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Significant improvements have been obtained on measurements of the NO, jet cooled
excitation spectrum in the 16 300-18 502 cm ~! range, previously obtained by Smalley et al.

[J. Chem. Phys. 63, 4977 (1975) ], Persch et al. [ Ber. Bunsenges. Phys. Chem. 92, 312

(1988) ], and Hiraoka et al. [J. Mol. Spectrosc. 126, 427 (1987)]. The improvements concern
first the rotational analysis, owing to a better resolution (150 MHz) and absolute precision
(500 MHz), and second the completeness and purity of the resulting vibronic sequence, owing
to a better sensitivity. As a result, 159 vibronic energy levels have been observed in the 16 500—
18 500 cm ™~ energy range, where 210 + 10 are expected. A detailed comparison with previous

NO: jet cooled visible excitation spectrum: Vibronic chaos induced
by the X 24,-A 2B, interaction

results is presented, The statistical analysis of the corresponding energy spacings shows that
long range correlations up to 50 mean levels spacings are present, confirming the chaotic
behavior of this set of vibronic levels. Furthermore, we analyze the observed rovibronic
interactions (or rotational perturbations) that are responsible for the very irregular rotational
behavior of the visible absorption spectrum of NO, at room temperature.

I. INTRODUCTION

During the last few years there were many attempts to
observe experimentally the chaos lying in the vibrational de-
grees of freedom of polyatomic molecules. In quantum sys-
tems, chaos can be characterized by the existence of correla-
tions among energy level spacings, which can be evidenced
by the nearest neighbor distribution (NND), the long range
correlation function 2*(L) or A5(L),' or by the Fourier
transform of the unfolded spectrum."? Examples of signifi-
cant experimental results were obtained with stimulated
emission pumping (SEP) technique by Abramson et al.? on
C,H,, and by Leviandier et al.? on methylglyoxal with an
anticrossing technique.

However, all these experimental results suffer from lack
of resolution and/or sensitivity, which do not allow one to
get complete and pure sequences of vibrational energy levels.
On the other hand, many numerical efforts both classical®
(trajectories in phase space) and quantum mechanical (dia-
gonalization of large matrices), have been devoted to the
study of chaos in vibrations of polyatomic molecules. These
numerical efforts are all basically limited by the quality of
the potential energy surface (PES) and especially by the
poor description of the vibrational mode couplings which
play a crucial role. In polyatomic molecules, vibrational cha-
os is usually expected within the 3N-6 (or 3N-5) vibrational
degrees of freedom of a given PES, usually those of the
ground state. For triatomic molecules, like CO, or SO,, the
chaotic behavior is expected typically above 20 000 cm ~ 1.5
For example, the vibrational spectrum of SO, is still regular
at 21 000 cm ~ !, or at least consists (at low resolution) of
regular assignable “feature™ states, as shown by Yamanou-
chi et al.®

Downloaded 12 SeB

J. Chem. Phys. 95 (8), 15 October 1991

2002 to 193.48.255.141. Redistribution subject to_AlP license or copyright, see http://ojps.aip.o
0021-9606/91/205701-18%$03.00

For NO,, on the contrary, there is a strong conical inter-
section between the X 24, and A4 2B, PES, which induces
vibronic mixing (and consequently chaos) at much lower
energy than expected solely within vibrational levels of the
X 24, PES.” In 1975, Smalley et al.® made decided experi-
mental progress by using rotational cooling (down to 3 K)
of a supersonic jet, which simplifies considerably the corre-
sponding unassignable room temperature absorption or ex-
citation spectrum. In the 14 880-17 518 cm™! range, they
have observed 140 vibronic bands (but only 114 true vi-
bronic levels, see Sec. III B), i.e., much more than expected
if the 4 2B, state were involved alone. In 1985, Haller et al.”
showed quantitatively with a model that the well-known
complexity (and high line density) of the visible NO, ab-
sorption (or excitation) spectrum is due to this X 24,4 2B,
vibronic interaction. In 1988, Persch et al.? have extended
the energy range of the jet cooled excitation spectrum from
12 117cm ™' up to 24 563 cm ~ }, but their list of 407 vibronic
levels is rather inaccurate, except for some sequences of vi-
bronic levels for which they have obtained a very high reso-
lution spectrum (=20 MHz) and assigned several rota-
tional lines for each vibronic level.! At this level of
resolution, the fine and hyperfine structures of both the up-
per and lower levels are resolved. The above mentioned
model of X 24,~4 2B, vibronic interaction’ is based on ab
initio calculations of Jackels and Davidson,'! and of Gillipsie
et al.,'* who predicted the 4 ?B, state at about 10 000 crn "
above the X 24, ground state and also predicted the corre-
sponding X 24 ,~4 2B, conical intersection. However, ab ini-
tio calculations by Hirsch ez al.'* lead to a lower X ?4,-4 2B,
zero point energy separation of 7392 cm " and very recently
Blahous et al.'* have found an intermediate value of 8540
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cm ~ L. Elsewhere, we present the complete set of 191 lower
vibrational levels (up to 10 000 cm ~ ') observed in laser in-
duced dispersed fluorescence spectra (LIDFS) from 11 up-
per vibronic levels located around 23 000 cm =%

By extrapolation of these results to higher energies, we
have been able to predict accurately the expected number of
vibronic levels and then to determine the number of missing
levels in the range of our excitation spectrum. In Sec. IH we
present a detailed analysis of the obtained jet cooled NO,
excitation spectrum and we emphasize the comparison with
previous results obtained by Smalley et al.?, Persch et al.,®
and Hiraoka e al.'® in order to determine the best set of
vibronic levels. In Sec. IV we analyze the irregularities of
rotational level spacings and fine structure splittings due to
rovibronic interactions. It is important to note that these
rovibronic interactions do not induce vibronic chaos but in-
duce only irregular rotational structures. In Sec. V we study
the energy correlations within the observed set of vibronic
levels given in Table II, we compare these correlations with
those of the GOE standard model for quantum chaos, and
we analyze the influence of missing levels.

lIl. EXPERIMENT

The experimental setup is similar to the one used for
glyoxal.}” A monomode ring dye laser (380A, Spectra Phys-
ics) pumped by an Ar* cwlaser (171 or 2045 Spectra Phys-
ics) excite NO, molecules in a free jet about 2 mm from a 50
micron aperture nozzle. The NO, molecules (Air Liquide)
are first condensed inside a tank, then carried along by an
Argon flux at a total pressure of typically 1-3 bars. The con-
centration of NO,, controlled by the temperature of the tank
( — 15to — 5°C) is usually of the order of 1%. The vacuum
chamber is evacuated by a 500 m*/h root pump (Peiffer)
and a 65 m*/h mechanical pump (Alcatel). The correspond-
ing back pressure is a few 10~2 Torr. The resulting NO,
rotational temperature is about 3 K in the lowest K =0
(N = 0,2,4,...) manifold. However, the vibrational tempera-
ture remains close to the room temperature and consequent-
ly hot bands have been observed. The fluorescence light is
detected by a PMT at right angle to the jet and to the laser
beam. In order to reduce the Doppler linewidth, an image of
the fluorescence “flame” is observed through a slit perpen-
dicular to the laser beam. The optimum slit (taking into
account the resolution, the fluorescence intensity, and the
scattered light) is trapezoidal, 4 mm long, and 0.4 mm of
maximum width. The corresponding residual Doppler
linewidth is less than 150 MHz, allowing resolution of the
fine structures of the lower and upper rotational levels. Fur-
thermore, a colored filter rejects the scattered laser light
from the nozzle. Nevertheless, we have always observed a
weak, but irreducible, spectrally continuous background of
unknown origin in our NO, excitation spectra. The spec-
trum has first been obtained by juxtaposition of slightly over-
lapping 75 GHz scans. Then, the wavelength of each line
suspected from its line shape to be Ry, P,, R,, P,, etc. (see
Sec. I11) has been measured, with an eight digits homemade
Lambdameter, to within 150 MHz (relative) and 500 MHz
(absolute). During each measurement the laser frequency
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(slightly modulated) was locked onto the observed transi-
tion by a lock-in amplifier. The relative intensities of bands
are given in Table II, only within 20%. Note that the
weakest detected vibronic band is about 2000 times smaller
than the strongest one!

1. EXCITATION SPECTRUM ANALYSIS
A. Rotational analysis and the vibronic band origins

Our band spectra appear similar to those published by
Smalley et al.® (Figs. 2, 5, 6, 7, and 10). However, our better
resolution allows for a finer rotational analysis because we
are able to assign the fine structure J quantum numbers. Two
examples of bands are shown in Figs. 1 and 2. First, NO,
being almost a symmetric top, we use the N,K,J notation
with the related A4, B rotational constants. In the jet cooled
excitation spectrum, we have only observed parallel type
bands, i.e., AK = O rotational transitions. In addition, the
low rotational temperature (7 ~3 K) achieved in the su-
personic beam expansion is such that the dominant transi-
tions occur from K = 0. Consequently, the more intense
transitions of each vibronic band are the R, R,, and P,
(K = 0) lines. The weak transitions, not analyzed here, be-
long mainly to the K = 1 manifold. The X 24, and 4 B,
states being doublets, we observe the fine structure splittings
(due to spin—orbit interactions) that are resolved in the
ground state and are almost always resolved in the numerous
upper states. Four independent criteria are used to assign
rotational transitions:

(i) The R, — P,, R, — P,, and R, — P4 differences must
correspond, within 150 MHz, to the ground state splittings
of, respectively, 2.532 cm ~ %, 5.908 cm ~ !, and 9.280 cm ™!
between N* =0and N" =2(6 B"),N" =2and N" =4
(14 B"),and N* =4and N" =6 (22 B").

(ii) The Ry — P,, R, — P,, and R, — P lines have re-
producible and stable intensity ratios at a given rotational
temperature (about 3 K).

(iii) Fine structure splittings of the N’ = 1, 3, etc. excit-
ed levels must be the same (within 150 MHz) when observed
on the R, or on the P, lines for N' =1, on R, and P, for
N' =3, and soon.

(iv) The high resolution profile of each fine structure
component (J' = N'J 1/2) allows us to identify these two
components because these two high resolution profiles are
very different (see Ref. 10).

It is therefore possible, on the basis of these four criteria,
to assign rotationally the observed transitions, i.e., upper
levels, and subsequently, to build up the corresponding up-
per vibronic excited states. Several pieces of information can
therefore be obtained on each vibronic level as given in detail
in Table I [Ref. 18(a) ] and summarized in Table II.

(i) The R, — P, and R, — P, fine structure splittings
allow one to obtain the value of the fine structure “con-
stant,” if one assumes that the fine structure splitting is given
by

Ey(J'=N'+})—Ey(J'=N'—1)
=}€QN" +1), n

5 October 1991
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R
BAND ORIGIN: 17 733.555 cm~1 0
J=3/2
R2
I=T7/2
P2
J=3/2
JI=5/2
J=1/2 J=1/2
P
4
I=5/2 FIG. 1. Example of 2 normal band (top):
each rotational component is split into
two fine  structure  components
o (J =N F 1/2).WeaklinesareX #0Otran-
ot ‘Tl sitions. High resolution measurements
. : v . (bottom) allow us to identify the J fine
17 736 17 735 17 734 17 733 17 732 17 731 structure components according to the in-

Wave number 7
(cm -1)

dividual line shapes.

J=3/2 J=1/2

where € = (€is + €. )72. Infact, it very often appears that
the value of € for N' = 1 (from R, or P, lines) is not the
same as that for N' = 3 (from R, or P, lines)! This fact has
already been reported'®'*?° but without further analysis.
We present in Sec. IV a statistical analysis of this phenome-
non as well as a physical interpretation.

(ii) From the barycenters of the two fine structure com-
ponentsofthe N' = 1, N’ = 3,and N' = Srotationallevels, it
is then possible to obtain B}, and Bjs, the “local”
rotational constants, corresponding to the
E(N'=3)—EN'=1) and E(N'=5)—-E(N'=3)
energy differences. Once again it appears very often that the
value of the B’ rotational constant is not the same when
calculated, respectively, from N' =3 and N' = 1 levels or

S

from N' = Sand N' = 3 levels. This point is discussed in Sec.
Iv.

(iii) Last but not least, among the 166 observed vibronic
bands from 16 319 cm ™! to 18 502 cm ~!, 57 display extra
lines in the K = 0 manifold corresponding to N’ = 1 and/or
N’ =3 and/or N' =35, as indicated in the last column of
Table I1. More precisely, we have observed bands with more
than two pairs of R, — P, and/or R, — P, and/or R, — P,
lines separated, respectively, by 2.532, 5.908, and 9.280
cm ™! energy splittings. Figure 2 displays one of these bands
with a R, — P, pair of J = 3/2 extra lines. These three pairs
of lines correspond to the existence of three fine structure
levels in the N' = 1 upper level. In the case of three R, — P,
lines, the three corresponding J quantum numbers are either
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R, R BAND ORIGIN: 17 627.160 cm-1
3%5/2 e P, =32
I=7/2 J=1/2
I=1/2
I=5/2 Py
I=7/2
R
I=3/2
J=3/2
)‘———A_—L A, Aa-A..JL—d L MMLA

T T T T T T T T B L
17 632 17631 17 €30 17629 17 628 17 627 17 626 17 625 17 624 17 623
wave number (cm-1)

FIG. 2. Example of a band with a pair of J = 3/2 “extra” lines: R, and P, transitions, which display three fine structure components: one J = 1/2 and two
J=3/2.

TABLE II. Energy, fine structure splittings, and rotational constants of 166 2B, vibronic levels. All energies are given in cm ~'.

Extra lines®
Relative FS (N=1)° FS (N =13)° j1=1/2 j2=3/2
intensities® B.O. 3/2-172 7/2-5/2 B, B, 3=5/2j4=1/2
4.0 16 319.136 0.000 —0.304 0.3779
40.0 16 321.136 +0.316 + 0.465 0.4737 J2
1.0 16 337.023 —0.120 + 0.130 0.4001
0.6 16 361.734 0.000 —0.036 0.3989 0.4036
2.0 16 413.944 +0.105 + 0.180 0.4363 0.4216
13.0 16 436.065 4+ 0.039 -+ 0.146 0.4203 0.4234
1.0 16 449.728 + 0.381 + 0.256 0.4192 j2
3.5 16 501.887 + 0.075 —0.010 0.4032 0.4078 j2
4.0 16511.414 - 0.333 — 0.466 0.3552 0.3668 i2
6.7 16 577.887 - 0.103 + 0.456 0.3757 0.4377
11.0 16 602.469 + 0.249 + 0.558 0.4401 0.4354
4.0 16 615.125 +0.039 + 0.084 0.4143 0.4246
10.0 16 631.274 -+ 0.080 + 0.150 0.4264 0.4293
5.0 16 643.355 +0.145 + 0.343 0.4134 0.3997
1.7 16 651.341 —0.668 - 0.982 0.3990
6.8 16 657.456 + 0.052 +0.231 0.3470 0.3789 j2
6.4 16 658.204 + 0.757 + 0.882 0.4813 0.4363
3.3 16 671.675 +0.033 +0.072 0.4137 0.4094
1.6 16 692.890 0.000 0.000 0.4155
3.6 16 704.128 + 0.034 + 0.137 0.4253 0.4149
0.25 16 710.846 + 1.035 0.000 0.4390
1.6 16 713.745 + 0.050 —0.209 0.4306
12.0 16 728.366 0.000 -+ 0.043 0.4132 0.4153
17.0 16 757.795 0.000 + 0.052 0.3636 0.3697
3.7 16 770.564 -+ 0.092 +0.202 0.4462 0.4236
0.6 16 786.109 —0.383 —-0.162 0.4169 0.3989
14 16 798.696 +0.018 0.000 0.3993 0.3961
9.0 16 809.976 —0.225 —0.854 0.4321 il
3.8 16 837.782 + 0.033 --0.150 0.4217 0.4094
100.0 16 849.462 —0.070 —0.161 0.4239 0.4203
2.9 16 868.300 + 0.066 + 0.045 0.4152
10.0 16 875.171 —0.017 - 0.047 0.4051 0.4025
17.5 16 885.080 + 0.408 — 0.608 0.3642
25.0 16 893.147 + 0.080 +0.108 0.4120 0.4212 j4
2.9 16 909.603 + 0.094 +0.019 0.4089 0.4157
2.9 16 917.082 —0.144 -—0.130 0.4163 0.4186
7.0 16 927.802 -+ 0.086 +0.164 0.4276 0.4200
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Extra lines®
Relative FS(N=1)° FS (N =3)° 1=1/22=32
intensities* B.O" 3/2-1/72 7/2-5/2 B,,° B¢ 3=5/2j4=1/2
16.0 16 946.711 ~0.322 - 0.668 0.4153 0.4118
0.2 16 967.170 —0.306 ~0.178 0.4175 jt
7.0 16 975.537 —0.013 + 0.094 0.4203 0.4050 jlja
21.0 17 001.785 +0.093 +0.301 0.4091 0.3958
9.0 17 009.956 +0.172 —0.279 0.4526 0.4483
70.0 17 027.534 —0.023 —0.096 0.4212 0.4226 i3
1.5 17 043.961 - 0.264 —0.430 0.4089 i3
5.0 17 061.475 —0.059 —0.175 0.3929
68.0 17 092.066 +0.033 —0.107 0.4087 0.4642 j4
1.9 17 101.539 + 0.059 +0.220 0.4118
9.5 17 116.070 - 0.099 0.000 0.3637
11.0 17 116 965 -0.209 +0.508 0.3979 0.4009 j3
1.0 17 129.949 —0.007 +0.268 0.3931
1.0 17 142.252 +0.128 +0.295 0.4225 0.4148
35 17 159.592 0.000 —0.187 0.4299 j1j3
14 17 182.214 +0.051 —0.182 0.4084
4.0 17 209.861 +0.086 +0.203 0.4329 0.4285
8.7 17 219.264 — 0.006 +0.116 0.4349 0.4459 j2j4j4
2.0 17 254.513 —0.020 —0.091 0.4251 j2j4
17.5 17 257.767 +0.031 +0.084 0.4007 0.3996
10.0 17 266.578 —0.012 + 0.053 0.3852 0.3961 i3
18.0 17 280.760 —0.295 —0217 0.4061 0.3969 j2
3.3 17 297.630 —0472 +0.728 0.4927 2
1.2 17 306.867 +0.244 —0.325 0.4487
1.7 17 312.924 —0.620 +0.156 0.4357 0.3883
1.0 17 317.653 —0.144 —0.146 0.3832
1.0 17 331.726 —0.162 —0.443 0.3816 0.3800
1.0 17 348.285 +0.013 +0.217 0.4084
0.1 17 358.648 4 0.267 +0.594 0.4062
8.0 17 376.010 0.000 —0.031 0.3751 0.3764
30.0 17 382.002 —0.219 —0.245 0.4084 0.4067
5.0 17 400.769 +0.388 + 0.090 0.4045 0.4296 j4
2.0 17 410.420 +0.067 +0.177 0.4047
5.0 17 412.957 —0.041 0.000 0.3873
10.0 17 431.205 +0.036 +0.162 0.4149
30.0 17 437.060 0.000 +0.078 0.4117 0.4092
40 17 455.594 —0.902 —1.220 0.3869
4.0 17 466.853 +0.054 +0.043 0.4000
60.0 17 477.640 +0.390 +0.835 0.4252 j4
45.0 17 491.874 —0.055 +0.434 0.4253 jl
9.0 17 519.189 —0.084 —0.253 0.3742 j4
80.0 17 528.127 +0.366 +0.902 0.4665 0.4603
5.0 17 534.360 —0.290 +0.197 0.3700 j2j4
14.0 17 551.260 +0.244 — 1.094 0.4528
15.0 17 553.602 + 0.990 0.000 0.4877
14.0 17 576.903 —0.186 —0.296 0.3666
0.6 17 579.887 —0.112 —0.091 0.3951
9.0 17 591.662 —0.642 — 1412 0.4029
13.0 17 595.122 +0.450 —1.225 0.4856
15.0 17 601.469 —0.334 —0.129 0.4019
35.0 17 606.872 —0.755 +0.260 0.4558 j2
15.0 17 615.355 —0.519 —0.723 0.4044
45.0 17 627.160 +0.051 —0.276 0.4261 0.4201 2
3.0 17 647.828 +0.014 +0.024 0.3887
10.0 17 668.798 +0.080 +0.300 0.4045
15.0 17 675.373 +0.142 +0.102 0.4084
20.0 17 679.025 —0.022 +0.054 0.4355
75.0 17 684.494 +0.226 +0.304 0.4375
15.0 17 700.080 +0.037 + 0.084 0.4002
60.0 17 713.203 +0.128 +0.137 0.3775 0.4173
120.0 17721.875 —0.147 —0.364 0.4137 0.4157
65.0 17 733.555 + 0.080 +0.244 0.4362
12.0 17 749.872 —0.163 —0.304 0.3946 jl
1.4 17 768.491 +0.132 +0.248 0.4141
2.5 17 776.717 —0.038 —0.366 0.4021
4.5 17 786.878 0.000 +0.078 0.4072
6.0 17 795.345 —0.117 —0.045 0.4433 J2
28,0 17 812.624 - 0.040 +0.058 0.3882 j2
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TABLE I1. (Continued.)

Extra lines®
Relative FS(N=1)° FS (N=3)° j1=1/2 j2=3/2
intensities® B.O." 3/2-1/2 7/2-5/2 B3¢ B,,° 3=5/2j4=1/2
8.0 17 814.257 —0.146 ~0.262 0.4142
50 17 833.060 +0.264 +0.332 0.4261
100.0 17 842.578 —0.158 —0.325 0.4024 0.4345
300 17 843.666 +0.024 +0.027 0.4103 0.4126 i3
11.0 17 855.296 + 0.305 — 0284 0.3632 i2
40.0 17 874.425 +0.150 + 0.257 0.4530
35.0 17 892.302 + 0.099 +0.127 0.4182 j2
7.0 17 897.835 +0.010 + 0.046 0.4112
50.0 17 907.832 —0.513 ~0.236 0.3517 izl
8.0 17929.193 0.000 +1.330 0.4527 0.4721 j1
8.0 17 941.716 +0.322 +0.226 0.4019
6.0 17 943.412 - 0.230 —0.448 0.3978
15.0 17 960.405 —0.012 —0.017 0.4056
40.0 17 970.246 0.000 —0.016 0.4171 0.4172
11.0 17 997.085 —0.013 +0.348 0.3936 0.4056 j2j3j4
16.0 18 022.467 + 0.054 + 0.055 0.3756 0.3758
45.0 18 025.867 +0.083 +0.272 0.4748 0.4333 353
320 18 035.524 —0.217 —0.508 0.3924 23
7.0 18 041.443 +0.106 + 0.064 0.4082 j2
38.0 18 056.318 —0.086 + 0.046 0.4429 0.4340 it
95.0 18 073.013 —0.184 — 1.160 0.4150 0.3873
40.0 18 075.078 + 0.607 —0.354 0.4588
60.0 18 078.734 —0.543 - 1272 0.3738 it
36.0 18095.411 +0.327 +0.752 0.3883 0.3904
9.0 18 114.413 —0.204 ~ 0.340 0.3917
55.0 18 120.483 +0.056 +0.134 0.4003 0.4146
12.0 18 132.990 + 0.452 -~ 0,015 0.4400 0.4167 jl
10.0 18 142.745 + 0.029 —0.196 0.4337
20.0 18 146.172 + 0.040 + 0.100 0.4024 0.4018
11.0 18 152,786 —0.044 —0.124 0.4000
4.0 18 171.491 + 0.090 0.000 0.4241 0.4153
125.0 18 199.165 —0.237 — 1.050 0.3959 0.4273 j2
36.0 18 207.803 4 0.104 +0.016 0.4630
24.0 18 212.237 +0.158 +0.318 0.4494 0.4389
10.0 18 224.067 —0.278 —0.920 0.3678
26.0 18 244.235 —0.090 +0.284 0.3918 0.4003
21.0 18 249.158 + 0.093 —0.029 0.4330 0.4177 j3j4
68.0 18 265.357 —0.031 + 0.166 0.3983 0.3609 j2j4
127.0 18 273.462 +0.154 +0.294 0.4295 0.4142
60.0 18 280.551 +0.035 —0.105 0.4465 0.4237 j2j4
9.0 18 285.764 + 0.059 + 0.147 0.3861 j3j4
100.0 18 304.093 —0.074 —0.160 0.4186 0.4067 j4
40.0 18 322.735 + 0.085 4 0.220 0.4094
14.0 18 330.362 +0.720 ~1.337 0.2574
23.0 18 347.776 + 0.367 —~ 0487 0.4970 j
24.0 18 351.788 —0.135 —0.121 0.4349
8.0 18 361.805 - 0.326 — 1.795 0.5637 j4
8.0 18 372. ;07 —0.081 —0.184 0.3965 0.3998
100.0 18 383.255 + 0.038 —0.092 0.4220 0.4273 i3
35.0 18 397.925 —0.230 — 0.809 0.4208 0.4328 j1j2j2§3
64.0 18 412.457 + 0.068 +0.147 0.4093 0.3995
11.0 18 416.237 +0.020 —0.167 0.3638 j2
370 18 424.383 +0.326 —0.524 0.4577 0.4440 j2i2
53.0 18 426.788 +0.786 +2.192 0.4783 jtj2
19.0 18 438.930 —0.490 —0.356 0.3737
190.0 18 447.813 —0.006 —0.131 0.3686 0.3810 jl1j2
8.0 18 467.480 —0.027 —1.018 0.3403 j1i2
3.0 18 469.370 —0.234 —0270 0.5254
10.0 18 472.090 + 0.442 + 1.165 0.4539 0.4432 j4
1.5 18 484.677 +0.070 +0.165 0.4046
3.2 18 502.192 +0.123 +0.372 0.3832

“Relative intensities are given to J-20%.

bVibronic band origins.

¢ Fine structure splittings for N=1and N=3.

4 Calculated rotational constants from the spacings between N =1, N=13 (B, ;) and between N =3, N=5 (B,;).
< “Extra” lines, when observed, are labeled according to their high resolution signature,
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twoJ = 1/2 and one J = 3/2 or the opposite, indicating that
either the J = 1/2 or the J = 3/2 fine structure level is split
into two components by a rovibronic interaction. As a
whole, we have observed 14 “extra” levels with J = 1/2 and
30withJ = 3/2onthe N’ = 1, K = 0 manifold, and 14 with
J=75/2and 20 withJ = 7/2 inthe N' = 3, K = 0 manifold.
We have conducted an exhaustive search for J' = 1/2 and
J'’ = 3/2 extra lines and are therefore confident in the 14/30
ratio between the numbers of J' = 1/2 and J' = 3/2 extra
lines. This important result will be discussed in Sec. IV. We
want to emphasize that these extra lines have not been clear-
ly assigned previously, leading to spurious vibronic levels as
discussed in Sec. III B. Furthermore, when one extra line is
observed, it is possible, on the basis of the energy shift and
intensity ratios, to “deperturb” these pairs of levels and then
to obtain the corresponding deperturbed energy levels.
These “deperturbed” energy levels have been used to calcu-
late the above mentioned rotational and fine structure con-
stants. The J values of extra levels are given in the last col-
umn of Table II.

(iv) Finally, we have determined (by subtracting 2 B 13
from the observed N' = 1 energy level) the vibronic energy
of each vibronic band.

The corresponding results on the 166 observed vibronic
bands are given in Table I and summarized in Table II.

Hot bands with the (0,7, = 1,0) vibrational level of the
ground state as lower level have also been detected. Three
independent criteria have been used to assign the hot bands
lying between 16 319 and 17 752 ecm ™' ( = 18 502-749.65
cm ). Obviously, we cannot assign hot bands that occur in
the 17 752-18 502 cm ™! energy range. For each hot band, a
parent cold band, originating from the vibrationless level of
X34 ;» and then shifted by 749.65 cm !, must be found
above in the excitation spectrum within 0.02 cm~! with an
intensity 75 times stronger in average (T, = 260 K, see
below). In addition, the parent band must display the same
rotational and fine structure splittings as the hot band within
0.005 cm ~ . The probability for these criteria to be satisfied
simultaneously while the suspected band is not a hot band is
extremely low. The list of the nine detected hot bands is
given in Table III. The 260 K vibrational temperature, esti-

TABLE III Listing of identified hot bands and of corresponding parent
cold bands.

T, (H) T (P)
Hot band Parent
origins cold band T, (P)-T,(H) Intensity ratio
(em™~") origins (cm ") (ecm~") I(Py/I(H)
16 342.429 17 092.066 749.637 39
16 531,103 17 280.760 749.657 45
16 727.964 17 477.640 749.676 100
16 778.458 17 528.127 749.669 133
17 323.361 18 073.013 749.652 48
17 345.781 18 095.411 749.630 30
17 370.848 18 120.483 749.635 69
17 573.085 18 322.735 749.650 160
17 633.608 18 383.755 749.650 50

5707

mated from the hot band to cold band intensity ratios, is not
significantly lower than room temperature, indicating that
the vibrational degrees of freedom are not efficiently cooled
in our jet conditions as previously observed.*?!

B. Comparison with previous resuits

In Table IV [Ref. 18(b) ] we have compared our results
with those obtained by Smalley et al.,® Persch et al.,” and
Hiraoka et al.'®

1. Comparison with Smalley’s results

In the 16 319-17 492 cm ™! portion of the energy range
common to our own present measurements and to the work
of Smalley et al. (Table I of Ref. 8), they have observed 65
vibronic bands, among which two are given as hot bands in
Table II of Ref. 8. Furthermore, we have found that bands
number 108 and 130 in Table I of Ref. 8 should also be as-
signed as hot bands because we have observed the two corre-
sponding cold bands (above 17 492 cm ™', the maximum
energy observed by Smalley). These two hot bands are listed
in our hot bands (Table ITI). Moreover, we have reinterpret-
ed a few pairs of their bands, almost degenerate in energy, as
single bands including one (or a few) extra line(s): Bands
number 120 and 121 in Smalley’s Table I should be consid-
ered as one, the band given at 17 159.592 cm ™! in our Table
II This band has two extra lines, as quoted in the last column
of Table II. Similarly, the two bands number 124 and 125 of
Smalley’s Table I should be grouped into one band at
17 219.264 cm ™! with three extra lines (see Table II). Last
but not least, we have found, in our common energy range,
17 new vibronic cold bands, mostly with low intensities. Asa
result, we have observed a total of 77 cold bands (i.e., vi-
bronic levels) in the 16 319-17 492 cm~! common energy
range, while Smalley et al.® have observed 56 of them. Glo-
bally, the agreement between Smalley’s and our energy mea-
surements is satisfactory: their vibronic energies are globally
shifted by only 0.27 cm ~! with respect to ours, and the corre-
sponding rms deviation is only 0.13 cm ~'. Among the 140
vibronic bands given by Smalley et al. (Ref. 8, Table I), we
conclude that 114 are true cold vibronic bands, i.e., vibronic
levels. In addition, we note that, due to a limited resolution
(=1GHz), Smalley et al. could not assign the fine structure
component (i.e., the J values) and consequently could not
determine the sign of the fine structure.

2. Comparison with Persch’s results

Persch’s results (2) are of inhomogeneous quality.

(i) Part of their measurements have been obtained at
very high resolution (15 MHz) and are reported with a
102 cm ™! resolution in their Table I. These high resolution
results, when compared with our line measurements, agree
very well with our results: a mean shift of 0.013 cm~' and a
standard deviation of 0.032 cm ~ . However, there exist a
few discrepancies in the detailed rotational analysis of the
two vibronic levels at 16 899.200 and 17 078.200 cm ~ .

(ii) Most of their vibronic bands have been obtained
from a low resolution spectrum, i.e., without detailed rota-
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tional analysis and measurement (their analysis is based on a
shape recognition technique of parallel bands).

In their low resolution spectrum, we have considered
separately the energy range studied previously by Smalley et
al.® and the range not studied by these authors. For the ener-
gy range previously known, their vibronic energies are in
reasonable agreement with ours and Smalley’s: when we
compare the energies of 61 vibronic levels, we find a mean
shift of 0.05 cm~"' and a standard deviation of 0.6 cm ~ .
Moreover, they considered as cold bands those assigned as
hot bands by Smalley e al.® in their Table II. When one
considers the range 17 500-18 502 cm ~ ', not studied pre-
viously by Smalley (containing 46 vibronic bands), one
finds a standard deviation of 3.5 cm ~ '. Considering that the
mean vibronic energy level spacing is ~12 cm ™, this 3.5
cm™! deviation means that Persch’s vibronic band origins
are randomly distributed when compared with our own set
of vibronic energy levels! Furthermore, other similar com-
parisons with our measurements (not reported here) in the
21 733-23 650 cm ™! range have been performed on a set of
53 vibronic levels given in Table I of Ref. 9. Again we come
to the conclusion that there are no correlations between their
values and ours. We conclude that very many band origins in
the range not previously published by Smalley ez al.,® given
within a claimed accuracy of 0.1 cm ™! in Table I of Ref. 9,
are not meaningful. We conclude that, among the 141 vi-
bronic levels taken into account in the statistical analysis by
Zimmermann et al.,?? there are 25 spurious levels, among
which 22 come from hot bands (most of them being listed in
Smalley’s Table I1, Ref. 8), and three correspond to spurious
bands due to misanalyzed extra lines (see above). The corre-
sponding consequences on the correlation analysis of vi-
bronic level spacings are discussed in Sec. V.

3. Comparison with Hiraoka’s results

Only 15 of our vibronic band origins can be compared to
those found by Hiraoka et al.'® in the 18 199-18 492 cm ™!
common energy range. There is globally a very good agree-
ment with a mean shift of 0.02 cm™~"' and a standard devi-
ation of 0.09 cm ~'. Nevertheless we have observed 11 vi-
bronic levels not reported by Hiraoka. Moreover, they did
not analyze their pairs of very close vibronic bands in terms
of extra lines. Consequently, they report two pairs of quasi-
degenerate vibronic bands shifted by less than 1 cm~', one
group of three quasidegenerate bands and one group of four
quasidegenerate bands. We interpret each of these groups of
bands in terms of only one band with one or a few extra lines.
A discussion about rovibronic couplings inducing extra lines
is presented in Sec. IV.

IV. STATISTICAL ANALYSIS OF ROTATIONAL
AND SPIN-ROTATION CONSTANTS
A. Rotational spacing distribution
We have mentioned in the previous section that one did

not obtain the same result when calculating the B’ rota-
tional constant from R, — P, differences (i.e., B{ ;) or from

0.

34 N
0.3 0.4 5, 5 (em!) 0.5

FIG. 3. Correlations between B}, and f’;ys rotational constants. The
straight line (B |, = B, ) corresponds to the rigid rotor model expected
in the absence of rovibronic perturbations.

R, — P, differences (i.e., B 3,5 ). This point is illustrated in
Fig. 3. If the concept of rotational constant, within a given
vibronic state, were valid, one should find B} s = B, and
correspondingly, points on Fig. 3 should be distributed
along the straight line. Obviously, this is not the case. In
order to predict the distribution of the rotational constant

B’, we have calculated B’ for the vibrational levels of the

electronic ground state in the 16 500-18 500 cm ™! energy
range by extrapolation from rovibrational constants given
by Lafferty and Sams.?® The corresponding distribution is
displayed on Fig. 4, curve a.

In fact, in this energy range, the real vibronic levels re-
sult from interactions between high b, (a,) vibrational levels
of the ground state X 4, with a, (b,) vibrational levels of
the excited state 4 2B,, inducing a very dense visible excita-
tion spectrum. We have calculated 180 b, vibrational levels
of X 24, between 16 500 and 18 500 cm ™! and about 30 a,
vibrational levels in 4 2B,. These 180 b, levels have been
obtained by extrapolating the 191 observed vibrational levels
in the 0-10 000 cm ™! energy range of LIDFS (see Delon

04 05

B (cmt)

FIG. 4. Distribution of rotational constant B’ (see the text).

15 October 19
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and Jost'®). These 191 levels have been fitted with a set of 24
Dunham parameters that have been used for the above men-
tioned extrapolation. The 30 vibronic levels of the 4 B, state
correspond to an evaluation based on ab initio calculations

previously mentioned.'"'2 The expected B’ constant rota-
tional distribution of A 2B, vibrational levels is concentrated
around 0.5 cm™! as displayed in Fig. 4, curve b. The B’
mean value in the 4 *B, state is different from that of the
ground state, mainly because the equilibrium angle is 103°,
compared to 134° for the ground state (see Refs. 11 or 12).
Consequently, if only pure vibronic coupling is assumed, one
should obtain the distribution labeled ¢ in Fig. 4: each vi-

bronic level has a well-defined B’ value that is expected to

be a weighted average of the different B’ constants of the
involved zeroth-order basis states. In this model of pure vi-

bronic coupling, B’ still remains a constant, ie.,
Bi;=B ;s- To explain the inequality of B} ; and 53,5
shown in Fig. 3,rovibronic couplings must be taken into ac-
count. As explained in Sec. I'V B, these rovibronic couplings
act on individual J components in a random way, destroying
the initial regular rotational spacings of a given vibronic lev-
el. Consequently, the distribution ¢ on Fig. 4 spreads like
distribution 4 and, more strikingly, the B ;/B s ratio is
spread out, as displayed on Fig. 3. This explanation implies
that N’ is not a very good quantum number anymore. To
study this problem thoroughly, we consider the fine struc-
ture splitting distribution.

B. Fine structure splitting distribution

For a given vibronic level, we observe that the fine struc-
ture constant obtained from N’ =1 is not the same as that
obtained from N' = 3 (see Sec. III) as displayed in Fig. 5.
This situation is qualitatively the same as for the B’ rota-
tional constant. In fact, the rovibronic interactions act selec-
tively onindividual J ' levels and not globally on N ' levels. Let
us focus on N’ = 1, and accordingly on the corresponding
fine structure levels J = 1/2 and J = 3/2. Figure 6 depicts

]

(cm™

€] (cm™ ')

FIG. 5. Correlations between €, and €; fine structure constants. The
straight line (€} =€, ) corresponds to the expected fine structure splittings
in the absence of rovibronic perturbations.
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N=2,K=2 J=1/2

> J=3/2
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FIG. 6. Possible rovibronic interactions ofa [N = 1,K = 0,/ = F 1/2) lev-
el: the total rovibronic symmetry (A4,) is preserved and Jis assumed tobe a
good quantum number.

the different interactions that may create J' = 1/2 and/or
J' = 3/2 extralines. One (N = 1,K = 0,J = 1/2) rotational
level of a given B, vibronic level can interact only with
(N=1,K=1,J=1/2) (vibronic 4,) levels whilea (N =1,
K=0,J=13/2) level (B, vibronic) may interact with
(N=1L,K=1,J=3/2) (4, vibronic), (N=2K=1,
J=3/2) (4, vibronic),and (N = 2,K = 2,J = 3/2) (B, vi-
bronic) levels. Except for the case of mixing with
(N = 2,K = 2,J = 3/2) levels, the vibronic symmetry of the
perturber is 4,, thus implying a breakdown of the vibronic
symmetry and of the corresponding fluorescence selection
rules. This phenomenon has been observed systematically in
LIDFS, observed from highly excited energy levels, located
around 23 000 cm ™! (see Delon and Jost'®). On the con-
trary, after excitation in the “red” part of the excitation spec-
trum (see Bist and Brand,?* Brand et a/.,?> and Chen et al.2°)
the corresponding LIDFS do not contain transitions toward
b, vibrational levels of the ground state. This means that in
the 16 500-18 500 cm ' range, rovibronic interactions re-
main local, i.e., can be treated as perturbations. At higher
energies however, around 23 000 cm ~', the excited B, vi-
bronic levels are strongly rovibronically coupled with A, vi-
bronic levels. As explained in Sec. III A, when a local rota-
tional perturbation occurs in the red part of the excitation
spectrum, we have performed a two state deperturbation
based on the observed intensity ratio of the “main” and “ex-
tra” lines and on the energy difference of the two observed
levels. Of course, rovibronic interactions may occur simulta-
neously with more than one level. Consequently the calcu-
lated B 1,3 and B 3,5 are “perturbed” rotational constants. To
obtain quantitative information about rovibronic interac-
tions, we have also observed Zeeman spectra (in the 0-8 T
range) of seven B, vibronic N = 1, K = 0 levels of about
17 500 cm ™! energy.”’ In these spectra the rovibronic inter-
actions, which occur between M, = +1/2 and
M, = — 1/2 spin sublevels, are observed via anticrossings,
allowing us to obtain the corresponding matrix elements and
selection rules. We have found that second-order spin—orbit
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interaction, usually named spin-rotation, can explain most
of the observed interactions. Furthermore, we have been
able to follow versus the magnetic field, the energy of two
J = 3/2 zero field extra lines, and we conclude that these two
extra lines are due to an accidental perturbation and do not
correspond to an additional vibronic level of B, symmetry
that has been “missed” in our zero field excitation spectrum,
The assignment of the perturber is not yet definitive but the
most probable assignmentisa (/= 3/2,¥ = 1,K = 1) level
of a vibronic state of A; symmetry.

V. VIBRONIC ENERGY CORRELATIONS
AND QUANTUM CHAOS

In this section we analyze the correlations between vi-
bronic energy levels of NO,. We refer to the standard model
of Gaussian orthogonal ensemble (GOE)"*® which gives
the correlation properties of “fully” chaotic systems.

As explained above, the 166 B, vibronic levels observed
from 16 319-18 502 cm ™! are perturbed by rovibronic inter-
actions (mainly due to second-order spin—orbit interac-
tions). However, the corresponding energy shifts are very
small, (on average, much less than 1 cm ~ ') when compared
to the mean level spacing of about 12 cm ~'. Consequently,
we consider that vibronic energies, extrapolated to N =0,
K = 0as given in Table I, are very close to the pure vibronic
energy levels of NO,, and these vibronic energies, which re-
sult from couplings between electronic and vibrational mo-
tions can now be analyzed. As previously reported by Smal-
ley et al.,® no recognizable vibrational regularity is
discernable in the visible excitation spectrum of NO, (see
below the |[FT|? of the spectrum). In our case, none of the
166 vibronic energy levels between 16 319 and 18 502 cm ™!
can be assigned electronically [as one of the two electronic
states (X 24, or 4 2B,) | nor vibrationally, with three vibra-
tional quantum numbers. Each vibronic B, (respectively,
A)) eigenstate results from the vibronic coupling of at least
one a, (respectively, b,) vibrational level of A 2B, with sev-
eral high b, (respectively, a,) vibrational levels of the
ground state. It is known that, due to vibronic interactions,
each zeroth-order vibrational level of 4 B, can imprint its
electronic signature into a manifold of high energy vibra-
tional levels of the ground state.?® This explains the anoma-
lously large number of vibronic bands observed in the visible
excitation spectrum (see Haller et al.”?® ). However, it may
be possible to assign the dominant “parent” vibrational level
of A 2B, character by observation of LIDFS.2%?¢ By extra-
polating the density of observed vibrational states in X 24,
from 0-10 000 cm ™!, one can calculate the average spacing
between b, levels of X 24,: ~11 cm ™" in the 16 500-18 500
cm ™! energy range. On the other hand, ab initio values for
A 2B, harmonic frequencies and the assumption that the vi-
brationless level of 4 ?B, lies around 9720 cm ™! (see Gilli-
spie et al.'” and Delon and Jost'®), imply that @, vibrational
levels of A *B, are on average separated by 80 cm ™! in the
same 16 500-18 500 cm ™" energy range. If one takes into
account anharmonicities in the excited state and uses for
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them the values of the X 24, state, the mean spacing between
a, levels of 4 *B, is reduced from 80 down to ~60 cm ™.
Strong vibronic couplings (nonadiabatic effects) mix these
two sets of levels together in such a way that no regularity
can be observed in the spectrum above ~ 16 500 cm~'. On
the contrary, the low resolution absorption spectra from Gil-
lispie and Khan®® display, from 9000-6000 A,a strong inten-
sity modulation that corresponds to the bending frequency
in 4 °B,, of about 720 cm ~'. This observation means that
vibronic interactions do not set in abruptly above the conical
intersection. In this intermediate energy range (i.e., roughly
from ~ 10000 to 16 000 cm '), vibronic interactions al-
ready couple each A4 2B, “parent” level to some X 24,
“daughter” levels but do not yet wash out the bending pro-
gression in the excitation spectrum. One implication of
strong mixing (required for complete quantum chaos) is
that such regularities have disappeared.

The analysis of short range correlations (Sec. V B) and
long range correlations (Sec. V C) require the knowledge of
the secular behavior of the integrated density of states dis-
cussed in Sec. V A.

We have not presented here a statistical analysis of the
band intensities given in Tables I or II because we do not
have a good knowledge of the energy dependence of the mea-
sured intensities (see Sec. V A). However, the observed in-
tensity distribution is not far from the Porter-Thomas law
[i.e., the expected distribution for the GOE model (see Ref.
1)1, if we take into account the missing levels that all have a
weak intensity.

A. Secular behavior of the integrated density of states
and unfolding procedure

1. Fit of the integrated density of states

‘We now present the method for analyzing the correla-
tions. It is important to know that only density fluctuations
are relevant to the study of correlation properties. Therefore,
the integrated density of levels N(E) (that is, the staircase
function giving the number of energy levels below an energy
E) should be separated into a smooth part N,, (E) and the
remainder, which defines the fluctuating part N, (E) of
N(E) (see Ref. 1);

N(E)=Nav(E)+Nﬂ (E)- (2)

When the potential energy surface (PES) is known, one
can calculate &,, (E) following simple semiclassical rules.*’
Unfortunately in most real cases, one does not know the
PES. In the case of a nonlinear N = atom molecule (i.e.,
n = 3N — 6 vibrational degrees of freedom), it is known
from semiclassical and harmonic approximations (Marcus
and Rice®?) that

Oo\n
N, (E) =_(_E_i'£_)_,
nllli_ (@)

(3)

where E is the vibrational energy in excess of the zero point
energy E °and w, are the harmonic frequencies. This formula
gives the dominant contribution: ¥,, (E) « £ ". In the case
of NO,, N,, (E) ~ E?*. In fact, anharmonicities are such that
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the effective density of states increases slightly faster than
E 3. We have calculated numerically the integrated density of
vibronic levels with the Dunham polynomial expansion giv-
en either by Lafferty and Sams?® or by Delon and Jost."* This
integrated density was then fitted with polynomial expan-
sions in energy, all starting with a cubic term. As a result, the
two-term limited power expansion

N, (E)=a,E*+acE® 4)

appears very satisfactory. Figure 7 displays the N(E) of our
set of 166 observed levels in the 16 319~18 502 cm ™' range
and the corresponding fit with the above formula." It ap-
pears that the slope discontinuity at 16 500 cm ™' clearly
indicates missing vibronic levels below this energy. Conse-
quently, we will hereafter restrict our level-spacing statisti-
cal analysis to the 16 500-18 500 cm ™' energy range, which
contains 159 observed levels.

2. Comparison between the observed and predicted
number of states

It would be of interest to compare the 159 observed lev-
els with the corresponding expected number of levels. To
this end we have observed laser induced dispersed fluores-
cence spectra from 11 high vibronic levels around 23 000
cm™ ! (Delon and Jost!’). The complete set of 191 observed
X 24, vibrational levels below 10000 cm ™" are well fitted
with a 24 parameter Dunham expansion. The extrapolation
of this Dunham expansion to the 16500-18 502 cm™'
range, produces 180 b, vibrational levels of X 24,. Note once
again it is the mixing between this dense manlfold of X 24,
vibrational levels with those of the 4 2B, state that explains
the dense NO, excitation spectra in the visible. The total
number of mixed (and thus observable) levels of B, vibronic
symmetry, taking into account the 30 levels of the A B, state
in the same energy range, is thus about 210 in the 16 500~
18 502 cm ! energy range. This should be compared with

o
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FIG. 7. Integrated density of states N( E). The experimental staircase ¢urve
clearly displays missing levels below 16 500 cm ~'. N(E) is well fitted with
the polynomial expansion: N,, (E) = Np + @,E> + a,E%( — Ny is arough
estimate of the absolute energy rank number of the first level of our
sequence).

the 159 observed levels in the corresponding range. In com-
parison, 17 levels are predicted from 16 319-16 500 cm ™"
while only seven have been observed. This last point con-
firms (see Fig. 7) that more levels are missing below 16 500
cm ! in our excitation spectrum as well as that in Smalley ez
al® and Persch et al.® To conclude, in the 16 500-18 502
cm ™! energy range, about 75% of all B, vibronic levels have
been observed. Missing levels are due either to the unfavor-
able Franck—Condon factor with the initial ground state, or
to the fact that some b, levels of X 24 |, are not mixed well
enough with the a, level manifold of 4 2B,. However, our
percentage of missing levels is significantly smaller than that
obtained by Persch et al.” Zimmermann et al.** have per-
formed a statistical analysis on a set of 141 observed levels in
the 14 880-17 521 cm ™’ energy range, where our model pre-
dicts 222 levels. Note that the harmonic model of Zimmer-
mann et al.?® predicts 175 levels in this energy range and that
anharmonicities should increase this number. Moreover, 25
of these 141 levels are spurious, most of them being hot
bands (see Sec. III B). As a result we estimate that the 141
level set of Persch et al. contains only 116 “true” levels and
25 spurious ones, and that these 116 “true” levels represent
52% (or 116/222) of the total number of levels predicted in
this energy range. Obviously, the NO, excitation (or absorp-
tion) spectrum being globally weaker when going to the red
(see Fig. 3 of Ref. 30), more missing levels are expected in
the 14 880-17 521 cm ™" energy range than in our 16 500-
18 502 cm ™! range with the same detection efficiency. In
other words, it is easier to study the yellow and green parts of
the NO, spectrum, at least when the goal is the completeness
of the vibronic spectrum. The above 52% estimation does
not agree with that of Zimmermann et al.,* who found only
8% missing levels by comparing the intensity distribution of
their 141 bands with the Porter-Thomas distribution. Their
comparison is biased for two reasons. First, their set of 141
bands includes 22 hot bands, as explained in Secs. III A and
III B. These hot bands being statistically 75 times weaker
compared with the cold ones, the intensity distribution is
significantly affected. Second, the global intensity evolution
of the excitation spectrum displayed in Fig. 2 of Ref. 7
should be taken into account before any comparison with the
Porter-Thomas law is made. For these two reasons the in-
tensity distribution given in Fig. 1 by Zimmermann ez al.*
should be reanalyzed.

3. The unfolding procedure

We have shown that the smooth part of the integrated
density of states, N,, (E), can be well fitted with a two-term
limited polynomial expansion, like formula (4). Following
Brody et al.,! the unfolded spectrum {x,} is then obtained
with the transformation

E,»x,=N,, (E). (5)
We prefer unfolding the spectra with a smooth polyno-
mial expansion like formula (4) rather than performing cu-
bic spline interpolation, as performed by Zimmermann et
al.?> We have observed that a cubic spline unfolding reduces
the fluctuations N, (E) by an amount that depends on the

Downloaded 12 Sep 2002 to 193.48.255.141. *hé’(!iﬁ%'??uﬁ’héf%w‘éﬂb?écﬂ% gl&’qlggﬁ b 1pyrlght see http://ojps.aip.org/jcpol/jcpcr.jsp



5712 Delon, Jost, and Lombardi: NO, excitation spectrum

mean distance between the cubic spline constraint points. In
Appendix C we show that the unfolding procedure has large
consequences on long range correlations, the short range
correlations being much less sensitive to the unfolding
procedure.

B. Short range correlations within energy level
spacings

In this section we present the statistical analysis of the
energy level spacings between consecutive levels: the NND.
Regular systems, i.e., systems whose Hamiltonian is integra-
ble, are generically characterized by a Poisson distribution,
P(S) = exp( — S5); S being the normalized spacings. The
Poisson distribution peaks at the origin, S = 0. This means
physically that accidental degeneracies may occur. On the
contrary, when the system is fully chaotic, one observes level
repulsion. A very good approximation for the NND of the
GOE is the Wigner distribution (Ref. 1):

P(S) = (7/2)Se™ 75, (6)

Figure 8 displays the NND histogram for our unfolded
set of 159 observed vibronic levels from 16 500-18 502
cm ™. Our results are in reasonable agreement with the
Wigner law. Quantitatively, the Wigner law predicts o, the
square root of the second moment [ (S —S5)?]"? to be
0.52, while we find o = 0.61.

This deviation may be due to missing levels. We con-
clude that the observed NND is in agreement with the pre-
diction of the GOE model. However, the NND is only a
robust (i.e., weakly dependent on the unfolding procedure)
test of short range correlations, but it does not contain a lot
of physical information, especially about the time evolution
of the system. By contrast, the long range correlations con-
tain more physical information but are much more sensitive
to the unfolding procedure, as explained below.

C.Longrange correlations within energy level spacings

Long range correlations between energy levels contain
most of the significant information on the dynamics of the
corresponding physical system. We consider here three stan-
dard methods for analyzing these long range correlations:
32(L), As(L) (see Ref. 1) and [FT|? (smoothed Fourier
transform) (see Ref. 2 and Appendix L of Ref. 1). The key
point is that these three methods are nothing more than
three kinds of smoothing procedure for the |FT|? of the stick
spectrum. This [FT|? is related to the two-level form factor
b,(t), that is, the Fourier transform of the two level cluster
function Y,(AE) of Dyson and Mehta.?®

The general relations between the |[FT|? and the correla-
tions are detailed in Appendix A. The analytic relations be-
tween |FT|?, 2?(L), and A;(L) are given in Appendix B.
Here L is a dimensionless energy expressed in units of the
average level spacing.

As we have pointed out in Sec. V A, the initial spectrum
(stick spectrum) should be unfolded and any unfolding
method reduces the long range correlations. The relevant
problem is only to determine the maximum value for L (or
correspondingly the minimum value for ¢) for which the
correlations remain meaningful, i.e., not biased by the un-
folding procedure. This point is discussed in Appendix C.
We present below the long range correlations of our set of
159 vibronic levels of NO,, first with £*(L) and then with
the |FT|? method.

1. 2% ) analysis

Figure 9 shows ¥?(L) for our observed set of 159 vi-
bronic levels which appears to be close to the GOE predic-
tion [displayed on curve (a)] for chaotic systems: these are
characterized by the existence of long range correlations
(spectral rigidity or stiffness). The GOE model gives

S2(L) = (2/7) In (L) + 0.44 + O(1/L?). (7
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FIG. 8. Nearest neighbor distribution P(S) for the set of 159 vibronic ener-
gy levels from 16 500 to 18 502 cm™'. The experimental histogram is in
agreement with the Wigner law (smooth curve) for fully chaotic systems.

FIG. 9. 2?(L) statistics performed on the same set of vibronic energy levels
as for P(S). (a) The GOE prediction for fully chaotic systems. (b) The
prediction for a spectrum without any level correlations.
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Regular systems are generically characterized by Pois-
son statistics, namely 3?(L) = L [see (b) of Fig. 9]. How-
ever, significant deviations from the Poisson law can be ob-
served for triatomic molecules in the regular regime as
discussed recently by Hamilton.>* This deviation is particu-
larly important when there are near resonance conditions in
the harmonic frequencies. For example, below 10 000 cm ~ ',
the NO, vibrational spectrum is regular,'® but does not fol-
low precisely Poisson statistics because 2w, ~®, ~®;. How-
ever, the levels calculated with the above mentioned Dun-
ham expansion!s in the 16 500-18 502 cm ™! energy range
follow Poisson statistics because the anharmonicities have
destroyed the approximate vibrational frequency reson-
ances. Last but not least we have numerically checked that
the deviation of our 2?(L) from the GOE can be explained
solely by the 25% missing levels, if one assumes that these
levels are randomly distributed.

Now, we would like to compare our results on =*(L) to
those of Zimmermann et al.*>® on A;(L). We first empha-
size that unfolding procedures reduce the long range correla-
tions, as explained in Appendix C. Second, it is first impor-
tant to note that A,(L) and ¥2(L) do not measure
fluctuations on the same range of L. This point is discussed
in Appendix B. We have analyzed correlations within the set
of 141 vibronic energy levels of Persch et al.” The corre-
sponding N(E) and N,, (E) [according to Eq. (4)] are dis-
played in Fig. 10 and the (L) statistic is shown in Fig. 11.
As a result, we find much smaller long range correlation
than we do with our set of 159 vibronic levels. This is mainly
due to the existence of 25 spurious levels and to about 50%
missing levels in their data. A more general method for
studying correlations is the statistical Fourier transform
analysis presented in the following section.

2. Fourier transform analysis

The Fourier transform of a spectrum contains informa-
tion on line positions, linewidths, and amplitudes. When the
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FIG. 10. Integrated density of states N(E) from the 141 vibronic band ori-
gins of Persch et al. (Ref. 9). The experimental staircase curve oscillates
with a large very low frequency component around the polynomial expan-
sion fit: N,, (E) = Ny + a,E> + a E°®.
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FIG. 11. 3*(L) statistics performed on the 141 vibronic levels of Persch et
al., unfolded with the polynomial expansion shown in Fig. 10. (a) The GOE
prediction. (b) The statistics of a fictitious system that would have the same
NND as the Persch et al. set of vibronic levels but no long range correla-
tions. (c¢) The statistics of a Poisson distribution.

correlations between line positions (or energy levels) are
studied, it is better to construct a stick spectrum of equal
amplitude and then to study these correlations. However,
when the experimental spectrum is not well resolved, the
extraction of a stick spectrum is ambiguous and therefore the
direct FT of the experimental spectrum is a well adapted
method to obtain the corresponding correlations, with the
drawback due to intensity and width distribution discussed
in Ref. 2. Our NO, vibronic spectrum is well resolved and
can be analyzed in terms of a stick spectrum.

The meaning of the |FT|? of a stick spectrum in terms of
correlations is given in Appendix A. It is necessary to distin-
guish between the |FT|? of the original stick spectrum (i.e.,
before unfolding), which may reveal the existence of period-
ic (or regular) motion(s) (if any), and the |FT|? of the
unfolded stick spectrum, which contains {1 — b,(¢#)].

In the case of our NO, spectrum no regular motion has
been observed, and, consequently, we discuss only |FT|? of
the unfolded spectrum, which is displayed in Fig. 12.

Now three related questions arise. (i) How to smooth
the |[FT|? in order to best display the correlations, or, more
specifically, [1 — b,(#)]; (ii) how the |FT|? is related to the
other correlations measurements, 22(L) and A,(L); and
(iii) which unfolding procedure is legitimate?

These questions are treated in Appendices A, B, and C,
respectively.

Since globally our 2*(L) (Fig. 9) and our |FT|? (Fig.
12) display strong long range correlations, we can now dis-
cuss the behavior and the validity of these correlations for
large L, or equivalently, for short time.

In any case, the number of relevant pieces of informa-
tion for large L (or small ¢) is very small: In the |FT|?, the
number of points to smooth over for small ¢ is very small, due
to the discrete nature of the fast Fourier transform algo-
rithm. This is a consequence of the uncertainty principle,
which governs the recovery of low frequency Fourier com-

ponents from a signal of finite duration.
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FIG. 12. |FT|?* of our data (16500~18 500 cm™'), unfolded with
N(E) = Ny+ a;E® + a,ES. (a) Unsmoothed: one channel is equal to
t=1/N, where N is the number of levels in the spectrum. (b) Smoothed
with a Gaussian kernel K(L,t) = (1/0y2r) exp[ — (¢t — 1/L)*/20%] of
center 1/L and root mean square width o = 1/5L, and compared with the
{}C(#)|*) GOE prediction smoothed with the same kernel. The experimen-
tal |C(#)|? being less smoothed at short times, results in the two residual
peaks. However, for times shorter than 0.5 (in units of level density) the
experimental curve is located above the GOE prediction, after which it os-
cillates around its asymptotic behavior line. (¢) Smoothed with A; (top),
half-Gaussian beginning at £ = 0 with o = 1/L (middle), 2* (bottom). Be-
ware that in all cases the abcissa is 1/L « time (reduced unit) and the ker-
nels have been normalized to unit areabetweent =0 and 7= 4 o (in-
stead of L and L /15 between — oo and + oo for the usual 22 and A,
kernels). Notice that the three curves in (c) seem to differ vertically while
they actually differ horizontally, because the meaning of the parameter L is
different in the three cases. The fact that A;(L) is roughly equivalent to
32(L /4) or to Gauss (L /2) is seen from the ratio of the slopes of the three
curves at ¢ = 0 (see Appendix B). All curves in (2), (b), and (c) have the
same asymptote at t = + o, that is N = 159, the number of levels.
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Equivalently, the uncertainties in 3?(L) [or A;(L)] in-
crease with L and the meaning of 2?(L) for large L should
be discussed.

In order to study the upper limit of L, for which long
range correlations exist and are meaningful, we think that it
is better to look first at the unsmoothed |FT|? of the spec-
trum [Fig. 12(a) ], keeping in mind the statistical properties
and the physical meaning of the “speckle noise” discussed in
Appendix A.

Concerning the unfolding, any procedure reduces
[1— b,(2)], i.e., introduces spurious correlations, especial-
ly for small # (i.e., for large L). The relevant problem is only
to determine the range of ¢, from O to ¢,,,,, for which the
chosen unfolding procedure has reduced significantly the
[1 — b,(¢)] function. Conversely, the range, > ¢,,, is not
affected by the unfolding procedure. We have numerically
observed that our unfolding procedure (see Sec. V A) re-
duces [1 — b,(2)] only for the first two channels of the
|FT}? i.e., for £ 1/80 or equivalently L 2 80 (see FFT in
Appendix A).

We conclude that our NO, vibronic spectrum is corre-
lated up to at least L = 50 or, equivalently, on an energy
range of the order of 670 cm ~ .

Obviously, the real correlation length of the NO, vi-
bronic levels may be larger but our finite set of vibronic levels
does not allow us to observe correlations beyond L = 50, i.e.,
beyond 50 average level spacings.

Our results do not contradict those of Zimmermann et
al.,”>® but instead they complement and improve their re-
sults.

First we should remark that the energy ranges of the two
sets of vibronic levels overlap but do not coincide, and that
the corresponding correlations may be different. Second, the
correlations put into evidence by Zimmermann et al.?*° with
A;(L) ranging up to L = 15 are equivalent to those evi-
denced with 3%(L) ranging up to L = 4 (Fig. 11). The rea-
son for this reduced range of L is explained in Appendix B.
Over this reduced range of L we conclude that the correla-
tions measured with 3?(L) in the data of Persch ez al.® (Fig.
11) are in agreement with those measured with 2?(L) in our
data (Fig. 9). In addition to this, the necessity to unfold the
Persch et al.® spectrum with a very flexible function (cubic
spline with five adjustable knots) precludes study of their
vibronic set correlations over a larger range of L. This situa-
tion arises because there are many missing and spurious lev-
els in Persch’s spectrum (see Sec. V A), which induce low
frequency components in N(E), as explained in Appendix
C.

In summary, our better set of vibronic levels, more com-
plete and with fewer spurious levels, allows us to document
long range correlations up to at least L = 50. A longer se-
quence of vibronic levels is necessary to extend the analysis
of long range correlations to higher values of L.

We plan to extend to higher energies the set of vibronic
levels of NO, in order to increase the upper limit for the
correlation length.

A significant extension of the vibronic set to lower ener-
gies seems difficult because the corresponding band intensi-
ties decrease globally and, consequently, the percentage of
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missing levels increases. This phenomenon can be observed
in both Figs. 7 and 11 below 16 500 cm ™.

This is consistent with the NO, absorption spectrum of
Gillispie and Khan,* which shows a minimum of absorp-
tion around 16 200 cm ~ !, leading obviously to a larger frac-
tion of missing levels.

VL. CONCLUSIONS

Among our set of 166 observed vibronic levels (or cold
bands), more than 45 have not been previously observed
and/or identified. Moreover we have interpreted the irregu-
lar rotational fine structure spacings that have caused spur-
ious vibronic levels to be introduced in previous works. By
comparison to the observed and calculated vibronic density
of states, we find only 25% levels missing from our set. The
correlation analysis of vibronic energy spacings shows a
good agreement with the GOE model prediction if we take
into account the above mentioned missing levels. This result
confirms that the conical intersection of the PES of the X %4,
and 4 2B, states induces vibronic chaos, as predicted by
Zimmermann et al.?’ This vibronic interaction can be stud-
ied experimentally by observing the set of vibronic levels in
the 10 000-16 000 cm ™~ ! energy range in which chaos should
appear progressively, the region around or just above 10 000
cm ! being the most interesting. Unfortunately the levels in
this energy region are difficult to observe (see, for example,
Figs. 3 and 4 of Gillipsie and Khan®®). We are now trying to
observe these levels with three techniques: (i) excitation
spectrum using a Ti:sapphire laser, (ii) intracavity laser ab-
sorption spectrum (ICLAS) using a supersonic jet, and (iii)
laser induced dispersed fluorescence spectrum (LIDFES)
(see Ref. 15).

APPENDIX A: CORRELATIONS MEASUREMENT
BY |FT|?

The basic statistical quantity that characterizes a spec-
trum is Dyson’s two-level cluster function Y, (AE) or its
Fourier transform, the two-level form factor b,(#) (see Refs.
1, 28, and 34).

The key point in correlation measurement by |FT|? is
that the two-level form factor b,(#) ‘can be recovered from
the square of the modulus of the Fourier transform of the
spectrum. In the case of a stick spectrum whose sticks all
have the same inte.nsity:

S(E) = Y 8(E—E)); (A1)

then

= N PmE— Bt
[IC)P= Ye .
:ZJ
Replacing the discrete sum over levels by an average over

their probability distribution results in

(e = | le(E)ez""E'dE

(A2)

2
+ JRl(E)dE

- J‘J T2(E,EI)eZi1r(E—-E')tdEdEr ,
(A3)
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where R,(E) is the level density and T,(E,E") is the two-
level correlation function, as defined by Mehta.?® If the spec-
trum is unfolded R, (E) = l,and T,(E,E') = Y,(E— E’).
Here E is a reduced energy expressed in units of mean level
spacing AE and tis a time expressed in units of level density
p=1 AE . Then Eq. (11) reduces term by term to

(|C()|*) = N?(sin wNt /Nt )> + N — Nb,(2),

where N is the number of levels in the spectrum.

(|C(#)|*) contains two components: (i) a “fast compo-
nent” [first term in (A4)] due to the finite length of the
spectrum whose contribution is N? at =0 (X being the
total number of levels); (ii) A “slow component” [the sec-
ond and third terms in (A4)] of amplitude proportional to
N, which contains the information we look for in level spac-
ing correlations.

For intermediate times (roughly from ¢t = 0% to t=1)
one gets {|C(#)|?) = N[1 — b,(#)]. In the case of a Poisson
spectrum Y,(AE) = 0and then (|C(¢)|*) = N fort>0.0n
the contrary, fully chaotic systems following GOE statistics
correspond to 1 — b,(¢) =2t for 0<tS 1. This is called
a correlation hole (see Fig. 12 and Refs. 2 and 35) and means
that, due to chaos, the system loses the memory of its initial
state as soon as ¢ is greater than 0. For cases intermediate
between fully chaotic and regular systems, the correlation
hole is less deep and/or abrupt, meaning that for short times
the memory is lost progressively. The time at which memory
is lost (1 =07 for fully chaotic systems and t = + « for
regular systems) can be expressed in terms of energy, which,
in turn, can be expressed in units of mean spacing, i.e., in
terms of L. In Sec. V, we give a lower limit for L of the order
of 50 for the vibronic levels of NO,.

Note that Berry*® has shown that, at the semiclassical
limit, {|C(¢)|?), or equivalently 1 — b,(?), results from an
average over peaks corresponding to closed periodic orbits.
The relationship between level statistics and time behavior
does not depend on the validity of the semiclassical approxi-
mation. This is fortunate in the present experiments where
this approximation is not valid, both because of the moder-
ate number ( ~4-5) of quanta per mode, and because there
is no well-defined semiclassical limit for the interaction be-
tween the two different electronic states, 24, and 2B,, which
dominates the dynamics in NO,: at the semiclassical limit,
the spacing between electronic states must also tend to zero.

Before going any further it is essential to notice that the
derivation of Eq. (A3) is obtained by replacing a discrete
sum over the levels of the spectrum by an average over a
probability distribution of levels. This corresponds, strictly
speaking, to an averaging over an ensemble of spectra (de-
noted by (- ) in these equations). In the actual case of a
single spectrum, one thinks of statistical properties of level
spacings of this spectrum. However, this is different from
what has been assumed in the derivation and is also a some-
what ill-defined notion for a finite sample, and this has im-
portant consequences. The most evident, when performing
the Fourier transform of a single spectrum, is that one does
not obtain the smooth curve described by Egs. (A3) and
(A4), but a very “noisy” curve, 100% modulated by spikes,

whose correlation times are equal to 4 times the reciprocal of

(A4)
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the total energy length of the spectrum. The physical origin
of this “noise” is that |C(#)|? contains enough information
to reconstruct the very complex original spectrum, within a
factor of 2 contained in the discarded phases. This noise is
dubbed “speckle noise” in Ref. 2 because it is a property of
Fourier transforms analogous to what gives rise to the laser
speckle phenomenon. |C(#)|? is in some sense a much more
detailed and less smooth information than the two-level
form factor b,(#). To recover statistical information like
b,(¢) from a given sample, it is always necessary to perform
some averaging. The finiteness of the sample limits the accu-
racy of this recovery. The physical meaning of the 100%
speckle noise is as follows. The standard error on the mea-
surement of b,(¢) for a given value of ¢ is equal to its average
value (not to the square root of the average as in an ordinary
Poisson process), and this is independent of the level spacing
statistics in the original spectrum. This precludes any accu-
racy in the measurement for a sharp value of #. These statisti-
cal properties of the speckle noise (standard error and time
correlation length) are such that it is only possible to recover
an average value of b,(?) over a range 8¢ (in reduced units),

with a relative accuracy equal to 1/y2N 6t . With a given
finite sample, it is thus always necessary to compromise be-
tween the length of Arand the accuracy of the averaging over
At.

Figure 12 of Sec. V displays several examples of smooth-
ing. We emphasize the different aspects of these various
smoothed curves, which are discussed in Appendix B.

In this context 2?(L) and A, (L) are two standard ways
of averaging 1 — b,(t), which are compared in Appendix B.

APPENDIX B: RELATIONS BETWEEN |FT|2, 32(L),
AND A4(L)
Here 3%(L) is a smoothed form of the two-level form

factor b,(t), the Fourier transform of Mehta’s?® two-level
cluster function Y,(AE):

+
2= [ - b0l Lod, (B1)
with a weighting function (see Ref. 1):
K5 (L,t) = L[ sin(wLt)/wLt 1%, (B2)

sketched in Fig. 13. £%(L) is thus basically a weighting of
1 — b,(t) between O and roughly 1/2L.

Following Brody et al.,' A;(L) can be considered as a
smoothed value of =?(L) between 0 and L:

. L

A(L) = -Lz;f S2s) (L3 — 2L%+ S)ds.  (B3)

(]

The corresponding smoothing function is shown in Fig.
14. 1t thus appears that A;(L) is an averaging of 22(L)
between 0 and L with a large weight for small L. Roughly,
this means that A,(L) corresponds to 2*(L /4) and not to
32(L)! This can be seen in our data on Fig. 12(c), where the
abscissa of the curve corresponding to 2*(L) should be di-
vided by about 4 for this curve to superimpose approximate-
ly onto the curve corresponding to A;(L).

A;(L) is thus asmoothing of [1 — b,(2) ] with a weight-
ing function

KLn/2

FIG. 13. Weight functions K(L,?) for £? and A, smoothing. Note that 3?
smoothes approximately between 0 and 1/2L at half-height, i.e., around
1/4L, whereas A; smoothes between 1/2L and 2/L (half-height), i.e.,
around 1/L. The ratio of smoothing centers is thus 4, so that A;(L) is
roughly equivalent to 22(L /4). The A, kernel is normalized so that its area
fromt= — w0 tof= + o is Lasforthe 3?kernel (instead of L /15 for the
usual A, kernel).

Ky(L,t) =L*[1—F()?—3F'(»?*1/(2)%
with

(B4)

F(y) = siny/y and y=wLt,

obtained by combining Eqs. (B1) and (B3) and inverting
the order of the integrations.” This smoothing function is
sketched in Fig. 13 on the same scale in order to illustrate the
difference of meaning between 22(L) and A;(L) for the
same value of L.

For Poisson statistics 1 — b,(¢) = 1 for ¢> 0. For GOE
statistics, 1 — b,(#) grows linearly from O* and saturates at
1 for t= 1 in reduced units (i.e., taking an energy unit equal
to the mean spacing between levels in the spectrum). There-
fore 32(L) = L for Poisson statistics because the area of
K5 (L,t) is equal to L, and is proportional to Log(L) if
1 — b,(t) is proportional to # between 0+ and 1/L. Similar
conclusions apply to A;(L), except for the area of K, (L,?)
being equal to L /15.

N

L-kernel

o (X ) s/L 1
FIG. 14. Kernel relating A;(L) to 22(L) as a smoothing of $?(s) between
s=0 and s = L. It thus appears that A,(L) is roughly equivalent to an
average of 2% around L /4.
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APPENDIX C: SPURIOUS EFFECTS OF UNFOLDING ON
LONG RANGE CORRELATION MEASUREMENTS

First, it is important to understand the problems of un-
folding in this context, to note that the first term in Eq. (A4)
for an unfolded spectrum, which is by far the largest due to
its NV 2 coefficient, is exactly zero for each channel except the
zeroth, when one uses as usual a discrete Fourier transform
algorithm like the FFT. However, when the spectrum has
not been correctly unfolded, the corresponding first term in
Eq. (A3) is the Fourier transform of the average (noncon-
stant) density of states R, (E) and gives an important signal
at short times, i.e., at large spectral lengths, on the order of
the total energy width of the spectrum.

To interpret the effects of unfolding, it is eventually use-
ful to note that since N(E) is an integral over the spectrum
S(E), its Fourier components are those of S(E) divided by #:
this will enable us to work and think directly with Figs. 7 and
10in Sec. V.

We will discuss the problems associated with unfolding
on the results of Persch et al.,’ because they are particularly
important in this case, which makes them easier to under-
stand. What is immediately seen in Fig. 10 is that the differ-
ence between N(E) and N,, (E) contains a large very low
frequency component of approximately 1500 cm™! period,
versus 2500 cm ™! for the total range. This low frequency
component (contained mainly in channel two in the FFT of
the spectrum displayed in Fig. 15(a), when integrated with
K5 (L,t) of Eq. (B2), gives the large quadratic growth of
=2(L) seen on Fig. 11. When the spectrum is unfolded with a
more flexible spline function as was done by Zimmermann et
al.,*® N, (E) follows this large second channel component,
eliminating it from the resulting unfolded spectrum, as seen
in Fig. 15(b). This is the reason why the corresponding

Ic()1?

) 2 ' 4
time

FIG. 15. |FT}? of the data of Persch ez al. (Ref. 9) unsmoothed. (a) With
N, + a;E > + a,E* unfolding: note the strong peak at channel two, which
corresponds to the large oscillation at very low frequency of N(E) around
N, (E) (see Fig. 10). (b) With five variable knots spline unfolding: the

strong peak at channel two has disappeared (see the text).
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growth disappears in 3?(L), leading to an apparently “more
correlated” spectrum. One first conclusion can thus be
drawn: since unfolding reduces the first few channels (small
values of t) of the |FT|?, 2*(L) is extremely sensitive to
unfolding because it integrates 1 — b,(¢) between 0 + and
t = 1/L. On the contrary, A;(L) is less sensitive to unfold-
ing because the weighting function goes to zero when ¢—0.

The crucial question is now: what unfolding procedure
is legitimate, that is, which N,, (E) must be used to unfold
the spectrum?

There is no well-defined answer except if we know the
Hamiltonian (or the potential energy surface).’’ In any case
each unfolding procedure can be seen as a high-pass filter
that transforms N(E) into Ny (E). Its cutoff frequency f,
prevents us from studying correlations at distances greater
than 1/f.. For the vibronic levels of NO,, and if the spectrum
were complete, the dominant contribution of &, (E) would
undoubtedly be “E 3" because it follows the law expected for
the lower energy part of a three mode anharmonic oscillator.
Now a question arises concerning Persch’s spectrum: is this
sinelike channel two component of the FFT real or spurious?
We think that this modulation is due to missing levels. An
explanation of this sinelike component could be due to a
larger fraction of missing levels between 15 800 and 16 600
cm~}, i.e.,, in the middle of Fig. 10. This interpretation is
consistent with the absorption spectrum of Gillispie and
Khan,*® which shows a minimum of absorption in this ener-
gy range due to unfavorable bending Franck—Condon fac-
tors, leading naturally to more missing levels. In this case,
fitting N(E) with a more flexible N,, (E) would be the best
that could be done to unfold the spectrum in such a situation,
but the counterpart is the “building-up” of spurious long
range correlations. Note that no satisfactory solution can be
found by playing with unfolding when the spectrum is in-
complete: a more flexible N,, (E) eliminates more low fre-
quency components [small ¢ in 1 — b,(¢)], and eliminates
that way any meaningful information that could be con-
tained from these components.
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