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Significant improvements have been obtained on measurements of the NO, jet cooled 
excitation spectrum in the 16 300-18 502 cm- ’ range, previously obtained by Smalley et al. 

[J. Chem. Phys. 63,4977 ( 1975) 1, Persch et al. [ Ber. Bunsenges. Phys. Chem. 92,312 
( 1988) 1, and Hiraoka et al. [J. Mol. Spectrosc. 126,427 ( 1987) 1. The improvements concern 
first the rotational analysis, owing to a better resolution ( 150 MHz) and absolute precision 
( 500 MHz), and second the completeness and purity of the resulting vibronic sequence, owing 
to a better sensitivity. As a result, 159 vibronic energy levels have been observed in the 16 500- 
18 500 cm - ’ energy range, where 210 f 10 are expected. A detailed comparison with previous 
results is presented, The statistical analysis of the corresponding energy spacings shows that 
long range correlations up to 50 mean levels spacings are present, confirming the chaotic 
behavior of this set of vibronic levels. Furthermore, we analyze the observed rovibronic 
interactions (or rotational perturbations) that are responsible for the very irregular rotational 
behavior of the visible absorption spectrum of NO, at room temperature. 

I. INTRODUCTION 
During the last few years there were many attempts to 

observe experimentally the chaos lying in the vibrational de- 
grees of freedom of polyatomic molecules. In quantum sys- 
tems, chaos can be characterized by the existence of correla- 
tions among energy level spacings, which can be evidenced 
by the nearest neighbor distribution (NND), the long range 
correlation function 2’(L) or A,(L),’ or by the Fourier 
transform of the unfolded spectrum.“’ Examples of signifi- 
cant experimental results were obtained with stimulated 
emission pumping (SEP) technique by Abramson et aL3 on 
C2H2, and by Leviandier et al2 on methylglyoxal with an 
anticrossing technique. 

However, all these experimental results suffer from lack 
of resolution and/or sensitivity, which do not allow one to 
get complete and pure sequences of vibrational energy levels. 
On the other hand, many numerical efforts both classical4 
(trajectories in phase space) and quantum mechanical (dia- 
gonalization of large matrices), have been devoted to the 
study of chaos in vibrations of polyatomic molecules. These 
numerical efforts are all basically limited by the quality of 
the potential energy surface (PES) and especially by the 
poor description of the vibrational mode couplings which 
play a crucial role. In polyatomic molecules, vibrational cha- 
os is usually expected within the 3%6 (or 3N-5) vibrational 
degrees of freedom of a given PES, usually those of the 
ground state. For triatomic molecules, like CO2 or S02, the 
chaotic behavior is expected typically above 20 000 cm - ‘.5 
For example, the vibrational spectrum of SO, is still regular 
at 21 Ooo cm - ‘, or at least consists (at low resolution) of 
regular assignable “feature” states, as shown by Yamanou- 
chi et al.’ 

For NO,, on the contrary, there is a strong conical inter- 
section between the %‘A, and 2 2B2 PES, which induces 
vibronic mixing (and consequently chaos) at much lower 
energy than expected solely within vibrational levels of the 
z2A1 PES.7 In 1975, Smalley et al* made decided experi- 
mental progress by using rotational cooling (down to 3 K) 
of a supersonic jet, which simplifies considerably the corre- 
sponding unassignable room temperature absorption or ex- 
citation spectrum. In the 14 880-17 518 cm-’ range, they 
have observed 140 vibronic bands (but only 114 true vi- 
bronic levels, see Sec. III B), i.e., much more than expected 
if the 2 2B2 state were involved alone. In 1985, Haller et al7 

showed quantitatively with a model that the well-known 
complexity (and high line density) of the visible NOz ab- 
sorption (or excitation) spectrum is due to this 2 2AI-A 2B2 

vibronic interaction. In 1988, Persch et aL9 have extended 
the energy range of the jet cooled excitation spectrum from 
12 117 cm-’ up to 24 563 cm - ‘, but their list of 407 vibronic 
levels is rather inaccurate, except for some sequences of vi- 
bronic levels for which they have obtained a very high reso- 
lution spectrum ( -20 MHz) and assigned several rota- 
tional lines for each vibronic level.” At this level of 
resolution, the fine and hyperfhre structures of both the up- 
per and lower levels are resolved. The above mentioned 
model of ~2Al-~ 2B2 vibronic interaction7 is based on ab 

initio calculations of Jackels and Davidson,” and of Gillipsie 
et a1.,12 who predicted the 2 2B2 state at about 10 000 cm-’ 
above the 2 ‘A, ground state and also predicted the corre- 
sponding 2 2Al-A 2B2 conical intersection. However, ab ini- 

tio calculations by Hirsch et al. l3 lead to a lower x 2AI-A 2B2 

zero point energy separation of 7392 cm- ’ and very recently 
Blahous et a1.14 have found an intermediate value of 8540 
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cm-‘. Elsewhere, we present the complete set of 191 lower 
vibrational levels (up to 10 000 cm - ’ ) observed in laser in- 
duced dispersed fluorescence spectra (LIDFS) from 11 up- 
per vibronic levels located around 23 000 cm - ‘. I5 

By extrapolation of these results to higher energies, we 
have been able to predict accurately the expected number of 
vibronic levels and then to determine the number of missing 
levels in the range of our excitation spectrum. In Sec. III we 
present a detailed analysis of the obtained jet cooled NO, 
excitation spectrum and we emphasize the comparison with 
previous results obtained by Smalley et al.*, Persch et aZ.,9 

and Hiraoka et all6 in order to determine the best set of 
vibronic levels. In Sec. IV we analyze the irregularities of 
rotational level spacings and fine structure splittings due to 
rovibronic interactions. It is important to note that these 
rovibronic interactions do not induce vibronic chaos but in- 
duce only irregular rotational structures. In Sec. V we study 
the energy correlations within the observed set of vibronic 
levels given in Table II, we compare these correlations with 
those of the GOE standard model for quantum chaos, and 
we analyze the influence of missing levels. 

(slightly modulated) was locked onto the observed transi- 
tion by a lock-in amplifier. The relative intensities of bands 
are given in Table II, only within 20%. Note that the 
weakest detected vibronic band is about 2000 times smaller 
than the strongest one! 

Ill. EXCITATION SPECTRUM ANALYSIS 

A. Rotational analysis and the vibronic band origins 

II. EXPERIMENT 

The experimental setup is similar to the one used for 
glyoxal. l7 A monomode ring dye laser (380A, Spectra Phys- 
ics) pumped by an A.r + cw laser ( 17 1 or 2045 Spectra Phys- 
ics) excite NO2 molecules in a free jet about 2 mm from a 50 
micron aperture nozzle. The NO2 molecules (Air Liquide) 
are first condensed inside a tank, then carried along by an 
Argon flux at a total pressure of typically l-3 bars. The con- 
centration of NO,, controlled by the temperature of the tank 
( - 15 to - 5 “C) is usually of the order of 1%. The vacuum 
chamber is evacuated by a 500 m3/h root pump (Peiffer) 
and a 65 m3/h mechanical pump ( Alcatel). The correspond- 
ing back pressure is a few 10 - 2 Torr. The resulting NO, 
rotational temperature is about 3 K in the lowest K = 0 
(N = 0,2,4,...) manifold. However, the vibrational tempera- 
ture remains close to the room temperature and consequent- 
ly hot bands have been observed. The fluorescence light is 
detected by a PMT at right angle to the jet and to the laser 
beam. In order to reduce the Doppler linewidth, an image of 
the fluorescence “flame” is observed through a slit perpen- 
dicular to the laser beam. The optimum slit (taking into 
account the resolution, the fluorescence intensity, and the 
scattered light) is trapezoidal, 4 mm long, and 0.4 mm of 
maximum width. The corresponding residual Doppler 
linewidth is less than 150 MHz, allowing resolution of the 
fine structures of the lower and upper rotational levels. Fur- 
thermore, a colored filter rejects the scattered laser light 
from the nozzle. Nevertheless, we have always observed a 
weak, but irreducible, spectrally continuous background of 
unknown origin in our NO2 excitation spectra. The spec- 
trum has first been obtained by juxtaposition of slightly over- 
lapping 75 GHz scans. Then, the wavelength of each line 
suspected from its line shape to be R,, P2, R2, P4, etc. (see 
Sec. III) has been measured, with an eight digits homemade 
Lambdameter, to within 150 MHz (relative) and 500 MHz 
(absolute). During each measurement the laser frequency 

Our band spectra appear similar to those published by 
Smalley et al.* (Figs. 2,5,6,7, and 10). However, our better 
resolution allows for a tiner rotational analysis because we 
are able to assign the fine structureJquantum numbers. Two 
examples of bands are shown in Figs. 1 and 2. First, NO* 
being almost a symmetric top, we use the N,K,J notation 
with the related A, z rotational constants. In the jet cooled 
excitation spectrum, we have only observed parallel type 
bands, i.e., AK = 0 rotational transitions. In addition, the 
low rotational temperature ( TR - 3 K) achieved in the su- 
personic beam expansion is such that the dominant transi- 
tions occur from K = 0. Consequently, the more intense 
transitions of each vibronic band are the R,, R,, and P2 

(K = 0) lines. The weak transitions, not analyzed here, be- 
long mainly to the K = 1 manifold. The x2A, and A ‘B2 

states being doublets, we observe the fine structure splittings 
(due to spin-orbit interactions) that are resolved in the 
ground state and are almost always resolved in the numerous 
upper states. Four independent criteria are used to assign 
rotational transitions: 

(i) The R, - P2, R, - P4, and R4 - P6 differences must 
correspond, within 150 MHz, to the ground state splittings 
of, respectively, 2.532 cm - ‘, 5.908 cm - ‘, and 9.280 cm-’ 

betweenNw=OandN”=2(6B),N”=2andN”=4 

(14 B),andN”=4andN”=6(22 B”). 
(ii) The R, - P2, R, - P4, and R, - P6 lines have re- 

producible and stable intensity ratios at a given rotational 
temperature (about 3 K). 

(iii) Fine structure splittings of the N’ = 1,3, etc. excit- 
ed levels must be the same (within 150 MHz) when observed 
on the R, or on the P2 lines for N’ = 1, on R, and P4 for 
N’ = 3, and so on. 

(iv) The high resolution profile of each fine structure 
component (J’ = N’ f l/2) allows us to identify these two 
components because these two high resolution profiles are 
very different (see Ref. 10). 

It is therefore possible, on the basis of these four criteria, 
to assign rotationally the observed transitions, i.e., upper 
levels, and subsequently, to build up the corresponding up- 
per vibronic excited states. Several pieces of information can 
therefore be obtained on each vibronic level as given in detail 
in Table I [Ref. 18 (a) ] and summarized in Table II. 

(i) The R, - P2 and R, - P4 fine structure splittings 
allow one to obtain the value of the fine structure “con- 
stant,” if one assumes that the fine structure splitting is given 

by 

E,e (J’ = N’ + 4) - E,, (J’ = N’ - 4) 

= 4 ‘(2N’ + l), (1) 
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FIG. 1. Example of a normal band (top) : 
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I 
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(J = N r l/2). WeaklinesareK #Otran- 

v 
sitions. High resolution measurements 
(bottom) allow us to identify the J fine 

17 732 17 731 structure components according to the in- 
dividual line shapes. 

( cm -1) , 
1 

J=3/2 J=1/2 

I 1 

where 7 = (& + ef, ) /2. In fact, it very often appears that 

the value of 7 for N’ = 1 (from R, or Pz lines) is not the 
same as that for N’ = 3 (from R, or P4 lines)! This fact has 
already been reported ‘“~‘9P20 but without further analysis. 
We present in Sec. IV a statistical analysis of this phenome- 
non as well as a physical interpretation. 

(ii) From the barycenters of the two fine structure com- 
ponentsoftheN’ = l,N’ = 3,andN’ = 5rotationallevels,it 
is then possible to obtain % ;,J and x;,g, the “local” 
rotational constants, corresponding to the 
E(N’ = 3) - E(N’ = 1) and &(N’ = 5) - E(N’ = 3) 
energy differences. Once again it appears very often that the 

value of the B’ rotational constant is not the same when 
calculated, respectively, from N’ = 3 and N’ = 1 levels or 

from N ’ = 5 and N ’ = 3 levels. This point is discussed in Sec. 
IV. 

(iii) Last but not least, among the 166 observed vibronic 
bands from 16 319 cm-’ to 18 502 cm-‘, 57 display extra 
lines in the K = 0 manifold corresponding to N ’ = 1 and/or 
N’ = 3 and/or N’ = 5, as indicated in the last column of 
Table II. More precisely, we have observed bands with more 
than two pairs of R, - P2 and/or R, - P4 and/or R, - P6 

lines separated, respectively, by 2.532, 5.908, and 9.280 
cm-’ energy splittings. Figure 2 displays one of these bands 
with a R, - Pz pair of J = 3/2 extra lines. These three pairs 
of lines correspond to the existence of three fine structure 
levels in the N’ = 1 upper level. In the case of three R, - Pz 

lines, the three corresponding Jquantum numbers are either 
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P* 
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2 

I 
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3/z 
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wave number (M-I) 

FIG. 2. Example of a band with a pair of J = 3/2 “extra” lines: R,, and P2 transitions, which display three line structure components: one J = l/2 and two 
J = 3/2. 

TABLE II. Energy, line structure splittings, and rotational constants of 166 ‘B2 vibronic levels. All energies are aken in cm - ‘. 

Relative 

intensities” 

4.0 

40.0 
1.0 
0.6 
2.0 

13.0 

1.0 
3.5 
4.0 
6.7 

11.0 
4.0 

10.0 
5.0 
1.7 
6.8 
6.4 
3.3 
1.6 
3.6 
0.25 
1.6 

12.0 
17.0 
3.7 
0.6 
1.4 
9.0 
3.8 

100.0 
2.9 

10.0 
17.5 

25.0 
2.9 
2.9 
7.0 

B.O.b 

16 319.136 

16 321.136 
16 337.023 
16 361.734 
16 413.944 
16 436.065 

16 449.728 
16 501.887 
16 511.414 
16 577.887 
16 602.469 
16 615.125 
16 631.274 
16 643.355 
16 651.341 
16 657.456 
16 658.204 
16 671.675 
16 692.890 
16 704.128 
16 710.846 
16 713.745 
16 728.366 
16 757.795 
16 770.564 
16 786.109 
16 798.696 
16 809.976 
16 837.782 
16 849.462 
16 868.300 
16 875.171 
16 885.080 

16 893.147 
16 909.603 
16 917.082 
16 927.802 

FS (N= 1)’ FS (N= 3)’ 

3/2-l/2 l/2-5/2 

O.ooO - 0.304 

+ 0.316 + 0.465 
-0.120 + 0.130 

0.000 - 0.036 
+ 0.105 + 0.180 
+ 0.039 +0.146 

+ 0.381 + 0.256 
+ 0.075 - 0.010 
- 0.333 - 0.466 
+ 0.103 + 0.456 
+ 0.249 + 0.558 
+ 0.039 $0.084 
+ 0.080 + 0.150 
+ 0.145 + 0.343 
- 0.668 - 0.982 
+ 0.052 + 0.23 1 
+ 0.757 + 0.882 
+ 0.033 + 0.072 

0.000 0.000 
+ 0.034 + 0.137 
+ 1.035 O.ooO 
+ 0.050 - 0.209 

0.000 + 0.043 
0.000 + 0.052 

+ 0.092 + 0.202 
- 0.383 -0.162 
$0.018 0.000 
- 0.225 - 0.854 
+ 0.033 + 0.150 
- 0.070 - 0.161 
+ 0.066 + 0.045 
- 0.017 - 0.047 
+ 0.408 - 0.608 

+ 0.080 + 0.108 
+ 0.094 + 0.019 
- 0.144 - 0.130 
+ 0.086 + 0.164 

B ’ 1.3 

0.3779 

0.4737 
0.4001 
0.3989 
0.4363 
0.4203 

0.4192 
0.4032 
0.3552 
0.3757 
0.4401 
0.4143 
0.4264 
0.4134 
0.3990 
0.3470 
0.4813 
0.4137 
0.4155 
0.4253 
0.4390 
0.4306 
0.4132 
0.3636 
0.4462 
0.4169 
0.3993 
0.432 1 
0.4217 
0.4239 
0.4152 
0.405 1 
0.3642 

0.4120 
0.4089 
0.4163 
0.4276 

d 
B,,, 

0.4036 
0.4216 
0.4234 

0.4078 
0.3668 
0.4377 
0.4354 
0.4246 
0.4293 
0.3997 

0.3789 
0.4363 
0.4094 

0.4149 

0.4153 
0.3697 
0.4236 
0.3989 
0.3961 

0.4094 
0.4203 

0.4025 

0.4212 
0.4157 
0.4186 
0.4200 

Extra lines’ 
jl = l/2 j2 = 3/2 

j3 = 5/2 j4 = l/2 

j2 

3 
9 
j2 

j2 

jl 

j4 
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TABLE II. (Continued.) 

Relative 

intensities’ B.O.b 

Fs (Iv= 1)C FJS (N= 3)C 

3/2-l/2 7/2-5/2 B * d 
I.3 BP.5 

Extra linese 
jl = l/2 j2 = 3/2 

j3 = 5/2 j4 = l/2 

16.0 16 946.711 - 0.322 - 0.668 0.4153 
0.2 16 967.170 - 0.306 - 0.178 0.4175 
1.0 16 975.537 - 0.013 + 0.094 0.4203 

21.0 17 001.785 + 0.093 + 0.301 0.4091 
9.0 17 009.956 + 0.172 - 0.279 0.4526 

70.0 17 027.534 - 0.023 - 0.096 0.4212 
1.5 17 043.961 - 0.264 - 0.430 0.4089 
5.0 17 061.475 - 0.059 - 0.175 0.3929 

68.0 17 092.066 + 0.033 - 0.107 0.4087 
1.9 17 101.539 + 0.059 + 0.220 0.4118 
9.5 17 116.070 - 0.099 0.000 0.3637 

11.0 17 116 965 - 0.209 -I- 0.508 0.3979 
1.0 17 129.949 - 0.007 + 0.268 0.3931 
1.0 17 142.252 + 0.128 + 0.295 0.4225 
3.5 17 159.592 0.000 - 0.187 0.4299 
1.4 17 182.214 + 0.05 1 - 0.182 0.4084 
4.0 17 209.861 + 0.086 + 0.203 0.4329 
8.7 17 219.264 - 0.006 $0.116 0.4349 
2.0 17 254.513 - 0.020 - 0.091 0.425 1 

17.5 17 257.767 + 0.03 1 + 0.084 0.4007 
10.0 17 266.578 - 0.012 + 0.053 0.3852 
18.0 17 280.760 - 0.295 - 0.217 0.4061 
3.3 17 297.630 - 0.472 + 0.728 0.4927 
1.2 17 306.867 + 0.244 - 0.325 0.4487 
1.7 17 312.924 - 0.620 + 0.156 0.4357 

1.0 17 317.653 - 0.144 - 0.146 0.3832 
1.0 17 331.726 - 0.162 - 0.443 0.3816 
1.0 17 348.285 + 0.013 + 0.217 0.4084 
0.1 17 358.648 + 0.267 + 0.594 0.4062 
8.0 17 376.010 O.ooO - 0.031 0.3751 

30.0 17 382.002 - 0.219 - 0.245 0.4084 
5.0 17 400.769 + 0.388 + 0.090 0.4045 
2.0 17 410.420 + 0.067 + 0.177 0.4047 
5.0 17 412.957 - 0.041 O.CQO 0.3873 

10.0 17 431.205 + 0.036 + 0.162 0.4149 
30.0 17 437.060 O.OGO + 0.078 0.4117 
4.0 11455.594 - 0.902 - 1.220 0.3869 
4.0 17 466.853 + 0.054 + 0.043 0.4000 

60.0 17 477.640 + 0.390 + 0.835 0.4252 
45.0 17 491.874 - 0.055 + 0.434 0.4253 

9.0 17 519.189 - 0.084 - 0.253 0.3742 
80.0 17 528.127 + 0.366 + 0.902 0.4665 
5.0 17 534.360 - 0.290 + 0.197 0.3700 

14.0 17 551.260 + 0.244 - 1.094 0.4528 
15.0 17 553.602 + 0.990 0.000 0.4877 
14.0 17 516.903 - 0.186 - 0.296 0.3666 
0.6 17 519.887 - 0.112 - 0.09 1 0.395 1 

9.0 17 591.662 - 0.642 - 1.412 0.4029 
13.0 17 595.122 + 0.450 - 1.225 0.4856 
15.0 17 601.469 - 0.334 - 0.129 0.4019 
35.0 17 606.872 - 0.755 + 0.260 0.4558 
15.0 17 615.355 - 0.519 - 0.723 0.4044 
45.0 17 627.160 + 0.05 1 - 0.276 0.4261 

3.0 17 647.828 + 0.014 + 0.024 0.3887 

10.0 17 668.798 + 0.080 + 0.300 0.4045 
15.0 17 675.373 + 0.142 + 0.102 0.4084 
20.0 17 679.025 - 0.022 + 0.054 0.4355 
75.0 17 684.494 + 0.226 + 0.304 0.4375 
15.0 17 700.080 + 0.037 + 0.084 0.4002 
60.0 17 713.203 + 0.128 + 0.137 0.3775 

120.0 17 721.875 - 0.147 - 0.364 0.4137 
65.0 17 733.555 + 0.080 + 0.244 0.4362 
12.0 17 749.812 - 0.163 - 0.304 0.3946 

1.4 17 768.491 + 0.132 + 0.248 0.4141 
2.5 17 776.717 - 0.038 - 0.366 0.4021 
4.5 17 786.878 O.ooO + 0.078 0.4072 

6.0 17 795.345 - 0.117 - 0.045 0.4433 

0.4118 

0.4050 
0.3958 
0.4483 
0.4226 

0.4642 

0.4009 

0.4148 

0.4285 
0.4459 

0.3996 
0.3961 
0.3969 

0.3883 

0.3800 

0.3764 

0.4067 
0.4296 

0.4092 

0.4603 

0.4201 

jl 
jlj4 

9 
0 

j4 

j3 

jlj3 

j2j4j4 
j2 j4 

j3 
9 
9 

j4 

j4 
9 
j4 

j2j4 

3 

j2 

0.4173 
0.4157 

jl 

9 
28.0 17 812.624 - 0.040 + 0.058 0.3882 Q 
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TABLE II. (Continued.) 
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Relative Fs (N= 1y Fs (N= 3)’ 
Extra lines’ 

jl = l/2 j2 = 3/2 

intensities* B.O.b 3/2-l/2 ‘l/2-5/2 B ’ I,3 B ’ 3.5 j3 = S/2 j4 = 7/2 

8.0 17 814.257 - 0.146 
5.0 17 833.060 + 0.264 

loo.0 17 842.578 - 0.158 
30.0 17 843.666 + 0.024 
11.0 17 855.296 + 0.305 
40.0 17 874.425 + 0.150 
35.0 11892.302 + 0.099 
7.0 17 897.835 + 0.010 

50.0 17 907.832 - 0.513 
8.0 17 929.193 O.CQO 
8.0 17 941.716 + 0.322 
6.0 17 943.412 - 0.230 

15.0 17 960.405 - 0.012 
40.0 17 970.246 O.OCMl 
11.0 17 997.085 - 0.013 
16.0 18 022.467 + 0.054 
45.0 18 025.867 + 0.083 
32.0 18 035.524 - 0.217 
7.0 18 041.443 + 0.106 

38.0 18 056.318 - 0.086 
95.0 18 073.013 - 0.184 
40.0 18 075.078 + 0.607 
60.0 18 078.734 - 0.543 
36.0 18 095.411 + 0.327 
9.0 18 114.413 - 0.204 

55.0 18 120.483 + 0.056 
12.0 18 132.990 + 0.452 
10.0 18 142.745 + 0.029 
20.0 18 146.172 -I- 0.040 
11.0 18 152.786 - 0.044 
4.0 18 171.491 + 0.090 

125.0 18 199.165 - 0.237 
36.0 18 207.803 + 0.104 
24.0 18 212.237 +0.158 
10.0 18 224.067 - 0.278 
26.0 18 244.235 - 0.090 
21.0 18 249.158 + 0.093 
68.0 18 265.357 - 0.03 1 

127.0 18 273.462 +0.154 
60.0 18 280.551 + 0.035 
9.0 18 285.764 + 0.059 

100.0 18 304.093 - 0.074 
40.0 18 322.735 + 0.085 
14.0 18 330.362 + 0.720 
23.0 18 341.176 + 0.367 
24.0 18 351.788 - 0.135 

8.0 18 361.805 - 0.326 
8.0 18 372. 

100.0 5 
07 - 0.08 1 

18383. 55 + 0.038 
35.0 18 397.925 - 0.230 
64.0 18 412.457 + 0.068 
11.0 18 416.237 + 0.020 
37.0 18 424.383 + 0.326 
53.0 18 426.788 + 0.186 
19.0 18 438.930 - 0.490 

190.0 18 447.813 - O.M)6 
8.0 18 467.480 - 0.027 
3.0 18 469.370 - 0.234 

10.0 18 472.090 + 0.442 
1.5 18 484.671 + 0.070 
3.2 18 502.192 + 0.123 

- 0.262 0.4142 
+ 0.332 0.4261 
- 0.325 0.4024 
+ 0.027 0.4103 
- 0.284 0.3632 
+ 0.257 0.4530 
+ 0.127 0.4182 
+ 0.046 0.4112 
- 0.236 0.3517 
+ 1.330 0.4527 
+ 0.226 0.4019 
- 0.448 0.3978 
- 0.017 0.4056 
- 0.016 0.4171 
+ 0.348 0.3936 
+ 0.055 0.3156 
+ 0.272 0.4748 
- 0.508 0.3924 
+ 0.064 0.4082 
+ 0.046 0.4429 
- 1.160 0.4150 
- 0.354 0.4588 
- 1.272 0.3738 
+ 0.752 0.3883 
- 0.340 0.3917 
+ 0.134 0.4003 
- 0.015 0.4400 
- 0.196 0.4337 
+ 0.100 0.4024 
- 0.124 0.4000 

0.000 0.4241 
- 1.050 0.3959 
+ 0.016 0.4630 
+ 0.318 0.4494 
- 0.920 0.3678 
-I- 0.284 0.3918 
- 0.029 0.4330 
f 0.166 0.3983 
+ 0.294 0.4295 
- 0.105 0.4465 
-I- 0.147 0.3861 
- 0.160 0.4186 
I- 0.220 0.4094 
- 1.337 0.2574 
- 0.487 0.4970 
- 0.121 0.4349 
- 1.795 0.5637 
- 0.184 0.3965 
- 0.092 0.4220 
- 0.809 0.4208 
+ 0.147 0.4093 
- 0.167 0.3638 
- 0.524 0.4577 
+ 2.192 0.4783 
- 0.356 0.3737 
- 0.131 0.3686 
- 1.018 0.3403 
- 0.270 0.5254 
+ 1.165 0.4539 
+ 0.165 0.4046 
-I- 0.372 0.3832 

0.4345 
0.4126 

0.472 1 

0.4172 
0.4056 
0.3758 
0.4333 

0.4346 
0.3873 

0.3904 

0.4146 
0.4167 

0.4018 

0.4153 
0.4273 

0.4389 

0.4003 
0.4177 
0.3609 
0.4142 
0.4237 

0.4067 

0.3998 
0.4273 
0.4328 
0.3995 

0.4440 

0.3810 

0.4432 

3 
9 

j2 

9 
jl 

j2j3j4 

j3j3 
j2j3 

j2 
jl 

jl 

j2 

j3j4 
j2j4 

j2 j4 
j3j4 

9 

j4 

j4 

j3 
jl j2j2j3 

j2 
j2j2 
jlj2 

jlj2 
jlj2 

j4 

“Relative intensities are given to F 20%. 
b Vibronic band origins. 
‘Fine structure splittings for N = 1 and N = 3. 
d Calculated rotational constants from the spacings between N = 1, N = 3 (B,,, ) and between N = 3, N = 5 ( B,,5 ). 

“‘Extra” lines, when observed, are labeled according to their high resolution signature. 
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two J = l/2 and one J = 3/2 or the opposite, indicating that 
either the J = l/2 or the J = 3/2 fine structure level is split 
into two components by a rovibronic interaction. As a 
whole, we have observed 14 “extra” levels with J = l/2 and 
30 with J = 3/2 on the N’ = 1, K = 0 manifold, and 14 with 
J = 5/2 and 20 with J = 7/2 in the N’ = 3, K = 0 manifold. 
We have conducted an exhaustive search for J’ = l/2 and 
J’ = 3/2 extra lines and are therefore confident in the 14/30 
ratio between the numbers of J’ = l/2 and J’ = 3/2 extra 
lines. This important result will be discussed in Sec. IV. We 
want to emphasize that these extra lines have not been clear- 
ly assigned previously, leading to spurious vibronic levels as 
discussed in Sec. III B. Furthermore, when one extra line is 
observed, it is possible, on the basis of the energy shift and 
intensity ratios, to “deperturb” these pairs of levels and then 
to obtain the corresponding deperturbed energy levels. 
These “deperturbed” energy levels have been used to calcu- 
late the above mentioned rotational and fine structure con- 
stants. The J values of extra levels are given in the last col- 
umn of Table II. 

(iv) Finally, we have determined (by subtracting 2 3 ;,a 
from the observed N’ = 1 energy level) the vibronic energy 
of each vibronic band. 

The corresponding results on the 166 observed vibronic 
bands are given in Table I and summarized in Table II. 

Hot bands with the (0,~ = 1 ,O) vibrational level of the 
ground state as lower level have also been detected. Three 
independent criteria have been used to assign the hot bands 
lying between 16 319 and 17 752 cm-’ ( = 18 502-749.65 
cm - ’ ) . Obviously, we cannot assign hot bands that occur in 
the 17 752-18 502 cm-’ energy range. For each hot band, a 
parent cold band, originating from the vibrationless level of 
2 ‘A,, and then shifted by 749.65 cm-‘, must be found 
above in the excitation spectrum within 0.02 cm-’ with an 
intensity 75 times stronger in average ( r,, = 260 K, see 
below). In addition, the parent band must display the same 
rotational and fine structure splittings as the hot band within 
0.005 cm - ‘. The probability for these criteria to be satisfied 
simultaneously while the suspected band is not a hot band is 
extremely low. The list of the nine detected hot bands is 
given in Table III. The 260 K vibrational temperature, esti- 

TABLE III. Listing of identified hot bands and of corresponding parent 
cold bands. 

T,(H) 
Hot band 

origins 

(cm-‘) 

T,(P) 
Parent 

cold band T,(P)-T,.(H) Intensity ratio 

origins (cm - ’ ) (cm-‘) Z(PVZW) 

16 342.429 17 092.066 749.637 
16 531.103 17 280.760 749.657 
16 727.964 17 477.640 149.676 
16 778.458 17 528.127 749.669 
17 323.361 18 073.013 749.652 
17 345.781 18 095.411 149.630 
17 370.848 18 120.483 749.635 
17 573.085 18 322.735 749.650 

17 633.605 18 383.755 749.650 

39 
45 

100 
133 
48 
30 
69 

160 

50 
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mated from the hot band to cold band intensity ratios, is not 
significantly lower than room temperature, indicating that 
the vibrational degrees of freedom are not efficiently cooled 
in our jet conditions as previously observed.4’2* 

6. Comparison with previous results 

In Table IV [Ref. 18 (b) ] we have compared our results 
with those obtained by Smalley et al.,* Persch et a1.,9 and 
Hiraoka et a1.16 

1. Comparison with Smalley’s results 

In the 16 3 19-17 492 cm- * portion of the energy range 
common to our own present measurements and to the work 
of Smalley et al. (Table I of Ref. 8)) they have observed 65 
vibronic bands, among which two are given as hot bands in 
Table II of Ref. 8. Furthermore, we have found that bands 
number 108 and 130 in Table I of Ref. 8 should also be as- 
signed as hot bands because we have observed the two corre- 
sponding cold bands (above 17 492 cm - ‘, the maximum 
energy observed by Smalley). These two hot bands are listed 
in our hot bands (Table III). Moreover, we have reinterpret- 
ed a few pairs of their bands, almost degenerate in energy, as 
single bands including one (or a few) extra line(s): Bands 
number 120 and 121 in Smalley’s Table I should be consid- 
ered as one, the band given at 17 159.592 cm- ’ in our Table 
II. This band has two extra lines, as quoted in the last column 
of Table II. Similarly, the two bands number 124 and 125 of 
Smalley’s Table I should be grouped into one band at 
17 219.264 cm-’ with three extra lines (see Table II). Last 
but not least, we have found, in our common energy range, 
17 new vibronic cold bands, mostly with low intensities. As a 
result, we have observed a total of 77 cold bands (i.e., vi- 
bronic levels) in the 16 319-17 492 cm-’ common energy 
range, while Smalley et aL8 have observed 56 of them. Glo- 
bally, the agreement between Smalley’s and our energy mea- 
surements is satisfactory: their vibronic energies are globally 
shifted by only 0.27 cm- ’ with respect to ours, and the corre- 
sponding rms deviation is only 0.13 cm - *. Among the 140 
vibronic bands given by Smalley et al. (Ref. 8, Table I), we 
conclude that 114 are true cold vibronic bands, i.e., vibronic 
levels. In addition, we note that, due to a limited resolution 
( z 1 GHz), Smalley et al. could not assign the fine structure 
component (i.e., the J values) and consequently could not 
determine the sign of the fine structure. 

2. Comparison with Persch’s results 

Persch’s results (2) are of inhomogeneous quality. 
(i) Part of their measurements have been obtained at 

very high resolution ( 15 MHz) and are reported with a 
lo- 3 cm-’ resolution in their Table I. These high resolution 
results, when compared with our line measurements, agree 
very well with our results: a mean shift of 0.013 cm- ’ and a 
standard deviation of 0.032 cm-‘. However, there exist a 
few discrepancies in the detailed rotational analysis of the 
two vibronic levels at 16 899.200 and 17 078.200 cm-‘. 

(ii) Most of their vibronic bands have been obtained 
from a low resolution spectrum, i.e., without detailed rota- 
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tional analysis and measurement (their analysis is based on a 
shape recognition technique of parallel bands). 

In their low resolution spectrum, we have considered 
separately the energy range studied previously by Smalley et 

~1.~ and the range not studied by these authors. For the ener- 
gy range previously known, their vibronic energies are in 
reasonable agreement with ours and Smalley’s: when we 
compare the energies of 61 vibronic levels, we find a mean 
shift of 0.05 cm- ’ and a standard deviation of 0.6 cm - ‘. 
Moreover, they considered as cold bands those assigned as 
hot bands by Smalley et al.* in their Table II. When one 
considers the range 17 500-18 502 cm - ‘, not studied pre- 
viously by Smalley (containing 46 vibronic bands), one 
finds a standard deviation of 3.5 cm - ‘. Considering that the 
mean vibronic energy level spacing is - 12 cm- ‘, this 3.5 
cm- * deviation means that Persch’s vibronic band origins 
are randomly distributed when compared with our own set 
of vibronic energy levels! Furthermore, other similar com- 
parisons with our measurements (not reported here) in the 
2 1 733-23 650 cm-’ range have been performed on a set of 
53 vibronic levels given in Table I of Ref. 9. Again we come 
to the conclusion that there are no correlations between their 
values and ours. We conclude that very many band origins in 
the range not previously published by Smalley et al.,’ given 
within a claimed accuracy of 0.1 cm-’ in Table I of Ref. 9, 
are not meaningful. We conclude that, among the 141 vi- 
bronic levels taken into account in the statistical analysis by 
Zimmermann et al., *’ there are 25 spurious levels, among 
which 22 come from hot bands (most of them being listed in 
Smalley’s Table II, Ref. 8), and three correspond to spurious 
bands due to misanalyzed extra lines (see above). The corre- 
sponding consequences on the correlation analysis of vi- 
bronic level spacings are discussed in Sec. V. 

3. Comparison with Hiraoka ‘s results 

Only 15 of our vibronic band origins can be compared to 
those found by Hiraoka et al.16 in the 18 199-18 492 cm-’ 
common energy range. There is globally a very good agree- 
ment with a mean shift of 0.02 cm-’ and a standard devi- 
ation of 0.09 cm - ‘. Nevertheless we have observed 11 vi- 
bronic levels not reported by Hiraoka. Moreover, they did 
not analyze their pairs of very close vibronic bands in terms 
of extra lines. Consequently, they report two pairs of quasi- 
degenerate vibronic bands shifted by less than 1 cm - ‘, one 
group of three quasidegenerate bands and one group of four 
quasidegenerate bands. We interpret each of these groups of 
bands in terms of only one band with one or a few extra lines. 
A discussion about rovibronic couplings inducing extra lines 
is presented in Sec. IV. 

IV. STATISTICAL ANALYSIS OF ROTATIONAL 

AND SPIN-ROTATION CONSTANTS 

A. Rotational spacing distribution 

We have mentioned in the previous section that one did 

not obtain the same result when calculating the B’ rota- 
tional constant from R, - P2 differences (i.e., E I,J ) or from 
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0.34’ c 
0.3 0.4 7 

,,3 (cm-‘) OS5 

FIG. 3. Correlations between 3 ;.S and 3 ;,3 rotational constants. The 

straight line (B ;,, = 3 $,, ) corresponds to the rigid rotor model expected 

in the absence of rovibronic perturbations. 

R, - P4 differences (i.e., ii;,, ). This’ point is illustrated in 
Fig. 3. If the concept of rotational constant, within a given 
vibronic state, were valid, one should find 3 j,, = B ; 3, and 
correspondingly, points on Fig. 3 should be distributed 
along the straight line. Obviously, this is not the case. In 
order to predict the distribution of the rotational constant - 
B’, we have calculated B ’ for the vibrational levels of the 
electronic ground state in the 16 500-l 8 500 cm-’ energy 
range by extrapolation from rovibrational constants given 
by Lafferty and Sams. 23 The corresponding distribution is 
displayed on Fig. 4, curve a. 

In fact, in this energy range, the real vibronic levels re- 
sult from interactions between high b, (~1, ) vibrational levels 
of the ground state 2 *A, with a, ( b2) vibrational levels of 
the excited state 2 *B2, inducing a very dense visible excita- 
tion spectrum. We have calculated 180 b, vibrational levels 
of k*A, between 16 500 and 18 500 cm-’ and about 30 a, 
vibrational levels in 2 *B2. These 180 b, levels have been 
obtained by extrapolating the 191 observed vibrational levels 
in the O-10 000 cm-’ energy range of LIDFS (see Delon 

FIG. 4. Distribution of rotational constant F (see the text). 
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and Jost I’). These 19 1 levels have been fitted with a set of 24 
Dunham parameters that have been used for the above men- 
tioned extrapolation. The 30 vibronic levels of the2 2B2 state 
correspond to an evaluation based on ab zizitio calculations 

previously mentioned.“~‘* The expected B’ constant rota- 
tional distribution of 2 *B, vibrational levels is concentrated 

around 0.5 cm-’ as displayed in Fig. 4, curve b. The B’ 
mean value in the 2 2B2 state is different from that of the 
ground state, mainly because the equilibrium angle is 103”, 
compared to 134” for the ground state (see Refs. 11 or 12). 
Consequently, if only pure vibronic coupling is assumed, one 
should obtain the distribution labeled c in Fig. 4: each vi- 

bronic level has a well-defined B’ value that is expected to 
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J=5/2 

N=2,K=l 

J=3/2 / J=3/2 

J=5/2 
N=l,K=O 

N=Z,K=2 
J=1/2 

J-3/2 

J=1/2 

--i be a weighted average of the different B constants of the 
involved zeroth-order basis states. In this model of pure vi- 

bronic coupling, B’ still remains a constant, i.e., 
-, B - B;,, . To explain the inequality of B ;,3 and B& 1.3 - 

shown in Fig. 3,rovibronic couplings must be taken into ac- 
count. As explained in Sec. IV B, these rovibronic couplings 
act on individual Jcomponents in a random way, destroying 
the initial regular rotational spacings of a given vibronic lev- 
el. Consequently, the distribution c on Fig. 4 spreads like 
distribution d and, more strikingly, the B ;,3/z;, ratio is 
spread out, as displayed on Fig. 3. This explanation implies 
that N’ is not a very good quantum number anymore. To 
study this problem thoroughly, we consider the fine struc- 
ture splitting distribution. 

VIBRONIC 8, 
VIBRoN'C B* 

WBRONIC A, 

FIG. 6. Possible rovibronic interactions of a IN = 1 ,K = 0,J = r l/2) lev- 
el: the total rovibronic symmetry (A*) is preserved and Jis assumed to be a 
good quantum number. 

6. Fine structure splitting distribution 

For a given vibronic level, we observe that the fine struc- 
ture constant obtained from N’ = 1 is not the same as that 
obtained from N’ = 3 (see Sec. III) as displayed in Fig. 5. 

This situation is qualitatively the same as for the B’ rota- 
tional constant. In fact, the rovibronic interactions act selec- 
tively on individual J ’ levels and not globally on N ’ levels. Let 
us focus on N ’ = 1, and accordingly on the corresponding 
fine structure levels J = l/2 and J = 3/2. Figure 6 depicts 

1 

e 

I, 
.I? 

a 

-1 

the different interactions that may create J’ = l/2 and/or 
J’ = 3/2 extra lines. One (N = 1,K = 0,J = l/2) rotational 
level of a given B, vibronic level can interact only with 
(N= l,K= l,J= l/2) (vibronicA,) levelswhilea (N= 1, 
K = 0,J = 3/2) level (B, vibronic) may interact with 
(N= l,K= l,J= 3/2) (A, vibronic), (N=2,K= 1, 
J= 3/2) (A,vibronic),and (N= 2,K= 2,J= 3/2) (B,vi- 
bronic) levels. Except for the case of mixing with 
(N = 2,K = 2,J = 3/2) levels, the vibronic symmetry of the 
perturber is A ,, thus implying a breakdown of the vibronic 
symmetry and of the corresponding fluorescence selection 
rules. This phenomenon has been observed systematically in 
LIDFS, observed from highly excited energy levels, located 
around 23 000 cm-’ (see Delon and Jest”). On the con- 
trary, after excitation in the “red” part of the excitation spec- 
trum (see Bist and Brand,24 Brand et a1.,25 and Chen et ~1.~~) 

the corresponding LIDFS do not contain transitions toward 
b, vibrational levels of the ground state. This means that in 
the 16 500-18 500 cm-’ range, rovibronic interactions re- 
main local, i.e., can be treated as perturbations. At higher 

4 energies however, around 23 000 cm - ‘, the excited B, vi- 
bronic levels are strongly rovibronically coupled with A I vi- 
bronic levels. As explained in Sec. III A, when a local rota- 
tional perturbation occurs in the red part of the excitation 
spectrum, we have performed a two state deperturbation 
based on the observed intensity ratio of the “main” and “ex- 
tra” lines and on the energy difference of the two observed 
levels. Of course, rovibronic interactions may occur simulta- 
neously with more than one level. Consequently the calcu- 
lated 3 ;,3 and 3 ;,5 are “perturbed” rotational constants. To 
obtain quantitative information about rovibronic interac- 

J 
tions, we have also observed Zeeman spectra (in the O-8 T 

. range) of seven B, vibronic N = 1, K = 0 levels of about 
I 17 500 cm- ’ energy. *’ In these spectra the rovibronic inter- 

actions, which occur between M, = + l/2 and 
M, = - l/2 spin sublevels, are observed via anticrossings, 
allowing us to obtain the corresponding matrix elements and 
selection rules. We have found that second-order spin-orbit 

FIG. 5. Correlations between Z; and Z; fine structure constants. The 

straight line (z; = % ) corresponds to the expected fine structure splittings 
in the absence of rovibronic perturbations. 

-1 0 
7 
l l 

(cm-' ) 
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interaction, usually named spin-rotation, can explain most 
of the observed interactions. Furthermore, we have been 
able to follow versus the magnetic field, the energy of two 
J = 3/2 zero field extra lines, and we conclude that these two 
extra lines are due to an accidental perturbation and do not 
correspond to an additional vibronic level of B2 symmetry 
that has been “missed” in our zero field excitation spectrum. 
The assignment of the perturber is not yet definitive but the 
most probable assignment is a (J = 3/2,N = l,K = 1) level 
of a vibronic state of A, symmetry. 

V. VIBRONIC ENERGY CORRELATIONS 

AND QUANTUM CHAOS 

In this section we analyze the correlations between vi- 
bronic energy levels of NO,. We refer to the standard model 
of Gaussian orthogonal ensemble (GOE) ‘~3 which gives 
the correlation properties of “fully” chaotic systems. 

As explained above, the 166 B2 vibronic levels observed 
from 16 3 19-l 8 502 cm-’ are perturbed by rovibronic inter- 
actions (mainly due to second-order spin-orbit interac- 
tions). However, the corresponding energy shifts are very 
small, (on average, much less than 1 cm - ’ ) when compared 
to the mean level spacing of about 12 cm - I. Consequently, 
we consider that vibronic energies, extrapolated to N = 0, 
K = 0 as given in Table II, are very close to the pure vibronic 
energy levels of NO,, and these vibronic energies, which re- 
sult from couplings between electronic and vibrational mo- 
tions can now be analyzed. As previously reported by Smal- 
ley et al.,* no recognizable vibrational regularity is 
discernable in the visible excitation spectrum of NO, (see 
below the IFTl2 of the spectrum). In our case, none of the 
166 vibronic energy levels between 16 3 19 and 18 502 cm- ’ 
can be assigned electronically [as one of the two electronic 
states (2 2A r or 1 2B,) 1 nor vibrationally, with three vibra- 
tional quantum numbers. Each vibronic B, (respectively, 
A, ) eigenstate results from the vibronic coupling of at least 
one a, (respectively, b,) vibrational level of 2 ‘B, with sev- 
eral high b, (respectively, a,) vibrational levels of the 
ground state. It is known that, due to vibronic interactions, 
each zeroth-order vibrational level of 2 2B2 can imprint its 
electronic signature into a manifold of high energy vibra- 
tional levels of the ground state.26 This explains the anoma- 
lously large number of vibronic bands observed in the visible 
excitation spectrum (see Haller et al.7v29 ) . However, it may 
be possible to assign the dominant “parent” vibrational level 
of 1 2B2 character by observation of LIDFS.25*26 By extra- 
polating the density of observed vibrational states in 1 2A r 
from O-10 000 cm-‘,-one can calculate the average spacing 
between 6, levels of X 2A, : -llcm-‘inthe16500-18500 
cm-’ energy range. On the other hand, ab initio values for 
2 2B2 harmonic frequencies and the assumption that the vi- 
brationless level of 2 2B, lies around 9720 cm-’ (see Gilli- 
spie et al. I2 and Delon and JostlS), imply that a, vibrational 
levels of 2 2B2 are on average separated by 80 cm-’ in the 
same 16 500-18 500 cm-’ energy range. If one takes into 
account anharmonicities in the excited state and uses for 
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them the values of the 2 ‘A1 state, the mean spacing between 
a i levels of 2 2B2 is reduced from 80 down to - 60 cm - ‘. 
Strong vibronic couplings (nonadiabatic effects) mix these 
two sets of levels together in such a way that no regularity 
can be observed in the spectrum above - 16 500 cm - ‘. On 
the contrary, the low resolution absorption spectra from Gil- 
lispie and Khan3’ display, from 90004000 A, a strong inten- 
sity modulation that corresponds to the bending frequency 
in 2 2B2, of about 720 cm - I. This observation means that 
vibronic interactions do not set in abruptly above the conical 
intersection. In this intermediate energy range (i.e., roughly 
from - 10 000 to 16 000 cm-‘), vibronic interactions al- 
ready couple each 1 2B2 “parent” level to some z2A1 

“daughter” levels but do not yet wash out the bending pro- 
gression in the excitation spectrum. One implication of 
strong mixing (required for complete quantum chaos) is 
that such regularities have disappeared. 

The analysis of short range correlations (Sec. V B) and 
long range correlations (Sec. V C) require the knowledge of 
the secular behavior of the integrated density of states dis- 
cussed in Sec. V A. 

We have not presented here a statistical analysis of the 
band intensities given in Tables I or II because we do not 
have a good knowledge of the energy dependence of the mea- 

sured intensities (see Sec. V A). However, the observed in- 
tensity distribution is not far from the Porter-Thomas law 
[i.e., the expected distribution for the GOE model (see Ref. 
1) 1, if we take into account the missing levels that all have a 
weak intensity. 

A. Secular behavior of the integrated density of states 
and unfolding procedure 

1. Fit of the integrated density of states 

We now present the method for analyzing the correla- 
tions. It is important to know that only density fluctuations 
are relevant to the study of correlation properties. Therefore, 
the integrated density of levels N(E) (that is, the staircase 
function giving the number of energy levels below an energy 
E) should be separated into a smooth part N,, (E) and the 
remainder, which defines the fluctuating part NR (E) of 
N(E) (seeRef. 1); 

N(E) = N,,(E) + NR (E). (2) 

When the potential energy surface (PES) is known, one 
can calculate NBy (E) following simple semiclassical rules.31 
Unfortunately in most real cases, one does not know the 
PES. In the case of a nonlinear N = atom molecule (i.e., 
n = 3N - 6 vibrational degrees of freedom), it is known 
from semiclassical and harmonic approximations (Marcus 
and Rice32) that 

N,,(E) = (E+ E”)n 
n!II;, , (wi ) ’ 

(3) 

where E is the vibrational energy in excess of the zero point 
energy E ’ and oi are the harmonic frequencies. This formula 
gives the dominant contribution: Nay (E) aE”. In the case 
of NO,, N,, (E) -E 3. In fact, anharmonicities are such that 
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the effective density of states increases slightly faster than the 159 observed levels in the corresponding range. In com- 
E 3. We have calculated numerically the integrated density of parison, 17 levels are predicted from 16 3 19-16 500 cm- ’ 
vibronic levels with the Dunham polynomial expansion giv- while only seven have been observed. This last point con- 
en either by Lafferty and Sams23 or by Delon and Jest.” This firms (see Fig. 7) that more levels are missing below 16 500 
integrated density was then fitted with polynomial expan- cm -’ in our excitation spectrum as well as that in Smalley et 

sions in energy, all starting with a cubic term. As a result, the aZ.* and Persch et aL9 To conclude, in the 16 500-18 502 
two-term limited power expansion cm-’ energy range, about 75% of all B2 vibronic levels have 

Nay(E) = a3E3 + a&6 (4) 
been observed. Missing levels are due either to the unfavor- 

appears very satisfactory. Figure 7 displays the iV( E) of our 
able Franck-Condon factor with the initial ground state, or 

set of 166 observed levels in the 16 3 19-18 502 cm-’ range 
to the fact that some 6, levels of X2ALare not mixed well 

and the corresponding fit with the above formula.’ It ap- 
enough with the a, level manifold of A 2B2. However, our 

pears that the slope discontinuity at 16 500 cm- ’ clearly 
percentage of missing levels is significantly smaller than that 

indicates missing vibronic levels below this energy. Conse- 
obtained by Persch et aL9 Zimmermann et a1.22 have per- 

quently, we will hereafter restrict our level-spacing statisti- 
formed a statistical analysis on a set of 141 observed levels in 

cal analysis to the 16 500-18 500 cm-’ energy range, which 
the 14 880-17 521 cm-’ energy range, where our model pre- 
dicts 222 levels. Note that the harmonic model of Zimmer- 

contains 159 observed levels. mann et aI.29 predicts 175 levels in this energy range and that 
anharmonicities should increase this number. Moreover, 25 
of these 141 levels are spurious, most of them being hot 

2. Comparison between the observed and predicted bands (see Sec. III B). As a result we estimate that the 141 
number of states level set of Persch et al. contains only 116 “true” levels and 

It would be of interest to compare the 159 observed lev- 25 spurious ones, and that these 116 “true” levels represent 
els with the corresponding expected number of levels. To 52% (or 116/222) of the total number of levels predicted in 
this end we have observed laser induced dispersed fluores- this energy range. Obviously, the NO, excitation (or absorp- 
cence spectra from 11 high vibronic levels around 23 000 tion) spectrum being globally weaker when going to the red 
cm- ’ ( Delon and Jost15). The complete set of 19 1 observed (see Fig. 3 of Ref. 30)) more missing levels are expected in 
2 2A1 vibrational levels below 10 000 cm-’ are well fitted the 14 880-17 521 cm-’ energy range than in our 16 500- 
with a 24 parameter Dunham expansion. The extrapolation 18 502 cm-’ range with the same detection efficiency. In 
of this Dunham expansion to the 16 500-18 502 cm-’ other words, it is easier to study the yellow and green parts of 
range, produces 180 b, vibrational levels of 2 2A ,. Note once the NO, spectrum, at least when the goal is the completeness 
again it is the mixing between this dense manifold of 2 2A1 of the vibronic spectrum. The above 52% estimation does 
vibrational levels with those of the 2 2B2 state that explains not agree with that of Zimmermann et al,,22 who found only 
the dense NO2 excitation spectra in the visible. The total 8% missing levels by comparing the intensity distribution of 
number of mixed (and thus observable) levels of Bw2 vibronic their 141 bands with the Porter-Thomas distribution. Their 
symmetry, taking into account the 30 levels of the A 2B2 state comparison is biased for two reasons. First, their set of 141 
in the same energy range, is thus about 210 in the 16 500- bands includes 22 hot bands, as explained in Sets. III A and 
18 502 cm-’ energy range. This should be compared with III B. These hot bands being statistically 75 times weaker 

compared with the cold ones, the intensity distribution is 
significantly affected. Second, the global intensity evolution 

=O”- 
of the excitation spectrum displayed in Fig. 2 of Ref. 7 
should be taken into account before any comparison with the 
Porter-Thomas law is made. For these two reasons the in- 
tensity distribution given in Fig. 1 by Zimmermann et a1.22 

iz 
iG should be reanalyzed. 

100 3. The un foiding procedure 

We have shown that the smooth part of the integrated 
density of states, N,, (E), can be well fitted with a two-term 
limited polynomial expansion, like formula (4). Following 
Brody et al.,’ the unfolded spectrum {xi} is then obtained 
with the transformation 

0 
16500 17000 17500 18000 (cm-’ ) Ei-+xi = N,, (Ei). (5) 

Energy 
We prefer unfolding the spectra with a smooth polyno- 

FIG. 7. Integrated density of states N( E) . The experimental staircase Curve 
clearly displays missing levels below 16 500 cm - ‘. N(E) is well fitted with 

mial expansion like formula (4) rather than performing CU- 

the polynomial expansion: NaV (E) = NO + a,E 3 + a,E6( - No is a rough 
bit spline interpolation, as performed by Zimmermann et 

estimate of the absolute energy rank number of the first level of our a1.22 We have observed that a cubic spline unfolding reduces 

sequence). the fluctuations Nfi (E) by an amount that depends on the 
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mean distance between the cubic spline constraint points. In 
Appendix C we show that the unfolding procedure has large 
consequences on long range correlations, the short range 
correlations being much less sensitive to the unfolding 
procedure. 

B. Short range correlations within energy level 
spacings 

In this section we present the statistical analysis of the 
energy level spacings between consecutive levels: the NND. 
Regular systems, i.e., systems whose Hamiltonian is integra- 
ble, are generically characterized by a Poisson distribution, 
P(S) = exp( - S); S being the normalized spacings. The 
Poisson distribution peaks at the origin, S = 0. This means 
physically that accidental degeneracies may occur. On the 
contrary, when the system is fully chaotic, one observes level 
repulsion. A very good approximation for the NND of the 
GOE is the Wigner distribution (Ref. 1) : 

P(S) = (?r/;!)Se - (rr/4)s’. (6) 

Figure 8 displays the NND histogram for our unfolded 
set of 159 observed vibronic levels from 16 500-l 8 502 
cm-‘. Our results are in reasonable agreement with the 
Wigner law. Quantitatively, the Wigner law predicts a, the 
square root of the second moment [ (S - 3)” ] “2, to be 
0.52, while we find cr = 0.61. 

This deviation may be due to missing levels. We con- 
clude that the observed NND is in agreement with the pre- 
diction of the GOE model. However, the NND is only a 
robust (i.e., weakly dependent on the unfolding procedure) 
test of short range correlations, but it does not contain a lot 
of physical information, especially about the time evolution 
of the system. By contrast, the long range correlations con- 
tain more physical information but are much more sensitive 
to the unfolding procedure, as explained below. 

C. Long range correlations within energy level spacings 

Long range correlations between energy levels contain 
most of the significant ‘information on the dynamics of the 
corresponding physical system. We consider here three stan- 
dard methods for analyzing these long range correlations: 

X2(L), A,(L) (see Ref. 1) and m (smoothed Fourier 
transform) (see Ref. 2 and Appendix L of Ref. 1). The key 
point is that these three methods are nothing more than 
three kinds ofsmoothing procedure for the ]FTl’ of the stick 
spectrum. This (FT12 is related to the two-level form factor 
b2 (t), that is, the Fourier transform of the two level cluster 
function Y,( AE) of Dyson and Mehta.” 

The general relations between the IFI’/’ and the correla- 
tions are detailed in Appendix A. The analytic relations be- 
tween ]FT12, Z*(L), and A,(L) are given in Appendix B. 
Here L is a dimensionless energy expressed in units of the 
average level spacing. 

As we have pointed out in Sec. V A, the initial spectrum 
(stick spectrum) should be unfolded and any unfolding 
method reduces the long range correlations. The relevant 
problem is only to determine the maximum value for L (or 
correspondingly the minimum value for t) for which the 
correlations remain meaningful, i.e., not biased by the un- 
folding procedure. This point is discussed in Appendix C. 
We present below the long range correlations of our set of 
159 vibronic levels of NO,, first with X*(L) and then with 
the IFI]’ method. 

1. Zp(L) analysis 

Figure 9 shows X’(L) for our observed set of 159 vi- 
bronic levels which appears to be close to the GOE predic- 
tion [displayed on curve (a) ] for chaotic systems: these are 
characterized by the existence of long range correlations 
(spectral rigidity or stiffness). The GOE model gives 

X2(L) = (2/d) In (L) + 0.44 + 0( l/L7?). (7) 

FIG. 8. Nearest neighbor distribution P(S) for the set of 159 vibronic ener- 
gy levels from 16 500 to 18 502 cm-‘. The experimental histogram is in 
agreement with the Wigner law (smooth curve) for fully chaotic systems. 

FIG. 9. X2(L) statistics performed on the same set ofvibronic energy levels 
as for P(S). (a) The GGE prediction for fully chaotic systems. (b) The 
prediction for a spectrum without any level correlations. 
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Regular systems are generically characterized by Pois- 
son statistics, namely E’(L) = L [see (b) of Fig. 91. How- 
ever, significant deviations from the Poisson law can be ob- 
served for triatomic molecules in the regular regime as 
discussed recently by Hamilton.33 This deviation is particu- 
larly important when there are near resonance conditions in 
the harmonic frequencies. For example, below 10 000 cm - ‘, 
the NO, vibrational spectrum is regular,15 but does not fol- 
low precisely Poisson statistics because 2wzuw’ =w3. How- 
ever, the levels calculated with the above mentioned Dun- 
ham expansion” in the 16 500-l 8 502 cm-’ energy range 
follow Poisson statistics because the anharmonicities have 
destroyed the approximate vibrational frequency reson- 
ances. Last but not least we have numerically checked that 
the deviation of our 2’(L) from the GOE can be explained 
solely by the 25% missing levels, if one assumes that these 
levels are randomly distributed. 

Now, we would like to compare our results on 2’ (L ) to 
those of Zimmermann et uZ.“*~ on A,(L). We first empha- 
size that unfolding procedures reduce the long range correla- 
tions, as explained in Appendix C. Second, it is first impor- 
tant to note that A3( L) and X’(L) do not measure 
fluctuations on the same range of L. This point is discussed 
in Appendix B. We have analyzed correlations within the set 
of 141 vibronic energy levels of Persch et ~1.~ The corre- 
sponding iV( E) and N,, (E) [according to Eq. (4) ] are dis- 
pIayed in Fig. 10 and the 8’ (L ) statistic is shown in Fig. 11. 
As a result, we find much smaller long range correlation 
than we do with our set of 159 vibronic levels. This is mainly 
due to the existence of 25 spurious levels and to about 50% 
missing levels in their data. A more general method for 
studying correlations is the statistical Fourier transform 
analysis presented in the following section. 

2. Fourier transform analysis 

The Fourier transform of a spectrum contains informa- 
tion on line positions, linewidths, and amplitudes. When the 

15ot : 
t 
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5 10 15 20 
L 

FIG. 11. Z’(L) statistics performed on the 141 vibronic levels of Persch et 
al., unfolded with the polynomial expansion shown in Fig. 10. (a) The GOE 
prediction. (b) The statistics ofa fictitious system that would have the same 
NND as the Persch et al. set of vibronic levels but no long range correla- 
tions. (c) The statistics of a Poisson distribution. 

correlations between line positions (or energy levels) are 
studied, it is better to construct a stick spectrum of equal 
amplitude and then to study these correlations. However, 
when the experimental spectrum is not well resolved, the 
extraction of a stick spectrum is ambiguous and therefore the 
direct FT of the experimental spectrum is a well adapted 
method to obtain the corresponding correlations, with the 
drawback due to intensity and width distribution discussed 
in Ref. 2. Our NO, vibronic spectrum is well resolved and 
can be analyzed in terms of a stick spectrum. 

The meaning of the I FT12 of a stick spectrum in terms of 
correlations is given in Appendix A. It is necessary to distin- 
guish between the IF-II2 of the original stick spectrum (i.e., 
before unfolding), which may reveal the existence of period- 
ic (or regular) motion(s) (if any), and the IFT]’ of the 
unfolded stick spectrum, which contains [ 1 - b2( t) 1. 

In the case of our NO, spectrum no regular motion has 
been observed, and, consequently, we discuss only (FT]’ of 
the unfolded spectrum, which is displayed in Fig. 12. 

Now three related questions arise. (i) How to smooth 
the lITI in order to best display the correlations, or, more 
specifically, [ 1 - b,(t) 1; (ii) how the IFI]’ is related to the 
other correlations measurements, X2(L) and A,(L); and 
(iii) which unfolding procedure is legitimate? 

These questions are treated in Appendices A, B, and C, 
respectively. 

Energy (cm-’ ) 

FIG. 10. Integrated density of states N(E) from the 141 vibronic band ori- 
gins of Persch et al. (Ref. 9). The experimental staircase curve oscillates 
with a large very low frequency component around the polynomial expan- 

sion fit: N,,(E) = No + a,E3 + a@. 

Since globally our X2(L) (Fig. 9) and our ]FT]2 (Fig. 
12) display strong long range correlations, we can now dis- 
cuss the behavior and the validity of these correlations for 
large L, or equivalently, for short time. 

In any case, the number of relevant pieces of informa- 
tion for large L (or small t) is very small: In the I FIJI’, the 
number of points to smooth over for small t is very small, due 
to the discrete nature of the fast Fourier transform algo- 
rithm. This is a consequence of the uncertainty principle, 
which governs the recovery of low frequency Fourier com- 
ponents from a signal of finite duration. 
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Equivalently, the uncertainties in X2 (L ) [or A3 (L ) ] in- 
crease with L and the meaning of X2(L) for large L should 
be discussed. 

In order to study the upper limit of L, for which long 
range correlations exist and are meaningful, we think that it 
is better to look first at the unsmoothed lFT.1’ of the spec- 
trum [Fig. 12 (a) 1, keeping in mind the statistical properties 
and the physical meaning of the “speckle noise” discussed in 
Appendix A. 

Concerning the unfolding, any procedure reduces 
[ 1 - b2( t) 1, i.e., introduces spurious correlations, especial- 
ly for small f (i.e., for large L). The relevant problem is only 
to determine the range off, from 0 + to tmax, for which the 
chosen unfolding procedure has reduced significantly the 
[ 1 - b,(t) ] function. Conversely, the range, t > t,,, is not 
aRcted by the unfolding procedure. We have numerically 
observed that our unfolding procedure (see Sec. V A) re- 
duces [ 1 - b,(f)] only for the first two channels of the 
I13J2, i.e., for f 5 l/80 or equivalently L 2 80 (see FFT in 
Appendix A). 

I 
.5 , 1.5 

time 

3 .5 1 1 

time 

II I 

150- 

loo- 
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0 .5 1.5 

‘/L 
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FIG. 12. IFT[* of our data (16X0-18 500 cm-‘), unfolded with 
N(E) = N,, f a,E3 + aa6. (a) Unsmoothed: one channel is equal to 
t = l/N, where N is the number of levels in the spectrum. (b) Smoothed 
with a Gaussian kernel K&t) = ( l/cfi) exp[ - (t - l/L)‘/202] of 
center l/L and root mean square width (T = 1/5L, and compared with the 
( 1 C(t) 12) GOE prediction smoothed with the same kernel. ‘me experimen- 
tal (C(t) I2 being less smoothed at short times, results in the two residual 
peaks. However, for times shorter than 0.5 (in units of level density) the 
experimental curve is located above the GOE prediction, after which it os- 
cillates around its asymptotic behavior line. (c) Smoothed with A, (top), 
half-Gaussianbeginning at t = 0 with 0 = l/L (middle), Pz (bottom). Be- 
ware that in all cases the abcissa is l/L cc time (reduced unit) and the ker- 
nels have been normalized to unit area between t = 0 + and r = + CO (in- 
stead of L and L/15 between - CO and + 00 for the usual PZ and A, 
kernels). Notice that the three curves in (c) seem to differ vertically while 
they actually differ horizontally, because the meaning of the parameter L is 
different in the three cases. The fact that A,(L) is roughly equivalent to 
P’(L /4) or to Gauss (L /2) is seen from the ratio of the slopes of the three 
curves at r = 0 (see Appendix B). All curves in (a), (b), and (c) have the 
same asymptote at r = + Q) , that is N = 159, the number of levels. 

We conclude that our NO, vibronic spectrum is corre- 
lated up to at least L = 50 or, equivalently, on an energy 
range of the order of 670 cm - ’ . 

Obviously, the real correlation length of the NO, vi- 
bronic levels may be larger but our finite set of vibronic levels 
does not allow us to observe correlations beyond L = 50, i.e., 
beyond 50 average level spacings. 

Our results do not contradict those of Zimmermann et 

al 22*9 but instead they complement and improve their re- 
s&s. 

Fit we should remark that the energy ranges of the two 
sets of vibronic levels overlap but do not coincide, and that 
the corresponding correlations may be different. Second, the 
correlations put into evidence by Zimmermann et a1.22*9 with 
A,(L) ranging up to L = 15 are equivalent to those evi- 
denced with X2(L) ranging up to L = 4 (Fig. 11). The rea- 
son for this reduced range of L is explained in Appendix B. 
Over this reduced range of L we conclude that the correla- 
tions measured with X2(L) in the data of Persch et aL9 (Fig. 
11) are in agreement with those measured with X2(L) in our 
data (Fig. 9). In addition to this, the necessity to unfold the 
Persch et al9 spectrum with a very flexible function (cubic 
spline with five adjustable knots) precludes study of their 
vibronic set correlations over a larger range of L. This situa- 
tion arises because there are many missing and spurious lev- 
els in Persch’s spectrum (see Sec. V A), which induce low 
frequency components in N(E), as explained in Appendix 
C. 

In summary, our better set of vibronic levels, more com- 
plete and with fewer spurious levels, allows us to document 
long range correlations up to at least L = 50. A longer se- 
quence of vibronic levels is necessary to extend the analysis 
of long range correlations to higher values of L. 

We plan to extend to higher energies the set of vibronic 
levels of NO, in order to increase the upper limit for the 
correlation length. 

A significant extension of the vibronic set to lower ener- 
gies seems difficult because the corresponding band intensi- 
ties decrease globally and, consequently, the percentage of 
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missing levels increases. This phenomenon can be observed 
in both Figs. 7 and 11 below 16 500 cm - ‘. 

This is consistent with the NO, absorption spectrum of 
Gillispie and Khan,30 which shows a minimum of absorp- 
tion around 16 200 cm - ’ , leading obviously to a larger frac- 
tion of missing levels. 

VI. CONCLUSIONS 

Among our set of 166 observed vibronic levels (or cold 
bands), more than 45 have not been previously observed 
and/or identified. Moreover we have interpreted the irregu- 
lar rotational fine structure spacings that have caused spur- 
ious vibronic levels to be introduced in previous works. By 
comparison to the observed and calculated vibronic density 
of states, we find only 25% levels missing from our set. The 
correlation analysis of vibronic energy spacings shows a 
good agreement with the GGE model prediction if we take 
into account the above mentioned missing levels. This result 
confirms that the conical intersection of the PES of the2 2A i 
and 2 2B2 states induces vibronic chaos, as predicted by 
Zimmermann et akz9 This vibronic interaction can be stud- 
ied experimentally by observing the set of vibronic levels in 
the 10 000-l 6 000 cm- ’ energy range in which chaos should 
appear progressively, the region around or just above 10 000 
cm-’ being the most interesting. Unfortunately the levels in 
this energy region are difficult to observe (see, for example, 
Figs. 3 and 4 of Gillipsie and Khan3’). We are now trying to 
observe these levels with three techniques: (i) excitation 
spectrum using a Ti:sapphire laser, (ii) intracavity laser ab- 
sorption spectrum (ICLAS) using a supersonic jet, and (iii) 
laser induced dispersed fluorescence spectrum (LIDFS) 
(see Ref. 15). 

APPENDIX A: CORRELATIONS MEASUREMENT 

BY lFT12 

The basic statistical quantity that characterizes a spec- 
trum is Dyson’s two-level cluster function Y2 (AE) or its 
Fourier transform, the two-level form factor b2(f) (see Refs. 
1,28, and 34). 

The key point in correlation measurement by ]FT12 is 
that the two-level form factor 6,(t) ‘can be recovered from 
the square of the modulus of the Fourier transform of the 
spectrum. In the case of a stick spectrum whose sticks all 
have the same intysity: 

S(E) = -p(E-EE,); 
i 

then 

(Al) 

Ic(q2 = c e2w4-Et)~a 

ij 

(A21 

Replacing the discrete sum over levels by an average over 
their probability distribution results in 

(lC(t>I’) = 1 JR,(E)eZivErdE I’+ JR,(E)dE 

- T2(E,E’)e2i”‘E-E’)‘dEdE’, 

(A3) 

where R,(E) is the level density and T,(E,E ‘) is the two- 
level correlation function, as defined by Mehta.28 If the spec- 
trumisunfoldedR,(E) = l,and T,(E,E’) = Y,(E- E’). 

Here E is a reduced energy expressed in units of mean level 

spacing AE and t is a time expressed in units of level density 

p=l/AE.Th en Eq. ( 11) reduces term by term to 

(IW) I’) = N2( sinrNf/rNt)*+ N- Nb,(t), (A4) 

where N is the number of levels in the spectrum. 
( I C( t) I ‘) contains two components: (i) a “fast compo- 

nent” [first term in (A4) ] due to the finite length of the 
spectrum whose contribution is N2 at t = 0 (N being the 
total number of levels); (ii) A “slow component” [the sec- 
ond and third terms in (A4) ] of amplitude proportional to 
N, which contains the information we look for in level spac- 
ing correlations. 

For intermediate times (roughly from t = Of to t- 1) 
onegets(]C(t)]*)=N[l-b2(t)].InthecaseofaPoisson 
spectrum Y,( AE) = 0 and then ( 1 C(t) I “) = N for t > 0. On 
the contrary, fully chaotic systems following GOE statistics 
correspond to 1 - b2( t) N 2t for 0 < c 5 1. This is called 
a correlation hole (see Fig. 12 and Refs. 2 and 35 ) and means 
that, due to chaos, the system loses the memory of its initial 
state as soon as t is greater than 0. For cases intermediate 
between fully chaotic and regular systems, the correlation 
hole is less deep and/or abrupt, meaning that for short times 
the memory is lost progressively. The time at which memory 
is lost (C = 0 + for fully chaotic systems and I = + CO for 
regular systems) can be expressed in terms of energy, which, 
in turn, can be expressed in units of mean spacing, i.e., in 
terms of L. In Sec. V, we give a lower limit for L of the order 
of 50 for the vibronic levels of NO,. 

Note that Berry36 has shown that, at the semiclassical 
limit, (]C(t)]‘), or equivalently 1 - b2( t), results from an 
average over peaks corresponding to closed periodic orbits. 
The relationship between level statistics and time behavior 
does not depend on the validity of the semiclassical approxi- 
mation. This is fortunate in the present experiments where 
this approximation is not valid, both because of the moder- 
ate number ( ~4-5) of quanta per mode, and because there 
is no well-defined semiclassical limit for the interaction be- 
tween the two different electronic states, 2A, and 2B2, which 
dominates the dynamics in NO,: at the semiclassical limit, 
the spacing between electronic states must also tend to zero. 

Before going any further it is essential to notice that the 
derivation of Eq. (A3) is obtained by replacing a discrete 
sum over the levels of the spectrum by an average over a 
probability distribution of levels. This corresponds, strictly 
speaking, to an averaging over an ensemble of spectra (de- 
noted by ( * * *) in these equations). In the actual case of a 
single spectrum, one thinks of statistical properties of level 
spacings of this spectrum. However, this is different from 
what has been assumed in the derivation and is also a some- 
what ill-defined notion for a finite sample, and this has im- 
portant consequences. The most evident, when performing 
the Fourier transform of a single spectrum, is that one does 
not obtain the smooth curve described by Eqs. (A3) and 
(A4), but a very “noisy” curve, 100% modulated by spikes, 
whose correlation times are equal to h times the reciprocal of 
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the total energy length of the spectrum. The physical origin 
of this “noise” is that 1 C(t) I* contains enough information 
to reconstruct the very complex original spectrum, within a 
factor of 2 contained in the discarded phases. This noise is 
dubbed “speckle noise” in Ref. 2 because it is a property of 
Fourier transforms analogous to what gives rise to the laser 
speckle phenomenon. ] C( I) I2 is in some sense a much more 
detailed and less smooth information than the two-level 
form factor b2( t). To recover statistical information like 
b2( t) from a given sample, it is always necessary to perform 
some averaging. The finiteness of the sample limits the accu- 
racy of this recovery. The physical meaning of the 100% 
speckle noise is as follows. The standard error on the mea- 
surement of b, (t) for a given value oft is equal to its average 
value (not to the square root of the average as in an ordinary 
Poisson process ) , and this is independent of the level spacing 
statistics in the original spectrum. This precludes any accu- 
racy in the measurement for a sharp value oft. These statisti- 
cal properties of the speckle noise (standard error and time 
correlation length) are such that it is only possible to recover 
an average value of b2 ( t) over a range Sf (in reduced units), 

with a relative accuracy equal to l/,/m. With a given 
finite sample, it is thus always necessary to compromise be- 
tween the length of At and the accuracy of the averaging over 
At. 

Figure 12 of Sec. V displays several examples of smooth- 
ing. We emphasize the different aspects of these various 
smoothed curves, which are discussed in Appendix B. 

In this context X2(L) and A,(L) are two standard ways 
of averaging 1 - b, ( t) , which are compared in Appendix B. 

APPENDIX B: RELATIONS BETWEEN IFT12,8*(L), 

AND As(f) 

Here 2*(L) is a smoothed form of the two-level form 
factor b,(t), the Fourier transform of Mehta’s*’ two-level 
cluster function Y2 ( AE) : 

z*(L) = 
I 

+ - [ 1 - b*(f) I& (L,t)dt, (Bl) 

with a weightingf&ction (see Ref. 1) : 

K,(L,t) = L*[ sin(?rLt)/?rLt]*, (B2) 

sketched in Fig. 13. X*(L) is thus basically a weighting of 
1 - b*(t) between 0 and roughly 1/2L. 

Following Brody et al.,’ A,(L) can be considered as a 
smoothed value of 2*(L) between 0 and L: 

k,cL) = JJ z*(s) (L 3 - 2L *s + &IS. (B3) 
0 

The corresponding smoothing function is shown in Fig. 
14. It thus appears that A,(L) is an averaging of X*(L) 
between 0 and L with a large weight for small L. Roughly, 
this means that A3 (L) corresponds to X2 (L /4) and not to 
Z*(L)!ThiscanbeseeninourdataonFig. 12(c),wherethe 
abscissa of the curve corresponding to 8*(L) should be di- 
vided by about 4 for this curve to superimpose approximate- 
ly onto the curve corresponding to A3 (L ) . 

A, (L > is thus a smoothing of [ 1 - b, ( t) ] with a weight- 
ing function 

0 1 2 3 
L t 

FIG. 13. Weight functions K(L,t) for 2’ and A, smoothing. Note that X2 
smoothes approximately between 0 and 1/2L at half-height, i.e., around 
1/4L, whereas A, smoothes between 1/2L and 2/L (half-height), i.e., 
around l/L. The ratio of smoothing centers is thus 4, so that A,(L) is 
roughly equivalent to 2’(L /4). The A, kernel is normalized so that its area 
fromt= - -tot= + coisLasforthe82kemel(insteadofL/15forthe 
usual A, kernel). 

KA (LJ) = L “[ 1 - F(y)* - 3F’(y)*]/(2y)*, (B4) 

with 

F(y) = sin y/y and y = ?rLt, 

obtained by combining Eqs. (Bl ) and (B3) and inverting 
the order of the integrations.37 This smoothing function is 
sketched in Fig. 13 on the same scale in order to illustrate the 
difference of meaning between B*(L) and A,(L) for the 
same value of L. 

For Poisson statistics 1 - b,(t) = 1 for r > 0. For GOE 
statistics, 1 - b,(t) grows linearly from 0 + and saturates at 
1 for ts 1 in reduced units (i.e., taking an energy unit equal 
to the mean spacing between levels in the spectrum). There- 
fore Z*(L) = L for Poisson statistics because the area of 
Kz (L,t) is equal to L, and is proportional to Log(L) if 
1 - b,(t) is proportional to c between 0 + and l/L. Similar 
conclusions apply to A3 (L), except for the area of K, (L,t) 

being equal to L / 15. 

FIG. 14. Kernel relating A,(L) to Z’(L) as a smoothingofZ2fs) between 
s = 0 and s = L. It thus appears that A,(L) is roughly equivalent to an 

average of Z* around L /4. 
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APPENDIX c: SPURIOUS EFFECTS OF UNFOLDING ON 
LONG RANGE CORRELATION MEASUREMENTS 

First, it is important to understand the problems of un- 
folding in this context, to note that the first term in Eq. (A4) 
for an unfolded spectrum, which is by far the largest due to 
its N* coefficient, is exactly zero for each channel except the 
zeroth, when one uses as usual a discrete Fourier transform 
algorithm like the FFT. However, when the spectrum has 
not been correctly unfolded, the corresponding first term in 
Eq. (A3) is the Fourier transform of the average (noncon- 
stant ) density of states R , (E) and gives an important signal 
at short times, i.e., at large spectral lengths, on the order of 
the total energy width of the spectrum. 

To interpret the effects of unfolding, it is eventually use- 
ful to note that since N(E) is an integral over the spectrum 
S(E), its Fourier components are those ofS( E) divided by t: 
this will enable us to work and think directly with Figs. 7 and 
10 in Sec. V. 

We will discuss the problems associated with unfolding 
on the results of Persch ef uZ.,~ because they are particularly 
important in this case, which makes them easier to under- 
stand. What is immediately seen in Fig. 10 is that the differ- 
ence between N(E) and N., (E) contains a large very low 
frequency component of approximately 1500 cm-’ period, 
versus 2500 cm- ’ for the total range. This low frequency 
component (contained mainly in channel two in the FFT of 
the spectrum displayed in Fig. 15 (a), when integrated with 
Kz (L,t) of Eq. (B2), gives the large quadratic growth of 
X2(L) seen on Fig. 11. When the spectrum is unfolded with a 
more flexible spline function as was done by Zimmermann et 

uZ.,***~ Nay (E) follows this large second channel component, 
eliminating it from the resulting unfolded spectrum, as seen 
in Fig. 15(b). This is the reason why the corresponding 

n al 

l b 

time 

FIG. 15. IFT1’ of the data of Persch et al. (Ref. 9) unsmoothed. (a) With 
N, + a$’ + as6 unfolding: note the strong peak at channel two, which 
corresponds to the large oscillation at very low frequency of N(E) around 
N,, (E) (see Fig. 10). (b) With five variable knots spline unfolding: the 

strong peak at channel two has disappeared (see the text). 

growth disappears in E*(L), leading to an apparently “more 
correlated” spectrum. One first conclusion can thus be 
drawn: since unfolding reduces the first few channels (small 
values of t) of the IF’I’ I*, 2*(L) is extremely sensitive to 
unfolding because it integrates 1 - b2( t) between 0 + and 
I = l/L. On the contrary, A,(L) is less sensitive to unfold- 
ing because the weighting function goes to zero when t + 0. 

The crucial question is now: what unfolding procedure 
is legitimate, that is, which N,, (E) must be used to unfold 
the spectrum? 

There is no well-defined answer except if we know the 
Hamiltonian (or the potential energy surface) .31 In any case 
each unfolding procedure can be seen as a high-pass filter 
that transforms N(E) into Ns (E). Its cutoff frequency f, 
prevents us from studying correlations at distances greater 
than l/f=. For the vibronic levels of NO,, and if the spectrum 
were complete, the dominant contribution of N*” (E) would 
undoubtedly be “E 3” because it follows the law expected for 
the lower energy part of a three mode anharmonic oscillator. 
Now a question arises concerning Persch’s spectrum: is this 
sinelike channel two component of the FFT real or spurious? 
We think that this modulation is due to missing levels. An 
explanation of this sinelike component could be due to a 
larger fraction of missing levels between 15 800 and 16 600 
cm-’ , i.e., in the middle of Fig. 10. This interpretation is 
consistent with the absorption spectrum of Gillispie and 
Khan,30 which shows a minimum of absorption in this ener- 
gy range due to unfavorable bending Franck-Condon fac- 
tors, leading naturally to more missing levels. In this case, 
fitting N(E) with a more flexible NBy (E) would be the best 
that could be done to unfold the spectrum in such a situation, 
but the counterpart is the “building-up” of spurious long 
range correlations. Note that no satisfactory solution can be 
found by playing with unfolding when the spectrum is in- 
complete: a more flexible N,, (E) eliminates more low fre- 
quency components [small t in 1 - b*(f)], and eliminates 
that way any meaningful information that could be con- 
tained from these components. 

‘T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. 
Wong, Rev. Mod. Phys. 53,385 ( 198 1) . 

*L. Leviandier, M. Lombardi, R. Jost, and J. P. Pique, Phys. Rev. Lett. 56, 
2449 (1986). 

3E. Abramson, R. W. Field, D. Imre, K. K. Innes, and J. L. Kinsey, J. 
Chem. Phys. 80,2298 (1986). 

?S. C. Farantos and J. Tennyson, NATO AS1 Series C 1987, Vol. 200, pp. 
15-30. 

‘R. Jost, A. Delon, and E. Pebay-Peyroula, Ber. Bunsenges. Phys. Chem. 
92,412 (1988). 

6K. Yamanouchi, S. Takeuchi, and S. Tsuchiya, J. Chem. Phys. 92,4044 
(1990). 

‘E. HalIer, H. Kappel, and L. S. Cederbaum, J. Mol. Spectrosc. 111, 377 
(1985). 

‘R. E. Smalley, L. Wharton, and D. H. Levy, J. Chem. Phys. 63, 4977 
(1975). 

9G. Persch, E. Mehdizadeh, W. Demtrijder, Th. Zimmerman& H. Kiippel, 
and L. S. Cederbaum, Ber. Bunsenges. Phys. Chem. 92,312 (1988). 

“G. Persch, H. J. Wedder, and W. Demtriider, J. Mol. Spectrosc. 123,356 
(1987). 

“C. F. Jackels and E. R. Davidson, J. Chem. Phys. 63,4672 (1975); 65, 
2941 (1976a); 64,2908 (1976b). 

“G. D. Giliispie, A. V. Khan, A. C. Wahl, R. P. Hosteny, and M. Krauss, J. 

Chem. Phys. 63,3425 (1975). 

Delon, Jost, and Lombardi: NO, excitation spectrum 5717 

J. Chem. Phys., Vol. 95, No. 8,15 October 1991 Downloaded 12 Sep 2002 to 193.48.255.141. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



5718 Won, Jost, and Lombardi: NO* excitation spectrum 

i3G. Hirsch and R. J. Buenker, Can. J. Chem. 63,1542 ( 1985); G. Hirsch, 
R. J. Buenker, and C. Petrongolo, Mol. Phys. 70,835 (1990). 

“C. P. Blahous III, B. F. Yates, Y. Xie, and H. F. Schaefer III, J. Chem. 
Phys. 93,8105 (1990). 

“A Delon and R. Jost, J. Chem. Phys. 95,5686 (1991), preceding paper. 
%‘Hiraoka, K. Shibuya, and K. Obi, J. Mol. Spectrosc. 126,427 (1987). 
“E. Pebay-Peyroula, A. Delon, and R. Jost, J. Mol. Spectrosc. 132, 123 

(1988). 
‘s(a) See AIP Document No. PAPS JCPSA-95-5701-36 for 36 pages of the 

lit of the 175 vibronic bands. Order by PAPS number and journal refer- 
ence from American Institute of Physics, Physics Auxiliary Publication 
Service, 335 East 45thStreet, New York, NY 10017. ThepriceisS1.50for 
each microfiche (98 pages) or $5.00 for photocopies of up to 30 pages, and 
SO.15 for each additional page over 30 pages. Airmail additional. Make 
checks payable to the American Institute of Physics. (b) Readers may 
refer to AIP Document No. PAPS JCPSA-95-5686-6 for 6 pages of the 
comparison between vibronic energies. Order by PAPS number and jour- 
nal reference from American Institute of Physics, Physics Auxiliary Pub- 
lication Service, 335 East 45th Street, New York, NY 10017. The price is 
$1.50 for each microfiche (98 pages) or $5.00 for photocopies of up to 30 
pages, and SO.15 for each additional page over 30 pages. Airmail addi- 
tional. Make checks payable to the American Institute of Physics. 

i9G. Persch, thesis, Kaiserlautem, Germany, 1987. 
‘OH. Nagai, K. Shibuya, and K. Obi, J. Chem. Phys. 93,7656 ( 1990). 

“I?. Pebay-Peyroula, thesis, University of Grenoble, France, 1986. 
2zTh. Zimmermann, H. Kiippel, L. S. Cederbaum, G. Persch, and W. Dem- 

triider, Phys. Rev. Lett. 61,3 (1988). 
23W. J. Lafferty and R. L. Sams, J. Mol. Spectrosc. 66,478 (1977). 
%H. D. Bist and J. C. D. Brand, J. Mol. Spectrosc. 62,60 ( 1976). 
mJ. C. D. Brand P. H. Chiu, and A. R. Hoy, Can. J. Phys. 57,428 (1979). 
26K. Chen, G. P. Wang, C. Kuo, and C. Pei, Chem. Phys. 144,383 (1990). 
27A. Delon, P. Dupr6, and R. Jost (to be published). 
*OF. J. Dyson and hf. L. Mehta, 3. Math. Phys. 4,701 (1963). 
29Th. Zimmermamr, H. Kiippel, and L. S. Cederbaum, J. Chem. Phys. 91, 

3934 ( 1989). See also E. Haller, H. Kii~t~l. and L. S. Cederbaum. Chcm. 
Phys:Lett. iOl,215 (1983). - - . 

mG. D. Gillispie and A. V. Khan, J. Chem. Phys. 65, 1624 (1976). 
“L D. Landau and E. M. Lifschitz, Sfutisricul Physics (Pergamon, New 

York, 1969). 
“R. A. Marcus and 0. K. Rice, J. Phys. Colloid Chem. 55,894 ( 1951). 
“I. Hamilton, J. Chcm. Phys. 93,808l (1990). 
“M. L. Mehta, Random Matrices and StatLstical Theory of Level (Aca- 

demic, New York, 1967). 
“‘J. P. Pique, J. Opt. Sot. Am. B 7, 1816 (1990). 
“6M. V. Berry, Proc. Roy. Sot. London, Ser. A 400,229 (1985). 
“M. Lombardi, P. Labastie, M. C. Bordas, and M. Broyer, J. Chem. Phys. 

89,3479 (1988). 

J. Chem. Phys., Vol. 05, No. 8,15 October 1001 
Downloaded 12 Sep 2002 to 193.48.255.141. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


