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NEARWELL LOCAL SPACE AND TIME REFINEMENT IN RESERVOIR

SIMULATION

W. Kheriji1, R. Masson2 and A. Moncorgé3

Abstract. In reservoir simulations, nearwell regions usually require finer space and time scales com-

pared with the remaining of the reservoir domain. We present a domain decomposition algorithm for a

two phase Darcy flow model coupling nearwell regions locally refined in space and time with a coarser

reservoir discretization. The algorithm is based on an optimized Schwarz method using a full overlap

at the coarse level. The main advantage of this approach is to apply to fully implicit discretizations

of general multiphase flow models and to allow a simple optimization of the interface conditions based

on a single phase flow equation.
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Mars 2014.

1. Introduction

Nearwell regions in reservoir simulations usually require fine space and time scales due to several physical
processes such as higher Darcy velocities, the coupling of the stationary well model with the transient reservoir
model, high non linearities due to phase appearance (typically gas), complex physics such as formation damage
models. In addition the nearwell geological model is usually finer in the nearwell region due to available data.

If Local Grid Refinement (LGR) is commonly used in reservoir simulations in the nearwell regions, current
commercial simulators still make use of a single time stepping on the whole reservoir domain. It results that the
time step is globally constrained both by the nearwell small refined cells and by the high Darcy velocities and
high non linearities in the nearwell region. A Local Time Stepping (LTS) with a small time step in the nearwell
regions and a larger time step in the reservoir region is clearly a promising field of investigation in order to save
CPU time. It is a difficult topic in the context of reservoir simulation due to the implicit time integration, and
to the coupling between a mainly elliptic or parabolic unknown, the pressure, and mainly hyperbolic unknowns,
the saturations and compositions.

Different approaches combining LTS and LGR have been studied for reservoir simulation applications. The
first class of algorithms belongs to Domain Decomposition Methods (DDM). Matching conditions are defined at
the nearwell reservoir interface with possible overlap, and a Schwarz algorithm is used to compute the solution.
In the context of LTS, such DDM algorithms were first analysed by Ewing and Lazarov [5] for parabolic problems
in terms of stability, error estimates and convergence of the domain decomposition method. Then, Mlacnik and
Heinemann [9,10] have proposed an extension to multiphase Darcy flow reservoir models using a sequential (non
iterative) approach. They first compute, on the global LGR grid and with the coarse time step, an approximate
solution using a simplified model. Then, the solution is computed on the nearwell region and with the fine time
step using Dirichlet boundary conditions given by the previous step at the reservoir nearwell region interface.
This approach is improved in [7] using a predictor corrector strategy. The predictor is the Mlacnik step, and it
is followed by Dirichlet Neumann iterations until a convergence criteria on the matching conditions is achieved.

The second class of methods use both the coarse grid on the full domain and the LGR nearwell grid. These
grids communicate both at the reservoir nearwell interface and also between the perforated fine and coarse cells
(well interface). In the Eclipse simulator [1] a sequential version (usually called windowing) of this approach is
implemented with Neumann or Dirichlet boundary conditions at the nearwell reservoir interface and at the well
interface.

We propose to combine this latter windowing approach with a DDM Robin-Neumann algorithm coupling
the coarse grid solution with full overlap to the refined (in space and time) nearwell grid solution. An efficient
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iterative algorithm is obtained using at the nearwell reservoir interface optimized Robin conditions for the
pressure and Dirichlet conditions for the saturations and compositions. At the well interface, a Neumann
condition is imposed for the pressure (assuming to fix ideas that the well condition is a fixed pressure) and
input Dirichlet conditions are imposed for saturations and compositions.

The optimization of the Robin coefficients is done on a single phase flow parabolic equation for the reference
pressure using existing theory for optimized Schwarz methods (see [8]), while the algorithm is applied on fully
implicit discretization of two phase Darcy flows.

This paper is organized as follows. Section 2 describes the construction of our Domain Decomposition
algorithm which is presented to fix ideas in the case of a gas injection through a multi-perforated well in a
closed reservoir saturated with water. Section 3 assesses the efficiency of our DDM algorithm on two 3D test
cases both in terms of accuracy and CPU time compared with the reference solution obtained using the LGR
grid with the global fine time stepping. Our Robin-Neumann DDM algorithm is also compared with the classical
windowing algorithm [1]. The first test case simulates the injection of gas through a multi-perforated well in a
close reservoir saturated with water taking into account the gas dissolution in the liquid phase. The second test
case models the production of a gas condensate through a multi-perforated vertical well taking into account the
appearance of the oil phase in the nearwell region.

2. Domain Decomposition Method (DDM) for a two phase Darcy flow model

2.1. Simplified two phase flow model

To simplify the presentation of the DDM algorithms, we will consider in the following the example of an
immiscible compressible two phase Darcy flow not taking into account the capillary pressure. The algorithms
presented in this section readily extend to more complex models such as multi-phase compositional models
with capillary pressure. To fix ideas the model describe the injection of a phase 2 (gas) in a 3D reservoir Ωr

initially saturated with a phase 1 (liquid) through a vertical well. Let us denote by Γr the outer boundary of the
reservoir (cf figure 1) assumed to be impervious, and by Γw the inner boundary of the reservoir corresponding
to the boundary of the vertical well. The velocities of the phases are given by the two phase Darcy laws

V(α) = −
k
(α)
r (s(α))

µ(α)
K (∇p− ρ(α)(p)g), α = 1, 2,

where g is the gravity vector, p is the pressure, s(α), α = 1, 2 are the phase volume fractions called saturations,

k
(α)
r (s(α)) are the relative permeabilities, and µ(α), α = 1, 2 are the phase viscosities assumed to be constant.

Both phases are assumed compressible with mass densities denoted by ρ(α)(p), α = 1, 2. The rock permeability
is denoted by K and the rock porosity by φ. Then, the pressure p and saturations s(α), α = 1, 2 unknowns are
solutions of the mass conservation of the gas and liquid phases with phase velocities given by the Darcy laws,
coupled to the pore volume conservation:































∂t

(

φ ρ(α)(p) s(α)
)

+ div
(

ρ(α)(p) V(α)
)

= 0, α = 1, 2, on Ωr × (0, T ),

s(1) + s(2) = 1, on Ωr × (0, T ),
−K(∇p− ρ(α)(p)g) · n = 0, α = 1, 2, on Γr × (0, T ),

p = pinj(z), s
(α) = s

(α)
inj , α = 1, 2, on Γw × (0, T ),

p = pinit(z), s
(α) = s

(α)
init, α = 1, 2, on Ωr × {0}.

(1)

We have used the following additional notations: s
(1)
init = 1, s

(2)
init = 0 are the initial saturations, pinit(z) is the

initial hydrostatic phase 1 pressure such that

dpinit(z)

dz
= −ρ(1)(pinit(z))g, pinit(zref ) = p̄init,

s
(1)
inj = 0, s

(2)
inj = 1 are the saturations at the injection well and pinj(z) is the injection well imposed pressure

such that
dpinj(z)

dz
= −ρ(2)(pinj(z))g, pinj(zref ) = pbhp,

where pbhp is the prescribed bottom hole pressure at the reference height zref . It is assumed that the bottom

hole pressure pbhp and the initial pressure p̄init are such that −K(∇p− ρ(α)g) · nw < 0 for α = 1, 2 at the well
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boundary Γw, where nw is the unit normal vector at the well boundary outward to Ωr. The case of a producer
well could also be dealt without additional difficulties as it will be the case in the numerical experiments.

Due to the impervious outer boundary of the reservoir, and the small compressibility of the liquid phase,
the gas front will be in practice localized in a small region around the vertical well which motivates the use
of nearwell local mesh and time refinement for the simulation of this model. Let us denote by Ωw ⊂ Ωr a
nearwell region which is chosen such that the gas phase will mostly remain in Ωw during the gas injection. In
the following, the outer boundary of the nearwell region Ωw will be denoted by Γrw (see figure 1).

Figure 1. Example of reservoir domain Ωr and nearwell subdomain Ωw with the reservoir
nearwell interface Γrw, and the well boundaries Γw.

A DDM method will be used to solve the two phase flow model with a coarse discretization in space and
time on the reservoir domain Ωr and a locally refined space and time discretization on the nearwell region
Ωw. The coupling between both discretizations will be obtained by solving iteratively both subproblems on a
given time interval (tn−1, tn) using appropriate interface conditions at Γw and Γrw. A Robin condition for the
pressure together with an input Dirichlet condition for the saturations will be used at the boundary Γrw of the
subdomain Ωw. At the well boundary Γw of the domain Ωr, a total flux Neumann condition together with an
input Dirichlet condition for the saturations will be imposed.

In the following subsections, the coarse and fine finite volume discretizations of Ωr and Ωw are first introduced,
then the DDM algorithm is described with a single time stepping, and finally the extension to take into account
LTS in the nearwell domain is explained.

2.2. Two level Finite Volume discretization

As exhibited in figure 2, the discretization starts from a coarse finite volume discretization of the full reservoir
domain Ωr defined by

(

Mr,F
int
r ,Pr

)

,

where Mr is the set of coarse cells K, F int
r the set of coarse inner faces σ, and Pr the set of coarse well perfo-

rations. The mesh is assumed to be conforming in the sense that the set of neighbouring cells Mσ ⊂ Mr of an
inner face σ ∈ F int

r contains exactly two cells K and L. The inner face σ will also be denoted by σ = K|L. Con-
sidering that the size of the cells is very large compared with the well radius, the wells are as usual discretized
using Peaceman’s indices in each perforated cell [11]. For each perforation σ ∈ Pr, let us denote by Kr

σ ∈ Mr

the corresponding perforated coarse cell.

A set of nearwell coarse cells is assumed to be refined (coarse cells inside the red boundary in figure 2) and
the nearwell mesh is obtained by addition of one layer of coarse cells at the boundary of the union of the refined
cells. The resulting nearwell mesh is defined by

(

Mw,F
int
w ,Frw,Pw

)

,
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where Mw is the set of cells K, F int
w is the set of inner faces σ, Pw is the set of fine well perforations, and

Frw ⊂ F int
r is the set of boundary faces corresponding by construction to coarse faces. The fine perforated

cells will be denoted by Kw
σ for all perforations σ ∈ Pw as exhibited in figure 2. It is again assumed that the

nearwell mesh is conforming in the sense that the set of neighbouring cells Mσ ⊂ Mw of an inner face σ ∈ F int
w

contains exactly two cells K and L, and the inner face σ will also be denoted by σ = K|L. At the nearwell
reservoir interface, for each face σ ∈ Frw, it is assumed that the set of the two neighbouring cells Mσ = {K,L}
is ordered such that K ∈ Mw ∩Mr and L ∈ Mr \Mw.

A cell centre finite volume discretization is used for the discretization of the two phase flow model. We will
denote by Pr (resp. Pw) the vector of cell pressures Pr,K , K ∈ Mr (resp. Pw,K , K ∈ Mw) and similarly by

S
(α)
r (resp. S

(α)
w ) the vector of cell saturations S

(α)
r,K , K ∈ Mr (resp. S

(α)
w,K , K ∈ Mw) with α = 1, 2.

Let σ = K|L be an inner coarse or fine face, and nK,σ the unit normal vector at the face σ outward to the
cell K. Let P be the reservoir or nearwell discrete pressure Pr or Pw. Assuming the orthogonality of the mesh
w.r.t. the permeability field K, the Darcy flux

∫

σ

−K(∇p− ρ(α)(p)g) · nK,σdσ

is approximated by the following conservative Two Point Flux Approximation (TPFA) [6]

F
(α)
K,σ(P ) = Tσ(PK − PL + ρ(α)(

PK + PL

2
)g(zK − zL)), α = 1, 2,

where Tσ is the transmissivity of the face σ ∈ F int
r or σ ∈ F int

w , and zK , zL are the z coordinates of the centres
of the cells K,L.

A Two Point flux approximation of the Darcy flux is also assumed at the nearwell reservoir interface σ =
K|L ∈ Frw. It is denoted by

F
(α)
K,σ(Pw,K , Pr,L) = Tσ(Pw,K − Pr,L + ρ(α)(

Pw,K + Pr,L

2
)g(zK − zL)), α = 1, 2,

where Tσ is the transmissivity of the face σ, and zK , zL are the z coordinates of the centres of the cells K,L.
It is to be understood that, in the following DDM algorithm, Pr,L will represent the pressure interface value
viewed by the nearwell subdomain. In other words, we have chosen to discretize the boundary conditions at the
reservoir nearwell interface using cell values for the interface pressures and face values for the fluxes in order to
obtain the same finite volume discretization than the one obtained on the single LGR mesh Mlgr exhibited in
figure 3 (see [7] for a discussion on the choice of cell values rather than face values for the interface pressures).

The extension of the Darcy fluxes discretization to Multi Point Flux Approximations (MPFA, see for example
[2]) is straightforward and involves, on the nearwell side, MPFA Darcy fluxes depending both on the nearwell
pressure Pw,K and on the reservoir pressures Pr,L for all K ∈ Mw and L ∈ Mr such that K|L ∈ Frw.

For each σ ∈ Ps, s = r, w, the approximation of the Darcy fluxes

∫

σ

−K(∇p− ρα(p)g) · nK,σdσ, α = 1, 2, at

the well perforation boundary is defined by the two point flux approximation

F s
K,σ(Ps,K , Pσ) = PIsσ(Ps,K − Pσ),

where Pσ denotes the pressure in the perforation σ, K = Ks
σ is the coarse (s = r) or fine (s = w) perforated

cell, and PIsσ for s = r or s = w is the transmissivity of the perforation σ in the cell K obtained using the
Peaceman formula which takes into account the singularity of the pressure solution at the well (see [11]). Note
that it has been assumed that the z coordinate of the centre of the perforation zσ matches with the z coordinate
of the cell centre zK .
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Figure 2. Bottom left: reservoir coarse mesh Mr. Bottom right: nearwell fine mesh Mw and
reservoir nearwell interfaces Frw. Top left: coarse cell Kr

σ of the perforation σ ∈ Pr. Top right:
fine cell Kw

σ of the perforation σ ∈ Pw.

Figure 3. LGR mesh Mlgr of the full reservoir domain.
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2.3. Optimized Schwarz Domain Decomposition method with full overlap at the coarse

level

The idea behind our choice of the interface conditions at the reservoir nearwell interface Γrw is to uncouple the
pressure and the saturations in the definitions of the interface conditions in such a way that the DDM algorithm
can be easily generalized to multiphase compositional Darcy flow models, and will be easier to implement in
existing reservoir simulators. It leads to the following choice of the interface conditions at the interface Γrw:







λ pw + α K ∇pw · nw = λ pr + α K ∇pr · nw,

s
(α)
w = s

(α)
r , α = 1, 2, if −K (∇pw − ρ(α)(pw)g) · nw < 0,

(2)

where nw is the normal at Γrw outward Ωw and α, λ are positive parameters defined below. At the well boundary
Γw, a Neumann total flux condition will be used since it is a usual monitoring condition for wells in reservoir
simulators. In our example of an injection well we obtain the following condition



































pr = pr,inj(z),

s(α)r = s
(α)
inj , α = 1, 2,

dpr,inj(z)

dz
= −ρ(2)(pr,inj(z))g, pr,inj(zref ) = pr,bhp,

∑

α=1,2

∫

Γw

−ρ(α)(pr)
k
(α)
r (s

(α)
r )

µ(α)
K∇pr · ndσ =

∑

α=1,2

∫

Γw

−ρ(α)(pinj(z))
k
(α)
r (s

(α)
inj )

µ(α)
K∇pw · ndσ,

(3)

where the coarse bottom hole pressure pr,bhp is the additional unknown corresponding to the total flux addi-
tional equation.

As stated above, these interface conditions are discretized using cell values for the interface pressures or
saturations and face values for the fluxes in order to obtain the same finite volume discretization than on the
LGR grid exhibited in figure 3 .

Let us consider, on both the reservoir and nearwell meshes, the same time discretization t0, t1, · · · , tN of
the interval (0, T ) with t0 = 0, tN = T , and ∆tn = tn − tn−1 > 0, n = 1, · · · , N . The two phase flow
model is integrated by an implicit Euler scheme coupling implicitly the pore volume conservation and the
mass conservation of both phases. The discretization in space uses the TPFA discretization of the Darcy
fluxes together with an upwinding of the relative permeabilities with respect to the sign of the Darcy fluxes
(see [3], [11]).

Let the reservoir and nearwell solutions at time tn−1 be given. In the following, the pressure P and the
saturation S(2) are chosen as the primary unknowns and it is always implicitly assumed that the liquid saturation

S(1) is defined by S(1) = 1 − S(2). Then, knowing the nearwell solution Pw, S
(2)
w , the reservoir subproblem

computes the solution Pr, S
(2)
r , Pr,bhp of the following conservation equations in each cell K ∈ Mr for both

phases α = 1, 2















































φK

(

ρ(α)(Pr,K)S
(α)
r,K − ρ(α)(Pn−1

r,K )S
(α),n−1
r,K

) |K|

∆tn

+
∑

σ=K|L∈F int
r

ρ(α)(Pr,K)k
(α)
r (S

(α)
r,K)

µ(α)
F

(α)
K,σ(Pr)

+ +
∑

σ=K|L∈F int
r

ρ(α)(Pr,L)k
(α)
r (S

(α)
r,L)

µ(α)
F

(α)
K,σ(Pr)

−

+
∑

σ∈Pr |Kr
σ=K

ρ(α)(Pr,σ)k
(α)
r (S

(α)
r,σ )

µ(α)
F r
K,σ(Pr,K , Pr,σ) = 0,

(4)
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coupled with the well total flux condition



































Pr,σ = pr,inj(zσ), σ ∈ Pr,
dpr,inj(z)

dz
= −ρ(2)(pr,inj(z))g, pr,inj(zref ) = pr,bhp,

S
(2)
r,σ = s

(2)
inj , σ ∈ Pr,

∑

α=1,2

∑

σ∈Pr

ρ(α)(Pr,σ)k
(α)
r (S

(α)
r,σ )

µ(α)
F r
Kr

σ ,σ
(Pr,Kr

σ
, Pr,σ) =

∑

α=1,2

∑

σ∈Pw

ρ(α)(pinj(zσ))k
(α)
r (s

(α)
inj )

µ(α)
Fw
Kw

σ ,σ(Pw,Kw
σ
, pinj).

(5)

Similarly, knowing the reservoir solution Pr, S
(2)
r , the nearwell subproblem computes the solution Pw, S

(2)
w of

the conservation equations in each cell K ∈ Mw for both phases α = 1, 2















































































φK

(

ρ(α)(Pw,K)S
(α)
w,K − ρ(α)(Pn−1

w,K )S
(α),n−1
w,K

) |K|

∆tn

+
∑

σ=K|L∈F int
w

ρ(α)(Pw,K)k
(α)
r (S

(α)
w,K)

µ(α)
F

(α)
K,σ(Pw)

+ +
∑

σ=K|L∈F int
w

ρ(α)(Pw,L)k
(α)
r (S

(α)
w,L)

µ(α)
F

(α)
K,σ(Pw)

−

+
∑

σ=K|L∈Frw

ρ(α)(Pw,K)k
(α)
r (S

(α)
w,K)

µ(α)
F

(α)
K,σ(Pw,K , Pw,σ)

+ +
∑

σ=K|L∈Frw

ρ(α)(Pw,σ)k
(α)
r (S

(α)
w,σ)

µ(α)
F

(α)
K,σ(Pw,K , Pw,σ)

−

+
∑

σ∈Pw |Kw
σ =K

ρ(α)(pinj)k
(α)
r (s

(α)
inj )

µ(α)
Fw
K,σ(Pw,K , pinj(zσ)) = 0,

(6)

coupled with the following reservoir nearwell interface conditions for all σ = K|L ∈ Frw























|σ|λσPw,σ − ασFK,σ(Pw,K , Pw,σ)

= |σ|λσPr,L − ασFK,σ(Pr,K , Pr,L),

S
(2)
w,σ = S

(2)
r,L.

(7)

In the above equations φK denotes the porosity, and |K| the volume of the cell K, |σ| the surface of the face σ,
and x+ = max(x, 0), x− = min(x, 0).

Let us set
Pw,Frw

=
(

Pw,σ, σ ∈ Frw

)

, S
(2)
w,Frw

=
(

S(2)
w,σ, σ ∈ Frw

)

,

and

Pr,Frw
=

(

Pr,L,Mσ = K|L, σ ∈ Frw

)

, S
(2)
r,Frw

=
(

S
(2)
r,L,Mσ = K|L, σ ∈ Frw

)

.

Using these notations, we can rewrite the reservoir subproblem (4)-(5) as follows







Rr

(

Pr, S
(2)
r , pr,bhp

)

= 0,

BQT

(

Pr, pr,bhp, s
(2)
inj

)

= BQT

(

Pw, pbhp, s
(2)
inj

)

,

where Rr denotes the system of reservoir conservation equations, and BQT
denotes the well total flux condition.

Similarly, we can rewrite the nearwell subproblem (6)-(7) as follows















Rw

(

Pw, S
(2)
w , Pw,Frw

, S
(2)
w,Frw

)

= 0,

Brobin

(

Pw, Pw,Frw

)

= Brobin

(

Pr, Pr,Frw

)

,

S
(2)
w,Frw

= S
(2)
r,Frw

,

where Rw denotes the system of reservoir conservation equations, and Brobin denotes the Robin boundary
condition for the pressure at the interface Γrw.
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Then, the DDM algorithm, at the given time step ∆tn, is the following multiplicative Schwarz algorithm which

computes the reservoir and nearwell solutions (Pr , S
(2)
r ), and (Pw, S

(2)
w ) of the coupled systems (4)-(5)-(6)-(7)

solving successively the following subproblems







Rr

(

P k
r , S

(2),k
r , pkr,bhp

)

= 0,

BQT

(

P k
r , p

k
r,bhp, s

(2)
inj

)

= BQT

(

P k−1
w , pbhp, s

(2)
inj

)

,















Rw

(

P k
w , S

(2),k
w , P k

w,Frw
, S

(2),k
w,Frw

)

= 0,

Brobin

(

P k
w, P

k
w,Frw

)

= Brobin

(

P k
r , P

k
r,Frw

)

,

S
(2),k
w,Frw

= S
(2),k
r,Frw

,

for k ≥ 1 until the following stopping criteria is fulfilled:

dQ =
|BQT

(

P k
w, pbhp, s

(2)
inj

)

− BQT

(

P k−1
w , pbhp, s

(2)
inj

)

|

|BQT

(

P k
w, pbhp, s

(2)
inj

)

|
≤ ǫ, (8)

for a given ǫ. Note that, due to the non matching overlap of reservoir and nearwell meshes, the solution depends
on the parameters α and λ and will not a priori match with the solution obtained on the LGR mesh Mlgr. Let
us also remark that the Neumann total flux condition at the well for the coarse mesh system is replaced by the
pressure Dirichlet condition pinj at the first iteration at least at the first time step.

The parameters ασ are set to 1 and the parameters λσ > 0, σ ∈ Frw are chosen to optimize the convergence
rate leading to an optimized Robin - Neumann DDM algorithm. Let us refer to [8] for a detailed discussion
on optimized Schwarz methods for diffusion problems including optimized Robin interface conditions. Our
application of this existing theory to two phase flows is based on the idea that it suffices to optimize the
parameter λ for a fixed linearized parabolic pressure equation in the spirit of uncoupling the interface conditions
for the pressure and for the saturations. In our case, the optimization of λ will be typically based on the following
liquid phase pressure equation

cl∂tp+ div
(

−
K

µ(1)
∇p

)

= 0, (9)

where cl is the compressibility of the liquid phase. We refer to the numerical tests section below for an example
of computation of the optimized Robin coefficients based on such parabolic equation.

2.4. Local Time Stepping

Let t0, t1, · · · , tN denote the coarse time discretization on the reservoir domain with the coarse time stepping
∆tn = tn − tn−1 > 0, n = 1, · · · , N . Each time interval (tn−1, tn) is discretized using a local time stepping on
the nearwell subdomain denoted by tn,m,m = 0, · · · , Nn with ∆tn,m = tn,m− tn,m−1 > 0 for all m = 1, · · · , Nn,
and tn,0 = tn−1, tn,Nn = tn (see figure 4).

The extension of the previous DDM algorithm to local time stepping follows the ideas of [5] for parabolic
problems with some adaptations to the case of two phase flows. Firstly, the boundary conditions at the reservoir
nearwell interface are interpolated in time between the two successive coarse times tn−1 and tn:















Brobin

(

Pn,m,k
w , Pn,m,k

w,Frw

)

= tn,m−tn−1

∆tn
Brobin

(

P k,n
r , P k,n

r,Frw

)

+ tn−tn,m

∆tn
Brobin

(

P k,n−1
r , P k,n−1

r,Frw

)

,

S
(2),k,n,m
w,Frw

= tn,m−tn−1

∆tn
S
(2),k,n
r,Frw

+ tn−tn,m

∆tn
S
(2),k,n−1
r,Frw

.

Secondly, at each well perforation of the reservoir coarse mesh, the time average of the total flux between tn−1

and tn is imposed:

BQT

(

Pn,k
r , pn,kr,bhp, s

(2)
inj

)

=

Nn
∑

m=1

∆tn,m

∆tn
BQT

(

Pn,m,k−1
w , pbhp, s

(2)
inj

)

.

In order to improve the time discretization of the algorithm, we also use a θ scheme for the time integration
in the coarse reservoir mesh with θ = 1 (implicit Euler) at the first coarse time step (t0, t1) to account for the
steep gradient induced by the nearly incompressible liquid phase, and with θ = 3

5 for the remaining coarse time
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steps. The θ scheme is only applied on the pressure unknown, and the implicit Euler scheme is kept on the
saturation unknowns.

The choice of the coarse time discretization plays a crutial role in the accuracy of the algorithm. It should
be done in practice adaptively in order to control the maximum variation of the pressure and of the saturations
at the reservoir nearwell interface during a coarse time step. This can be easily computed using the first coarse
reservoir solution of the DDM iterations to adapt the coarse time stepping.

Figure 4. Time-space discretization.

3. Numerical tests

In this section our algorithms are compared with the classical Windowing algorithm on two 3D test cases
using a Black Oil type model [12]. A reference solution is obtained using the LGR grid with the global fine
time stepping. The model used in both test cases describes the Darcy flow of two phases denoted by α = 1, 2
where phase 1 contains two components i = 1, 2 and phase 2 contains only the component 2. Phase 1 is always

assumed to be present, and we denote by c
(1)
2 the mass fraction of component 2 in phase 1. Taking into account

capillary effects, the pressures of both phases are denoted by p(α), α = 1, 2 and connected by the capillary
pressure function pc such that pc(s

(2)) = p(2) − p(1). If both phases are present, component 1 is assumed to be

at thermodynamical equilibrium characterized by the equation c
(1)
2 = f(p(2)), while the inequality c

(1)
2 ≤ f(p(2))

is imposed if only phase 1 is present. The velocities of the phases are modified to take into account the capillary
pressure as follows

V(α) = −
k
(α)
r (s(α))

µ(α)
K (∇p(α) − ρ(α)g), α = 1, 2,

Using the Coat’s formulation [4], we obtain the following system of equations for the primary unknowns

s(α), p(α), α = 1, 2 and c
(1)
2 :











































∂t

(

φ ρ(1)(p(1)) s(1)(1− c
(1)
2 )

)

+ div
(

ρ(1)(p(1))(1 − c
(1)
2 ) V(1)

)

= 0, on Ωr × (0, T ),

∂t

(

φ ρ(1)(p(1)) s(1)c
(1)
2 + φ ρ(2)(p(2)) s(2)

)

+ div
(

ρ(1)(p(1))c
(1)
2 V(1) + ρ(2)(p(2)) V(2)

)

= 0, on Ωr × (0, T ),

s(2) + s(1) = 1, on Ωr × (0, T ),
p(2) − p(1) = pc(s

(2)), on Ωr × (0, T ),

s(2)(c
(1)
2 − f(p(2))) = 0, on Ωr × (0, T ),

c
(1)
2 ≤ f(p(2)), s(2) ≥ 0, on Ωr × (0, T ).
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In both test cases, a multi-perforated vertical well with either injection or production is considered at the centre
of the domain with imposed bottom hole pressure pbhp.

Our Robin-Neumann DDM algorithm easily extends to such a Black Oil model. At the reservoir nearwell

interface, input Dirichlet boundary conditions for S(α), α = 1, 2 and c
(1)
2 are used, and a Robin optimized

condition is used for the reference pressure chosen to be the phase 1 pressure p(1). The optimization of the
Robin coefficient will be based on a 1D linear parabolic equation for p(1) leading to a simple analytical formula
(see below). At the multi-perforated well, a total flux condition is imposed on the reservoir coarse well obtained
from the nearwell fine model by summing the mass fluxes contributions of both components 1 and 2 and of all
perforations of the fine well.

In both test cases, the reservoir domain Ωr is defined by a spherical cap of vertical axis x = y = 0, of horizontal
projection (−L,L)× (−L,L), of width H , and of bending b. The reservoir is assumed to be heterogeneous, with
a constant porosity φ, and an isotropic log-normal permeability field K.

The reservoir coarse mesh Mr is the uniform topologically Cartesian mesh of size Mx×My×Mz with Mx =
My = 51 and Mz = 3. The nearwell subdomain Ωw is the restriction of Ωr to (x, y) ∈ (−Lw, Lw)× (−Lw, Lw)

with Lw = Mw

2×51L for a given Mw ∈ N
∗. The nearwell mesh Mw is obtained by subdivision of all coarse cells

in the subdomain Ωw by a factor 3 in each direction x, y, z leading to 27 fine cells by coarse cell. The isotropic
log-normal permeability K is first defined on the uniform fine grid of size 3Mx × 3My × 3Mz and upscaled in
the coarse cells of Mr by simple averaging. The vertical well is perforated in the single bottom cell of centre
x = y = 0 at the coarse level and in the 3 refined cells of centres x = y = 0 contained in this coarse cell at the
fine level.

In both test cases, the relative permeabilities are defined by the following Corey’s law

k(α)r (S(α)) =







0 if s̄(α) < 0,
1 if s̄(α) > 1,

(s̄(α))2 if 0 ≤ s̄(α) ≤ 1,

with s̄(α) =
s(α) − s

(α)
r

1− s
(1)
r − s

(2)
r

, α = 1, 2, (10)

using the residual saturations s
(α)
r , α = 1, 2.

3.1. Gas injection test case

The reservoir is the spherical cap defined by L = 2500 m, H = 30 m, b = 300 m, with constant porosity
φ = 0.2, and the permeability field K exhibited in figure 5 with values ranging from 13 10−15 to 23 10−11 m2.
The nearwell region is obtained with Mw = 7 corresponding to 7× 7× 3 coarse cells.

We consider the previous Black Oil model with the two phases 1 (liquid) and 2 (gas) and the two components

1 = H2O and 2 = CH4. The reservoir is initially saturated by the liquid phase with c
(1)
2 = 0 and at the initial

pressure p
(1)
init = 40 105 Pa. Its boundary is assumed to be impervious. The gas phase is injected at the fixed

bottom hole pressure pbhp = 60 105 Pa at zref = 0 through the multi-perforated vertical well of radius rw = 0.12

m. The thermodynamical equilibrium is given by Henry’s law f(p(2)) = kH p(2) with kH = 10−11 Pa−1. Both
phases are assumed to be compressible with mass densities defined by

ρ(2)(p(2)) =
M

RT
p(2),

for the gas phase, and by

ρ(1)(p(1)) = ρl0(1 + clp(1)),

for the liquid phase, with the perfect gas constant R = 8.314J.K−1.mol−1, the molar mass M = 0.016 Kg, the
fixed temperature T = 323 K, the liquid compressibility cl = 4 10−10 Pa−1, and the liquid reference density
ρl0 = 1000 Kg.m−3. The liquid and gas viscosities are fixed to µ(1) = 5 10−3 Pa.s and µ(2) = 10−4 Pa.s, and

the relative permeabilities are given by Corey’s law (10) with s
(1)
r = 0.2, and s

(2)
r = 0.1. The capillary pressure

is defined by Corey’s law

pc(s
(2)) = p1 − p0 log(

1− s(2) − s
(1)
r

1− s
(1)
r

),

with p1 = 5 105Pa and p0 = 1 105 Pa. As stated in the section 2, the optimization of the parameters λn
σ at each

time step n and for all σ ∈ Frw defining the Robin nearwell interface conditions is based on the linear parabolic
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equation for the liquid pressure

clφ∂tp− div(−
K

µ(1)
∇p) = 0.

In order to obtain an analytical formula for the parameters λn
σ , it is further simplified by integration on one

coarse time step ∆tn, not taking into account the local time stepping. In addition, we will consider a 1D
approximation set on the reservoir domain (0, L) with the nearwell subdomain defined by (L− Lw, Lw), using
the constant porosity φ and freezing the value of the permeability at the interface denoted by Kσ. It leads to
the following 1D elliptic equation

p− (cnσ)
2∂xxp = 0,

with cnσ =

√

Kσ ∆tn

cl µ(1)φ
, and an homogeneous Neumann condition at x = 0. The optimal value of the parameter

λn
σ can be computed in such a way that the DDM algorithm converges in two iterations for this simplified

problem (see [8] for a detailed description of optimized Robin Schwarz methods). We obtain

λσ =
Kσ

cnσ

a2 − 1

a2 + 1
, 1 < a = exp(

L − Lw

cnσ
).

It is expected that this simple analytical computation of the parameters λn
σ will suffice to ensure a good con-

vergence even when applied to our 3D heterogeneous reservoir, with local time stepping, and for our two phase
flow problem.

Figure 6 exhibits the convergence of the optimized Robin-Neumann DDM iterations with local time stepping
in the nearwell subdomain using the coarse time stepping t0 = 0, t1 = 1, t2 = 11, t3 = 21, t4 = 31, t5 = 41,
t6 = 51, t7 = 61 days, and a local time stepping obtained by subdivision of each coarse time step into 10 subtime
steps. Most of the time, the convergence is obtained in roughly 2 or at most 3 iterations for a stopping criteria
defined by (8) with ǫ = 10−2.

Next the solutions obtained with the following five algorithms are compared to the reference solution obtained
using the LGR mesh with the global fine time stepping.

(i) The Robin-Neumann DDM algorithm with the stopping criteria (8) ǫ = 10−2, using a θ scheme for the
time integration in the coarse reservoir mesh with θ = 1 at the first coarse time step (t0, t1) and with
θ = 3

5 for the subsequent coarse time steps.

(ii) The Robin-Neumann DDM algorithm with the stopping criteria (8) ǫ = 10−2, using the Euler implicit
scheme θ = 1 on the coarse mesh for all coarse time steps.

(iii) The Robin-Neumann DDM algorithm with one DDM iteration and the Euler implicit scheme θ = 1 on
the coarse mesh for all coarse time steps.

(iv) The windowing algorithm obtained by a sequential computation in time of the reservoir and nearwell
solutions using a Dirichlet interface condition at the nearwell reservoir interface and the fixed bottom
hole pressure pr,bhp = pbhp at the well interface (D-windowing).

(v) The windowing algorithm obtained by a sequential computation in time of the reservoir and nearwell
solutions using Neumann interface condition at the nearwell reservoir interface and the fixed bottom
hole pressure pr,bhp = pbhp at the well interface (N-windowing).

The well cumulative gas flow rate as a function of time obtained with the five above algorithms is exhibited
in figure 7. Figure 8 exhibits the gas saturation solution obtained at final time for the reference solution and
for the five algorithms, and figure 9 plots the gas saturation error at final time w.r.t. the reference solution.
It clearly shows the large improvement provided by the Robin-Neumann DDM algorithms compared with the
classical windowing approaches which are not able to reproduce accurately the solution. This improvement is
already clear thanks to the Robin condition at the first DDM iteration for roughly speaking the same cost than
the windowing algorithm. This solution is slightly improved with the subsequent iterations of algorithm (i) or
(ii) using the stopping criteria (8) with ǫ = 10−2. We also note the improvement provided by algorithm (i)
compared with (ii) thanks to the more accurate time integration on the coarse reservoir mesh.

To evaluate the CPU times, let us denote by NLoc the number of cells in the nearwell subdomain, by NLGR

the number of cells in the LGR grid, NCoarse the number of reservoir coarse cells, by Niter the number of
DDM iterations, and by nlts the number of subtime steps. Then, the ratio of the CPU time obtained using
the fine time step on the LGR grid by the CPU time obtained with the Robin-Neumann DDM algorithm can
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be estimated as follows

CPUratio =
nlts× (NLGR)β

Niter× (nlts× (NLoc)β + (NCoarse)β)
,

assuming a complexity at each time step proportional to Nβ w.r.t. the number of cells N .
In the case of algorithm (iii) with nlts = 10, NLGR = 11625, NCoarse = 7803, NLoc = 4065, Niter = 1,

we obtain the estimation CPUratio = 2.4 for β = 1, CPUratio = 2.9 for β = 1.2, to be compared with our
numerical experiment reported in the table below.

Algorithms CPU (s)
LGR grid with global fine time step 21.9
Robin-Neumann DDM with one iteration (iii) 9.64

Figure 5. Log-normal permeability field upscaled on the coarse cells.
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Figure 6. Convergence of dQ (defined in (8)) for the Robin-Neumann DDM algorithm.



13

-1e+07

-9e+06

-8e+06

-7e+06

-6e+06

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 0  1e+06  2e+06  3e+06  4e+06  5e+06  6e+06

C
um

ul
at

iv
e 

ga
s 

(K
g)

Time(s)

 Reference solution
R-DDM

R-DDM with 1 iteration
N-windowing
D-windowing 

-4.5e+06

-4e+06

-3.5e+06

-3e+06

-2.5e+06

-2e+06

-1.5e+06

-1e+06

-500000

 0

 0  1e+06  2e+06  3e+06  4e+06  5e+06  6e+06

C
um

ul
at

iv
e 

ga
s 

(K
g)

Time(s)

 Reference solution
R-DDM with θ=3/5

R-DDM with θ=1

Figure 7. Left: comparison of the cumulative gas flow rate as a function of time t ∈ (0, 61
days) obtained by the reference LGR algorithm with global fine time stepping (in red) and the
algorithms (i) in green, (iii) in blue, (iv) in pink, and (v) in light blue. Right: Comparison of
the cumulative gas flow rate as a function of time t ∈ (0, 61 days) obtained by the reference
LGR algorithm with global fine time stepping in red and the algorithms (i) in green and (ii) in
black.



14

Figure 8. Gas saturation obtained at final time t = 61 days, from top to bottom and from left
to right, by: the reference LGR algorithm with global fine time stepping (LGR), and algorithms
(i) (R-DDM with θ = 3/5), (ii) (R-DDM with θ = 1), (iii) (R-DDM with 1 iteration), (iv) (D-
windowing), and (v) (N-windowing)
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Figure 9. Gas saturation error compared with the reference solution obtained at final time
t = 61 days, from top to bottom and from left to right, by: (i) (R-DDM with θ = 3/5), (ii)
(R-DDM with θ = 1), (iii) (R-DDM with 1 iteration), (iv) (D-windowing), and (v) (N-
windowing)

3.2. Gas-Condensate model

This second test case considers a gas-condensate model with phase 1 corresponding to the gas phase, phase
2 corresponding to the oil phase, and the components 1 and 2 corresponding respectively to light and heavy
hydrocarbons (HC). The reservoir domain is the spherical cap defined by L = 250 m, H = 30 m, b = 30 m,
with constant porosity φ = 0.2, and the permeability field K exhibited in figure 10 with values ranging from
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1.9 10−15 to 6 10−12 m2. The nearwell region is obtained with Mw = 3 corresponding to 3× 3× 3 coarse cells.
It is initially saturated by the undersaturated gas phase at the initial pressure pinit = 34 105 Pa and with the

initial heavy HC mass fraction c
(1)
2 = 0.05. The top and bottom boundaries are assumed to be impervious and

the pressure is fixed to 34 105 Pa at the remaining boundaries with an input gas saturation equal to s(1) = 1

and an input mass fraction equal to c
(1)
2 = 0.05.

The vertical well of radius rw = 0.12 m is a production well with imposed bottom hole pressure fixed to
pbhp = 10 105 Pa at the reference coordinate zref = 0. The thermodynamical equilibrium is defined by the
following function giving the heavy HC mass fraction at equilibrium in the presence of both phases:

f(p(2)) =















p(2)−p
g

1

p
g

3−p
g

1
c̄3 +

p(2)−p
g

3

p
g

1−p
g

3
c̄1 if p(2) ≤ pg3,

p(2)−p
g

2

p
g

3−p
g

2
c̄3 +

p(2)−p
g

3

p
g

2−p
g

3
c̄2 if p(2) ≥ pg3.

(11)

where pg1 = 10 105, pg2 = 34 105, pg3 = 29 105 Pa, and c̄1 = 10−2, c2 = 10−1, c̄3 = 2 10−2.
The mass densities of both phases are defined by

ρ(1)(p(1)) = ρg0 + cg p(2),

for the gas phase, and by

ρ(2)(p(2)) = ρl0 = 800 Kg.m−3,

for the liquid phase, with the gas reference density ρg0 = 400 Kg.m−3 and the gas compressibility cg = 1 10−5

Kg.m−3Pa−1. The liquid and gas viscosities are fixed to µ(2) = 1 10−3 Pa.s and µ(1) = 10−4 Pa.s respectively,

and their relative permeabities are given by Corey’s law (10) with s
(1)
r = 0.2 and s

(2)
r = 0.1. The capillary

pressure is assumed to be negligeable in this test case. The choice of the optimized Robin parameters λn
σ is

based, as in the previous test case, on a simple constant coefficient 1D elliptic equation on the gas pressure set
on the domain (0, L). Taking into account the modified Dirichlet boundary condition at x = 0, we obtain

λn
σ =

Kσ

cnσ

a2 − 1

a2 + 1
,

with 1 < a = exp(Lw

cnσ
).

Figure 11 exhibits the convergence of the Robin-Neumann DDM iterations using the coarse time stepping
t0 = 0, t1 = 1, t2 = 11, t3 = 21, t4 = 31, t5 = 41, t6 = 51, t7 = 61, t8 = 71, t9 = 81, t10 = 91, t11 = 100
days, and a local time stepping obtained by subdivision of each coarse time step into 10 subtime steps. The
convergence is always obtained in two iterations for a stopping criteria defined by (8) with ǫ = 10−2.

Next, the solutions obtained with the following four algorithms are compared to that obtained with the
reference LGR algorithm with global fine time stepping.

(i) The Robin-Neumann DDM algorithm with the stopping criteria (8) ǫ = 10−2,
(ii) The Robin-Neumann DDM algorithm with one iteration
(iii) The windowing algorithm obtained by a sequential computation in time of the reservoir and nearwell

solutions using a Dirichlet interface condition at the nearwell reservoir interface and the fixed bottom
hole pressure pr,bhp = pbhp at the well interface (D-windowing).

(iv) The solution obtained on the LGR mesh Mlgr using the coarse time stepping (without LTS).

The well oil flow rate as a function of time obtained with the above four algorithms is exhibited in figure 12.
Figure 13 exhibits the oil saturation solution obtained at final time for the reference solution and for the four
algorithms, and figure 14 plots the oil saturation error at final time w.r.t. the reference solution. Again, a large
improvement is provided by the Robin-Neumann DDM algorithms compared with the windowing approaches.
This improvement is already clear thanks to the Robin condition at the first DDM iteration but two iterations
provides a much better solution. The gain in CPU time is reported in the following table compared with the
reference LGR algorithm using the global fine time step. A factor of almost 3 is obtained with algorithm (i)
which provides the best approximation.

Algorithms CPU (s)
LGR grid with global fine time step 18.11
Robin-Neumann DDM at convergence (i) 6.95



17

Figure 10. Log-normal permeability field upscaled in the coarse cells.
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Figure 11. Convergence of dQ (defined in (8)) for the Robin-Neumann DDM algorithm.
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Figure 12. Comparison of the oil flow rate as a function of time t ∈ (0, 100 days) obtained by
the reference solution (in red) and the solutions of the four algorithms (i) (R-DDM) in blue,
(ii) (R-DDM with 1 iteration) in pink, (iii) (D-windowing) in light blue, (iv) (LGR without
LTS) in green.
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Figure 13. Oil saturation at final time t = 100 days obtained from top to bottom and from
left to right by: the reference solution (LGR), and algorithms (i) (R-DDM), (ii) (R-DDM with
1 iteration), (iii) (D-windowing), (iv) (LGR without LTS)
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Figure 14. Oil saturation error compared with the reference solution obtained at time t = 100
days from top to bottom and from left to right by the algorithms (ii) (R-DDM with 1 iteration),
(i) (R-DDM), and (iii) (D-windowing).

4. Conclusions

A domain decomposition algorithm for a two phase Darcy flow model coupling nearwell regions locally
refined in space and time with a coarser reservoir discretization has been presented. The algorithm is based
on an optimized Schwarz method with a full overlap at the coarse level and using a decoupling of the pressure
and saturation to obtain simple interface conditions. The main advantage of this approach is to apply to fully
implicit discretizations of general multiphase flow models and to allow a simple optimization of the interface
conditions based on a single phase flow equation.

The results obtained on 3D gas injection and gas-condensate models with a vertical multi-perforated injection
or production well exhibit the good behaviour of the Robin-Neumann DDM algorithm which converges in
roughly 2 iterations and provides a good accuracy compared with the LGR reference solution using the fine
time stepping. The comparison with classical windowing approaches clearly shows a large improvement in terms
of accuracy for a roughly double cost.

Compared with a global time stepping on the LGR grid, we observe important gains in CPU time provided
that the number of d.o.f. in the locally refined zones is significantly smaller than the total number of d.o.f.
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