessary to use curved element to improve the convergence of the scheme (3).

The boxed terms give the coupling between interior and boundary unknowns:

the one in the second equation comes from the Laplacian of c in Ω and the one in

the third equation stems from the normal derivative term in the dynamic boundary

condition on Γ .

In order to improve the presentation and the analysis, we have written the scheme

(3) in a way that looks like a variational formulation. We easily recover the usual

finite-volume flux balance equations if, for each control volume, we choose the

indicator function of this particular control volume as a test function in (3).
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3.2 Discrete energy estimate

The discrete energy estimate is one of the key points for the proofs of existence and

convergence results.

Definition 1 (Discrete free energy). The discrete free energy corresponding to the

continuous definition (2) is defined by:

FT (cT ) =
1

2
|cT |

2
1,T + ∑

K ∈M
m

K̃
fb(cK )

︸ ︷︷ ︸
:=Fb,T (cT )

+
1

2
|c∂M|2

1,∂M+ ∑
e∈∂M

mẽ fs(ce)

︸ ︷︷ ︸
:=Fs,∂M(c∂M)

, ∀cT ∈ R
T .

Using the scheme (3) with uT = cn+1
T

− cn
T

and vT = µn+1
T

as test functions and the

the discretization (4) for nonlinear terms, we obtain the following energy equality:

Proposition 1 (Discrete energy estimate). Let cn
T
∈ R

T . We assume that there ex-

ists a solution (cn+1
T

,µn+1
T

) to Problem (3). Then, the following equality holds:

FT (c
n+1
T

)−FT (c
n
T
)+∆ t

∣∣µn+1
T

∣∣2
1,T

+
1

∆ t

∥∥cn+1
∂M − cn

∂M

∥∥2

0,∂M

+
1

2

∣∣cn+1
T

− cn
T

∣∣2
1,T

+
1

2

∣∣cn+1
∂M − cn

∂M

∣∣2
1,∂M

= 0.

(5)

This estimate gives a L∞(0,T ;H1(Ω)) bound on the discrete solution c∆ t
T

and a

L∞(0,T ;H1(Γ )) bound on its trace c∆ t
∂M.

4 Convergence analysis

By using the topological degree theory, we can prove that if cn
T
∈R

T is given, there

exists at least one solution (cn+1
T

,µn+1
T

) ∈R
T ×R

T to discrete Problem (3) (see [8]

for more details).

We recall the definition of a solution to Problem (1) in a weak sense:

Definition 2 (Weak formulation).

We say that a couple (c,µ) ∈ L∞(0,T ;H1(Ω))×L2(0,T ;H1(Ω)) such that Tr(c) ∈
L∞(0,T ;H1(Γ )) is solution to continuous Problem (1) in the weak sense if for all

ψ ∈ C ∞
c

(
[0,T [×Ω

)
, the following identities hold:

∫ T

0

∫

Ω
(−∂tψc+∇µ ·∇ψ) =

∫

Ω
c0ψ(0, .), (6)

∫ T

0

∫

Ω

(
−µψ +∇c ·∇ψ + f ′b(c)ψ

)
+

∫ T

0

∫

Γ

(
−∂tψc+∇‖c ·∇‖ψ + f ′s (c)ψ

)
(7)

=
∫

Γ
Tr(c0)ψ(0, .).
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Then, we have the following convergence result.

Theorem 1 (Convergence theorem). Assuming that Assumptions 1 hold, let us con-

sider Problem (1) with an initial condition c0 ∈ H1(Ω) such that Tr(c0) ∈ H1(Γ ).
Then, there exists a weak solution (c,µ) on [0,T [ (in the sense of Definition 2). Fur-

thermore, let (c(m),c
(m)
pΓ )m∈N and (µ(m))m∈N be a sequence of solutions to Problem

(3) associated with a sequence of discretizations such that the space and time steps,

h
(m)
T

and ∆ t(m) respectively, tend to 0. Then, up to a subsequence, the following

convergence properties hold, for all q ≥ 1:

c(m) → c in L2(0,T ;Lq(Ω)) strongly, c
(m)
pΓ → Tr(c) in L2(0,T ;Lq(Γ )) strongly,

and µ(m) ⇀ µ in L2(0,T ;Lq(Ω)) weakly.

The discrete initial concentration used is the mean-value projection.

The main difficulty of this proof is the passage to the limit in nonlinear terms both in

Ω and on Γ . Indeed, the usual L2((0,T )×Ω) compactness is not sufficient and we

need to have an additional compactness property of the trace of c in L2 (]0,T [×Γ ).

Theorem 2 (Estimation of space translates). There exists an extension operator

φ : RT → L2(R2) satisfying φ(uT ) = uT in Ω such that the following identity holds

for all η ∈ R
2 with C > 0 independent of hT and η: For all uT ∈ R

T ,

‖φ(uT )(.+η)−φ(uT )‖
2
L2(R2)

≤C|η |(|η |+hT )
(
|uT |

2
1,T + |u∂M|2

1,∂M+‖u∂M‖2
0,∂M

)
.

Corollary 1. Let (uT i
)i be a sequence of functions with uniform bounds on discrete

H1-norms on Ω and Γ . We can extract a subsequence, still referred to as (uT i
)i for

simplicity, which is strongly converging in L2(Ω) towards a certain function u of

H1(Ω) whose trace belongs to H1(Γ ) and such that (u∂Mi
)i is strongly converging

in L2(Γ ) towards Tr(u).

To obtain similar results with the sequence of functions which also depends on time,

we have to consider the estimation of time translates. To this end, we adapt the proof

of Theorem A.2 in [5] and we use the particular form of the extension operator φ
and the coupling between the domain Ω and its boundary Γ .

Then, thanks to the a priori estimates on the solutions (see [8]), there exists

c ∈ L2(0,T,H1(Ω)) with Tr(c) ∈ L2(0,T,H1(Γ )) such that, up to a subsequence,

c∆ t
M

strongly converges to c in L2(]0,T [×Ω) and moreover, also c∆ t
∂M strongly con-

verges to Tr(c) in L2(]0,T [×Γ ). It is now more or less standard to pass to the limit

in the scheme and thus to prove the convergence result.

5 Numerical tests

In [8], we give numerical experiments with different choices of parameters and sur-

face potential fs that show the different expected qualitative behavior of the solu-

tions. In this paper, we focus on the numerical error estimates. Since no explicit non
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trivial solutions are known for our problem, we have to change the Problem (1). We

add source term in the first equation of (1) and another one in the third equation of

(1). We notice that µ then satisfies a non homogeneous Neumann boundary con-

dition that can be easily handled in the FV setting. We consider the manufactured

solution c(t,(x,y)) = (1+ tanh(5∗ (x+ t)) with Ω the unit circle. We plot the error

between the exact and approximate solutions at time T = 0.5 for the norm L2(Ω)
and L2(Γ ).
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As expected, we observe the first order convergence in time for the L2 norm. With

respect to the space convergence, as for the Laplace problem we observe a super-

convergence phenomenon namely the second order convergence.
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