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Abstract : In this paper we present the application of a control chart for non-normal 

processes. This chart, which looks like an X S  control chart is built with a least-

squares L-estimator, which can replace the arithmetic mean and standard deviation 

usually calculated for Shewhart charts. This estimator has the property to provide a 

minimum variance estimation of the process position and scattering. This, 

disregarding data distribution. We focused our attention on « multi-generators » 

processes, like screw-machines or multi-die holder for injection molding, these 

processes have the property to generate non-normally distributed pieces.  
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1. INTRODUCTION 

 

When piloting a process with S.P.C. control charts 

( X R/ ) we usually assume that the mean is normally 

distributed. In spite of it robustness, this assumption 

is far from always being satisfied. In fact, either the 

X  distribution is close to a normal distribution or the 

sample is large enough to satisfy the assumption of 

normality of the mean. However, large samples are 

prohibited for economic reasons. Disregarding this 

assumption can cause problems when the hypothesis 

of normality is not valid. 

First of all, statistical error, type I and II, correspond 

no longer with those defined for a normal distribution 

when control limits are placed at  3  from the 

target (Shilling, 1976).  

The second point concerns precision of estimations. 

Indeed, we can show that the mean is not the optimal 

estimator in term of variance when the population is 

non-normal. It means that we can find an estimator 

without bias which can provide better performances 

than the average. 

 

So in order to solve these problems, we propose in 

this article the use of a control chart (L chart) build 

with a minimum variance estimator whose 

performances have been compared to those of the 

average in term of variance and distribution shape. 

We will study this estimator in the case of data 

incoming from a « Multi -generator » process. 

 

 

2. MULTI-GENERATOR PROCESSES 

 

 Consider a process which consists of several 

elementary machines. Among these processes, we 

can quote for example injection presses. 

Each criterion produced by an elementary machine is 

distributed among an elementary characteristic which 

can be normal or non-normal according to the 

criterion studied. Then, the global distribution or 

population is said to be a « mix of probability 

distributions » which is unlikely to give à normal 

population.  

 



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-6 -4 -2 0 2 4 6 8

p(X)

X

m=0.0

m=5.5

m=5.0

m=-3.5

m=-3.2

Population

  

Fig.1. Non-normal population resulting of a mix of 

elementary distributions. 

 

To illustrate this article we have chosen the following 

mix of distributions (Figure 1). 

Assuming that each elementary distribution has the 

same probability ( /  1 6) , the population is 

defined by :  

f X f X f X f Xp N N N( ) ( ) ( ) ... ( )        1 2 6  

 

Even when a Multi-generator process is under 

control, observations are non-normally distributed. 

Because of its physical characteristics, it is 

sometimes impossible to make it normal or 

economically unsuitable. 

 

 

3. PRINCIPAL OF AN L-ESTIMATOR 

 

If a population is normally distributed, we can prove 

that the variance of the arithmetic mean reaches the 

Frechet limit. So, the arithmetic mean is said to be 

the optimal estimator in terms of variance. 

Unfortunately, this is not the case when the 

population is non-normally distributed. 

Therefore, we have been interested in an estimator 

based on order statistics known as L-estimators, 

which have the capability to take into account the 

population shape, through their coefficients (David, 

1981). 

The L-estimator proposed by E.H. Lloyd (1952), 

based on a Least-Squares algorithm, requires no 

hypothesis on the population shape whereas the 

method of maximum likelihood supposes a normal 

parent. 

 

 

3.1 L-Estimators and L-Statistics 

 

Consider a sample (x1, x2, ..., xn) of n independent 

observations sampled at a time k. 

x(1), x(2), ...., x(n) are ordered observations of Xk such 

as x x x n( ) ( ) ( )1 2   . 

x(n) is called n ordered statistics of the ordered vector 

Xk. 

The linear combination of Xk’s ordered statistics 

with a vector Cj of real coefficient is an L-statistic or 

L-estimator. 

The estimation of  parameter at a time k is given 

by :  


( )k

t

k i i
i

n

C X C x   
1

 (1) 

 

The average is a particular case of L-estimator since 

all coefficients are equal :  C
n

i ni   1
1; . The 

range is another particular L-estimator for a scale 

parameter : C1= -1, Cn= 1 and Ci=0   i i n1,  

The problem is then, to calculate the L-estimator’s 

coefficients in order to obtain the expected 

performances. 

 

 

3.2 The Least Square L-estimator 

 

Choice of p and p parameters. The population’s 

parameters of location and scale which can be 

estimated by the least-squares L-estimator are not 

necessarily the mean and standard deviation of the 

population. However, we show that they are the most 

appropriate parameters, if we want to maximise the 

process capability indice. (Pillet, 1997). 

The purpose of S.P.C. is to improve production 

quality and therefore to minimise production cost. 

Taguchi defined the loss function (2) which 

represents the cost of non-quality :  

   L K X   2 2

Target  (2) 

Cpm
IT

X
  6 2 2 ( )Target

 (3) 

 

Where K is a constant, X  is the average of the 

population and  its standard deviation.  

We notice that minimising Taguchi’s loss function is 

equivalent to maximising the capability indice Cpm 

(3). 

So to maximise the Cpm indice we have to minimise 

the population standard deviation and the quadratique 

error between sample mean and the process target. In 

consequence, we will consider X  and  respectively 

as localisation p and scale p parameters of the 

population. 

 

Generalised Least-Squares. In this paragraph we 

describe the construction of the least-squares L-

estimator. We also expose some basic results 

concerning the Generalised Least Square theory. 

 

Suppose the following multiple linear model 
X Wb u    where :  

  X is the variable of interest (sample n 

observations of the process).  u is a random vector modelling noise on Y 

(common causes). 



 b is the vector of parameters that we expect to 

estimate (localisation and scale of the process).  W is a matrix including non random variables. 

The following conditions are supposed to be 

satisfied : E u et V u In( ) ( )  
0 2  

 

Estimating parameter b by the least-squares consists 

of minimising the u random variable influence.  

The Ordinary Least Square estimator is defined by : 

  b W W W Y
t t 1

 

 

Application on an ordered sample 

Assume (x(1),x(2),...,x(n)) are ordered observations of a 

vector Xk where x x x n( ) ( ) ( )1 2    

U(r) is a standardized variable :  

  
U

x
r

r p

p

( )

( )  
  

 

 and moments of the order statistic U(r) are  : 

      E U Var U Cov U Ur r r rr r s rs( ) ( ) ( ) ( ),    
 

Lets resume now the problem exposed by Lloyd. The 

moment of order statistics X(r) can be written under 

vectorial form : 

  E X r ep p( ) .      

 

where  is a vector of ar  and  e is a unit vector 
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The preceding equation can be written :  E X A   

where      

 

















and

n

A

1
1

1

   

The variance-covariance matrix of X is :  2    

where  is an (nxn) matrix of  rs  elements. 

Aitken (1935) proved that such a problem could be 

solved by applying a least-squares algorithm on 

ordered statistics. 

Since Var u Var X( ) ( )   2 , the model is 

general. The solution of this model derives from the 

ordinary least-squares. In fact, it is noticeable that   

is a positive matrix, so a M(n,n) regular matrix exists 

such as: M Mt   1  

A Generalised Least Square Estimation of  is 

defined as (4) :  

 

 


 
 

        A A A Xt t 1 1 1  (4) 

 

Variance of both estimators of location and scale is 

(5) : 
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 (5) 

 

This theoretical description of the Least-Squares L-

estimator brings to light, that this estimator can’t be 

used without knowing moments of the ordered 

observations. This can cause some problems of 

application. The next paragraph will present an 

application of this estimator for Statistical Control of 

a multi-generator process. 

 

 

4. L-CHARTS PERFORMANCES 

 

 

4.1 Calculation of the variance-covariance matrix. 

 

To be able to appreciate improvement brought by the 

L-estimator compared to the arithmetic mean, we 

achieved computer simulations. In order to determine 

the L-estimator coefficients, it is necessary to 

calculate the matrix of variances-covariances of 

standardized ordered statistics. These calculations 

were made with random data generated according to 

a known distribution. Each coefficient of the matrix 

is calculated with the relation (6) 

    ij i i j j
mm

x x x x   1

1 ( ) ( ) ( ) ( )  (6) 

 

Where m is the number of samples. 

Coefficients of variance-covariance matrix can also 

be calculated from the theoretical expression : 

    Cov X X x y f x y dxdyr n s n r n s n

y

rs: : : : ( , )    


   
(7) 

 with  

   
f x y

n

r s r n s

F x f x F y F x p y P y

rs

r s r n s

( , )
!

( )!( )!( )!

( ) ( ) ( ) ( ) ( ) ( )

    
       

1 1

11 1

 



This expression necessitates powerful means of 

calculation and even more, if the sample size is large 

and the distribution is non-normal. Further more, 

most practical applications deal with unknown 

populations, so that, this calculus can’t be achieved. 

Although theoretical calculus was made to reach a 

great precision, computer simulations were preferred 

because of their similarity with the practical 

situation. 

Since processes are not necessarily well known and 

operating conditions are always evolving, building a 

model of the population’s distribution does not seem 

realistic.  

 

 

4.2 Computer Simulations 

 

Since a control chart is a set of two estimations : 

Punctual estimation and confidence interval 

estimation, we studied the L-estimator performances 

in terms of variance and shape. Since the method is 

non parametric, performances of the L-estimator are 

different according to the distribution of the 

population.  

The more different from a normal law the 

distribution is, the more efficient the L-estimator. In 

consequence we studied a case where the population 

is significantly non-normal (figure 1) to appreciate 

the L-estimator efficiency compared to the mean. 

 

Variance and bias of estimations. Results in table 2, 

show that the variance of the L-estimator of location 

is always much lower than the average. The relative 

efficiency of the L-estimator compared to the mean is 

(8) : 

 

 

 

Table 1  Variance of both location estimators and 

relative efficiency of the L-estimator compared to the 

arithmetic mean  

 

n 3 4 5 6 7 8 9 10  Var  4.29 2.45 1.52 1.01 0.72 0.55 0.44 0.36 

 Var X 5.32 3.99 3.19 2.66 2.28 2.00 1.77 1.60 

eff 0.80 0.62 0.48 0.38 0.32 0.28 0.25 0.23 

 

0,2

0,4

0,6

0,8

3 4 5 6 7 8 9 10

n

e
ff

 

Fig. 2. Relative efficiency of the L-estimator 

compared to the arithmetic mean 

   eff Var Var X   (8) 

 

To provide the same performances in term of 

variance as the L-estimator when n=4, the average 

requires a sample size n=7. The benefits of using an 

L-estimator can be either the sample size reduction, 

or the improvement of commandability when sample 

size is maintained and the variance of the estimation 

is reduced. 

In opposition, the L-estimator for the scale parameter 

brings no improvement compared to the standard 

deviation, in terms of variance. 

However, it gives a non biased estimation of the 

population dispersion even when the population is 

non-normal (Figure 3, Table 2). Whereas the empiric 

standard deviation Sn, is a biased estimator when 

sample size is small. In fact, the coefficients c4 

usually used to correct this bias is unsuitable when 

the population is non-normal. 

A relative bias for estimators of a scale parameter can 

be defined as (9) :  

  b p p
      (9) 

 

Of course these values are specific to this example, 

but similar results can be found for other 

significantly non-normal populations. 

 

Symmetry of distributions. The distribution shape was 

studied to determine how to apply confidence 

interval tests for control charts. 

The setting of limits on X  control charts are based 

on the assumption of normality, justified by the 

central limit theorem. 

 

 

Table 2  Relative bias of the L-estimator of 

dispersion and standard deviation 

 

 

n 3 4 5 6 7 8 

b   -9.2 % -5.2% -3.4% -2.4% -1.7% -1.4% 

bSn 0.1% 0.03% 0.06% 0.03% 0.03% 0.01% 
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Fig. 3. Relative bias of the L-estimator of 

dispersion. 
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The theorem essentially states, that under general 

conditions, the distribution of sample means 

approaches normality. Nevertheless (Burr, 1967) 

showed that for significantly non-normal 

distributions, sample mean was far from being 

normal. Yourstone (1992) proposed recently 

modified control limits to keep risks close to 0.27% 

in the case of skewed population. 

Figure 4 underlines the fact that when the sample size 

is small, normality is far from being satisfied. 

Coefficients of Kurtosis approaches 3 by inferior 

value as n increases. It means that the distribution has 

heavier tails than the normal law.  

 

On the contrary we notice that the distribution of the 

L-estimator doesn’t converge to a normal law (Figure 

5), but a narrower one. Coefficients of Kurtosis are 

actually around 6. Since coefficients of the Means-

Squares L-estimator are non zero for extreme values, 

this estimator doesn’t reject outliers. As a result 

distribution tails are as heavy as the average ones, 

hence control limits are kept at 3 n  to minimise 

type I false alarms. 

 

-5

-3

-1

1

3

5

7

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

Mean L-Est
C.L. Target  

 

Fig. 8 L-chart of location compared to an X  chart. 
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5. EXAMPLE OF APPLICATION 

 

 

5.1 The L-chart 

 

The interest for such an estimator is evident for an 

industrial application since the sample size can be 

reduced without loss of efficiency compared to the 

mean. The application of this chart requires a 

preliminary run to calculate the variance-covariance 

matrix. However this run isn’t restricting as it was 

established by simulation that 40 samples were 

sufficient to calculate  precisely. Such a 

preliminary run is then short enough for an industrial 

application. This procedure is equivalent to using a 

preliminary control chart to determinate the mean 

and the standard deviation of the process.  

 

When using standard control charts, the process 

which is under control, is always supposed to be 

stationary. Statistical Process Control aim is to keep 

the process under control, which means evolution of 

the process position or dispersion. In consequence, 

each time an out of control state is detected, the 

model (matrix  and vector ) has to be computed 

again to take into account the evolution of the 

process. 

 

 

5.2 L-chart for Start-up processes 

 

In order to reduce to a minimum the period of 

reference and then control the process with the only 

values p and p fixed by the user’s knowledge, we 

propose a start-up procedure for the L-chart by 

exponentially weighted moving average (EWMA) of 

the L-estimator’s coefficients.  



Coefficients of the estimator (CEWMA) evolve from an 

initial value (Cinitial) to the optimal coefficients (CL-

estimator) by using relationship (10). 

 

C
k

k
C

k

k
CEWMA L Estimator initial    

max max

( )1  (10) 

 

Where k is the number of a samples and kmax is the 

number of samples required to calculate the matrix of 

variance-covariance with precision. The coefficient 

kmax should be larger than 40. 

Coefficients of the vector Cinitial depend on the 

parameter to estimate. In order to estimate the 

parameter of location p, coefficient of Cinitial are 

equal to the mean (1/n). As a result, the estimator 

will provide the mean of samples at the beginning of 

the run. On the contrary, as k increases, more weight 

is given to the coefficients of the L-estimator CL-

estimator . which are more and more reliable. In order to 

estimate the parameter of scale p, the vector Cinitial 

defined as  : Cinitial(1)= -1/d2, Cinitial(1)= 1/d2 and 

Cinitial(i)= 0   i i n1,  gives an estimation of 

population’s standard deviation with R/d2. 

Thanks to this step, variance of estimation for the 

location parameter, decreases from  p n2  to 

 L estimator2 .  

 

 

6. CONCLUSION 

 

Through this short example, we have shown that it is 

interesting to replace the traditional estimators of 

Statistical Process Control (the average and the 

standard deviation), by the Least-Squares L-

estimator. This estimator has the advantage of 

providing non biased estimations with minimum 

variance. These two characteristics are essential to 

minimise the cost of non quality. In fact, it is shown 

that Taguchi’s loss function is minimised when 

observations are centred on the target and their 

variance is minimal. In addition, the application of 

this L-estimator is not limited to Shewhart control 

charts. It can easily be extended to CUSUM charts. 

On the other hand, the use of the Least-Squares L-

estimator is facilitated by its systematic method of 

calculation whatever the distribution of the 

population. In order to make this method transparent 

for a manufacturer, we have proposed a procedure to 

launch production without any preliminary run. 

Finally, for the construction of L charts, we have 

systematically placed control limits to 

Target  3 n . This specification allows us to 

reduce  risks (as compared to the average), however 

it seems unsatisfactory because, there are 

unquantifiable risks on both sides of the distribution. 

L-estimators are non non-normally distributed in 

spite of the fact that they are asymptotically normally 

distributed. We are presently working on a 

systematic method of calculation for control limits 

that would make L charts more efficient in term of 

Average Run Length (A.R.L.). 
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