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Abstract

In this third note, we deepen, from either an historical and histori-
ographical standpoint, the arguments treated in the previous preprint
hal.archives-ouvertes.fr/hal-00907136 - version 1.

Roughly, the history of entire function theory starts with the theorems of
factorization of a certain class of complex functions, later called entire transcen-
dental functions by Weierstrass (see (Loria 1950, Chapter XLIV, Section 741)
and (Klein 1979, Chapter VI)), which made their explicit appearance around
the mid-1800s, within the wider realm of complex function theory which had
its paroxysmal moment just in the 19th century. But, if one wished to identify,
with a more precision, that chapter of complex function theory which was the
crucible of such a theory, then the history would lead to elliptic function theory
and related factorization theorems for doubly periodic elliptic functions, these
latter being meant as a generalization of trigonometric functions. Following
(Stillwell 2002, Chapter 12, Section 12.6), the early idea which was as at the
basis of the origin of elliptic functions as obtained by inversion of elliptic in-
tegrals, is due to Gauss, Abel and Jacobi. Gauss has such an idea in the late
1790s but didn't publish it; Abel had the idea in 1823 and published it in 1827,
independently of Gauss. Jacobi's independence instead is not quite so clear.
He seems to have been approaching the idea of inversion in 1827, but he was
only spurred by the appearance of Abel's paper. At any rate, his ideas sub-
sequently developed at an explosive rate, up until he published the �rst and
major book on elliptic functions, the celebrated Fundamenta Nova Theoriæ-
Functionum Ellipticarum in 1829. Following (Enriques 1982, Book III, Chapter
I, Section 6), on the legacy left, amongst others, by J.L. Lagrange, N.H. Abel,
C.G.J. Jacobi, A.L. Cauchy and L. Euler, Riemann and Weierstrass quickly
became the outstanding �gures of the 19th century mathematics. Agreeing
with Poincaré in his 1908 Science et méthode, Riemann was an extremely bril-
liant intuitive mathematician, whereas Weierstrass was primarily a logician,
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both personifying, therefore, those two complementary and opposite typical
aspects characterizing the mathematical work. Beyond what had been made
by Cauchy, they created the main body of the new complex function theory
in the period from about 1850 to 1880 (see (Klein 1979, Chapter VI)). Both
received a strong impulse from Jacobi work. The �rst elements of the the-
ory of functions according to Weierstrass date back to a period which roughly
goes on from 1842-43 to 1854; in the meanwhile, Riemann published, in the
early 1850s, his �rst works on the foundations of complex analysis, followed
by the celebrated works on Abelian functions (which are elliptic functions so
named by Jacobi) of the years 1856-57, which dismayed Weierstrass himself,
in�uencing his next research program. This last point should be taken with
a certain consideration. Instead, following (Klein 1979, Chapter VI), in the
period from 1830s to the early 1840s, Weierstrass began to self-taughtly study
Jacobi's Fundamenta nova theoriæ functionum ellipticarum, hence attended
Christoph Gudermann (1798-1852) lectures on elliptic functions. He wrote his
�rst paper in 1841 on modular functions, followed by some other papers wrote
between 1842 and 1849 on general function theory and di�erential equations.
His �rst relevant papers were written in the years 1854-56 on hyperelliptic or
Abelian functions, which engaged him very much. Afterwards, in the wake
of his previous work on analytic, elliptic and Abelian functions, Weierstrass
was led to consider the so-called natural boundaries (that is to say, curves or
points - later called essential singularities - in which the function is not reg-
ularly de�ned) of an analytic function to which Riemann put little attention.
The �rst and rigorous treatment of these questions was given by Weierstrass
in his masterful 1876 paper entitled Zur Theorie der eindeutigen anatytischen
Funktionen, where many new results were achieved, amongst which is the well-
known Casorati-Weierstrass theorem (as we today know it) and the product
factorization theorem. Klein (1979, Chapter VI) states that the content of this
seminal paper surely dated back to an earlier period, and was chie�y motivated
by his research interests in elliptic functions. As pointed out in (Hancock 1910,
Introduction), nevertheless, it is quite di�cult to discern the right contribution
to the elliptic function theory due to Weierstrass from other previous mathe-
maticians, because of the objective fact that Weierstrass started to publish his
lessons and researches only after the mid-1860s.

Weierstrass' theory of entire functions and their product decompositions,
according to Klein, has found its most brilliant application in the (Weierstrass)
theory of elliptic functions, to be precise, in the construction of the basic Weier-
strassian σ-function σ(u); perhaps - Klein says - Weierstrass' theory of entire
functions even originated from his theory of elliptic functions (see also (Bot-
tazzini & Gray 2013, Chapter 6, Section 6.6.3)). Nevertheless, already Gauss
and Abel were gone very close to this σ-function and its properties. Again
Klein says that he wishes to conclude his discussion of Weierstrass' theory
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of complex functions, adding only some remarks on the history, referring to
R. Fricke distinguished review on elliptic functions for more information (see
(Burkhardt et al. 1899-1927, Zweiter Teil, B.3, pp. 177-348)). If we now ask
- again Klein says - from where Weierstrass got the impulse to represent his
functions by in�nite products, we �nd his principal forerunner in G. Eisenstein
(1823-1852), who was also a friend of Riemann with whom often talked about
mathematical questions. In this paper (see (Eisenstein 1847)), Eisenstein did
not attain the fully symmetric normal form, because he still lacked the ex-
ponential factors attached to the individual prime factors that will be then
introduced by Weierstrass for inducing the product to converge in an abso-
lutely manner. As he himself declared, Weierstrass got this idea from Gauss,
who had proceeded in a similar way with his product expansion of the gamma
function in 1812 (see the paper on the hypergeometric series in Weierstrass'
Mathematische Werke, Band ...). It therefore turns out clear that elliptic and
hyperelliptic function theory exerted a notable role in preparing the humus in
which grew up the Weierstrass work on factorization theorem, and not only
this: in general, it exerted a great in�uence on Riemann and Weierstrass work
(see (Bottazzini & Gray 2013, Chapter 4, Section 4.5)). Following (Burkhardt
et al. 1899-1927, Zweiter Teil, B.3, Nr. 15-17, 25, 45, 55), amongst others,
Abel1, Euler, Jacobi, Cayley and Gauss (see (Bottazzini & Gray 2013, Chapter
1, Section 1.5.1.1; Chapter 4, Section 4.2.3.1-2)) had already provided product
expansions of certain elliptic functions, but it was Eisenstein (see (Eisenstein
1847)), with his in�nite product expansion ansatz, the closest forerunner of
the Weierstrass work on his σ function, in turn based on the previous work
made by Jacobi and Gauss. Furthermore, already Cauchy2, since 1843, gave
some useful formulas involving in�nite products and in�nite series which maybe
could have played a certain role in the 1859 Riemann paper in deducing some
properties of that functional equation related to his ξ function (see later), hav-
ing seen too the simple fact that Riemann himself known very well Cauchy's
work. Therefore, in conclusion, Weierstrass himself acknowledges, in di�erent

1In (Greenhill 1892, Chapter IX, Section 258), the author states that the well-known ex-
pressions for the circular and hyperbolic functions in the form of �nite and in�nite products,
have their analogues for the elliptic functions as laid down by Abel in some his researches
on elliptic functions published in the celebrated Crelle's Journal, Issues 2 and 3, years 1827
and 1828. Following (Hancock 1910, Chapter V, Article 89), Abel showed, in the 1820s,
that elliptic functions, considered as the inverse of the elliptic integrals, could be expressed
as the quotient of in�nite products, then systematically reconsidered in a deeper manner by
Jacobi.

2In this regards see (Bellacchi 1894, Chapter X), where an interesting discussion of the
Jacobi series is made, amongst other things highlighting that already Abel, on the wake of
what was done by Johann Bernoulli, had introduced in�nite product expansions of certain
elliptic functions that later Jacobi, in turn, converted into in�nite series by means of trigono-
metric arguments, so giving rise to new elliptic functions (see (Greenhill 1892, Chapter IX,
Section 258)).
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places, his debit both to Gauss and Cauchy, in achieving his celebrated results
on entire function factorization theorem.

In 1858, Riemann wrote his unique paper on number theory, which marked
a revolution in mathematics. According to Laugwitz (1999, Introduction, Sec-
tions 4.1 and 4.2), real and complex analysis has always in�uenced Riemann
work: algebraic geometry appears, in his works, as a part of complex analysis;
he treats number theory with methods of complex function theory; he sub-
sumes physical applications into partial di�erential equations; he replaces the
usual axiomatic conception of geometry by his novel (Riemannian) geometry,
which is a part or real analysis of several variables; and he develops the topol-
ogy of manifolds as a new discipline derived from analysis. Riemann known
the elements of algebraic analysis according to J-L. Lagrange and L. Euler,
through the lessons of his teacher, M.A. Stern (1807-1894), who was one of
the last schoolmasters of the subject. Riemann handled the gamma function
in a secure and self-con�dent way and has dealt with di�erential equations
and recursions in the Euler's manner. The Stern lessons were of very funda-
mental importance to achieve many Riemann's results, even if the celebrated
1748 Euler's Introductio in Analysin In�nitorum was one of the most in�uen-
tial textbooks of the time. Nevertheless, Klein (1979, Chapter VI) states that
Riemann began already to study elliptic and Abelian functions since the late
1840s, because this subject, in the meantime, has become of a certain vogue
in Germany. In the 1855-56 winter term, following the Dirichlet's research
lines, Riemann lectured on functions of a complex quantity, in particular el-
liptic and Abelian functions, while in the 1856-57 winter term he lectured on
the same subject, but now with special regard to hypergeometric series and
related transcendentals. These lectures, from which he drew publications on
Abelian and hypergeometric functions, were partially repeated in the following
semesters. Klein (1979, Chapter VI) points out that the years 1857-62 marked
the high-point of Riemann's creativity. Moreover, Klein states that before to
characterize the speci�c Riemannian function theory work, he wishes to put
forward a remark that may cause some surprise: Riemann did much impor-
tant work in the theory of functions that does not �t into the framework of
his typical theory. Klein refers to the notable 1859 paper on the number of
primes less than a given magnitude, where it is introduced �the Riemann zeta-
function ζ(σ+ it) given by an analytic expression, namely an in�nite product.
This product is converted into a de�nite integral, which can then be evaluated
by shifting the path of integration. The whole procedure is function theory à la
Cauchy�. Therefore, according to what Felix Klein states, the mathematical
background that was at the basis of the Riemannian analytic treatment of his
ζ function, essentially lies on the Cauchy's theory of complex functions. This
is also con�rmed by (Bottazzini & Gray 2013, Chapter 5, Section 5.1), coher-
ently with what has just been said above in regards to the importance played
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by Cauchy's work on the Riemann's one.
According to (Laugwitz 1999, Chapter 1), notwithstanding the era of fer-

ment that concerned the 19th century mathematics, an autonomous and sys-
tematic account of the foundations of complex analysis is �ndable, for the �rst
time, in the Riemann's works and lecture notes through the winter term 1855-
56 to the winter term 1861-62, the latter having been published by the physicist
Carl Ernst Abbe (1840-1905) in the summer term 1861 (see (Ullrich 2003) and
references therein) when he was a student of W. Weber and Riemann in Göt-
tingen. The only systematic and congruous historical attempt to organically
recognize the various Riemann's lessons has been pursued by E. Neuenschwan-
der in (Neuenschwander 1996). In any case, Riemann was fully imbedded into
the real and complex analysis scenery of the �rst middle of the 19th century,
which seen involved the outstanding �gures of Cauchy, Weierstrass and Rie-
mann himself, whose researches were intertwined amongst them more times.
According to (Laugwitz 1999, Chapter 1, Section 1.1.5), just in connection with
the drawing up of his paper on the same subject, Riemann was aware of the
Weierstrass' papers on Abelian functions wrote between 1853 and 1856-57, for
which it is evident that a certain in�uence of the latter on the Riemann's one -
at least, as concerns such a period - there was, even if Weierstrass will publish
these his works only later. Again following (Neuenschwander 1996), one of
the key themes of the last 1861 sommersemester Riemann lectures on analytic
functions, was the determination of a complex function from its singularities.
Thereafter, he clari�es that this problem regards only single-valued functions
de�ned on C ∪ {0} whose unique singularities are poles (the names pole and
essential singularity are respectively due to C.A. Briot and J.C. Bouquet and
to Weierstrass). In turn, the resolution of this problem requires the previous
knowledge of the zeros of the function which has to be determined. At �rst,
Riemann considered the case of a function having a �nite number of zeros and
poles, then he went over the the next question, namely to determine a function
with in�nitely many zeros whose unique point of accumulation if ∞ (which,
inter alia, concerns too the Riemann zeta function theory). But, again follow-
ing (Laugwitz 1999, Chapter 1, Section 1.1.6), in doing so Riemann went over
very close to the next Weierstrass' work on the in�nite product representa-
tion of an entire function, using special cases to explain the general procedure.
Detlef Laugwitz points out that Riemann has pursued this latter task in such
a way that, by following his directions, one could immediately give a proof of
the known Weierstrass' product theorem, even if Riemann ultimately failed in
reaching the general case; nevertheless, for what follows, this last claim has a
certain importance from our historical standpoint.

Indeed, in his renowned paper on the distribution of prime numbers3, Rie-

3This paper was presented by Riemann, after his nomination as full professor in July
1859, to the Berlin Academy for his consequent election as a corresponding member of this
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mann stated the following function

ξ(t)
.
=

(1

2
Γ
(s

2

)

s(s− 1)π−s/2ζ(s)
)

s=1/2+it
(1)

later called Riemann ξ-function. It is an entire function. Riemann conjectured
that (ξ(t) = 0) ⇒ (ℑ(t) = 0), that is to say, the famous Riemann hypothesis
(RH), as it will be called later. Whereupon, he stated that

�This function ξ(t) is �nite for all �nite values of t, and allows itself to
be developed in powers of tt as a very rapidly converging series. Since, for
a value of s whose real part is greater than 1, log ζ(s) = −

∑

log(1 − p−s)
remains �nite, and since the same holds for the logarithms of the other factors
of ξ(t), it follows that the function ξ(t) can only vanish if the imaginary part
of t lies between i/2 and −i/2. The number of roots of ξ(t) = 0, whose real
parts lie between 0 and T is approximately = (T/2) log(T/2)π−T/2π; because
the integral

∫

d log ξ(t), taken in a positive sense around the region consisting
of the values of t whose imaginary parts lie between i/2 and −i/2 and whose
real parts lie between 0 and T , is (up to a fraction of the order of magnitude
of the quantity 1/T ) equal to (T log(T/2)π − T/2π)i; this integral however is
equal to the number of roots of ξ(t) = 0 lying within this region, multiplied by
2πi. One now �nds indeed approximately this number of real roots within these
limits, and it is very probable that all roots are real. Certainly one would wish
for a stricter proof here; I have meanwhile temporarily put aside the search for
this after some �eeting futile attempts, as it appears unnecessary for the next
objective of my investigation. If one denotes by α all the roots of the equation
ξ(t) = 0, one can express log ξ(t) as

∑

log
(

1−
tt

αα

)

+ log ξ(0) (2)

for, since the density of the roots of the quantity t grows with t only as log t/2π,
it follows that this expression converges and becomes for an in�nite t only in-
�nite as t log ξ(t); thus it di�ers from log ξ(t) by a function of tt, that for a
�nite t remains continuous and �nite and, when divided by tt, becomes in-
�nitely small for in�nite t. This di�erence is consequently a constant, whose
value can be determined through setting t = 0. With the assistance of these
methods, the number of prime numbers that are smaller than x can now be
determined�.

latter. To be precise, following (Bottazzini 2003), just due to this election, Riemann and
Dedekind visited Berlin, where they met E.E. Kummer, L. Kronecker and K. Weierstrass.
According to (Dedekind 1876), very likely, it was just from this meeting that sprung out
of the celebrated 1859 Riemann number theory paper that was, then, sent to Weierstrass
himself, to be published in the November issue of theMonatsberichte der Berliner Akademie.
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So, in his celebrated 1859 paper, Riemann himself had already reached an
in�nite product factorization of ξ(t), namely the (2), which can be equiva-
lently written as follows

log ξ(t) =
∑

α

log
(

1−
tt

αα

)

+ log ξ(0) = log ξ(0)
∏

α

(

1−
t2

α2

)

(3)

from which it follows that ξ(t) = ξ(0)
∏

α

(

1−t2/α2). Thus, questions related to
entire function factorizations had already been foreshadowed in this Riemann
work. Therefore, we now wish to outline the main points concerning the very
early history of entire function factorization theorems, having taken the 1859
Riemann paper as an occasional starting point of this historical question, in
which, inter alia, a particular entire function factorization - i.e. the (3) - has
been used. In short, this 1859 Riemann paper has been a valuable καιρóς to
begin to undertake one of the many study's branch which may depart from this
milestone of the history of mathematics, to be precise that branch concerning
the entire function theory which runs parallel to certain aspects of the theory
of Riemann zeta function, with interesting meeting points with physics. One
of the very few references which allude to these Riemann paper aspects is the
article by W.F. Osgood in (Burkhardt et al. 1899-1927, Zweiter Teil, B.1.III,
pp. 79-80), where, discussing of the gender of an entire function, an in�nite
product expansion of the function sin πs/πs is considered; to be precise, since
Johann Bernoulli to Euler, the following form4 had already been deduced (see
(Bellacchi 1894, Chapter XI))

sin πs

πs
=

∞
∏

n=1

(

1−
s2

n2

)

which has gender 0. Following (Stopple 2003, Chapter 6, Section 6.1), Euler's
idea is to write the function sin πx/πx as a product over its zeros, analogous

4As n → ∞ and t ̸= 0, Weierstrass proved to be sinπt/πt =
∏

∞

n=−∞
(1 − t/n)et/n - see

(Bellacchi 1894, Chapter XI). But, according to (Bellacchi 1894, Chapter XI) and (Hancock
1910, Chapter I, Arts. 13, 14), Cauchy was the �rst to have treated (in the Exercises de
Mathématiques, IV) the subject of decomposition into prime factors of circular functions
and related convergence questions, from a more general standpoint. Although Cauchy did
not complete the theory, he however recognized that, if a is a root of an integral (or entire)
transcendental function f(s), then it is necessary, in many cases, to join to the product of
the in�nite number of factors such as (1 − s/a), a certain exponential factor eP (s), where
P (s) is a power series in positive powers of s. Weierstrass gave then a complete treatment
of this subject. On the other hand, besides what has already been said above, also in
(Greenhill 1892, Chapter IX, Section 258)) it is pointed out that, since Abel's work, the
in�nite product expansions of trigonometric functions have been formal models from which
to draw inspiration, by analogy, for further generalizations or extensions.
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to factoring a polynomial in terms of its roots. For example, if a quadratic
polynomial f(x) = ax2 + bx + c has roots α, β di�erent from 0, then we can
write f(x) = c(1 − x/α)(1 − x/β). On the other hand, sin πx = 0 when

x = 0,±1,±2, ... and since sin πx/x = 1 − π2x2/6 + O(x4), sin πx/πx
x→0
→ 1

and sin πx/πx = 0 when x = ±1,±2, ..., Euler guessed that sin πx/πx had a
factorization as a product

sin πx

πx
=

(

1−
x

1

)(

1 +
x

1

)(

1−
x

2

)(

1 +
x

2

)

... =

=
(

1−
x2

1

)(

1−
x2

4

)(

1−
x2

9

)(

1−
x2

16

)

...

which will lead later to a valid proof of this factorization. Then, even in the
context of the history of entire function factorization theorems, W.F. Osgood
points out that already Riemann, just in his famous 1859 paper, had considered
an entire function, the ξ(s), as a function of s2 with gender 0, but without
giving any rigorous prove of this fact, which will be done later by J. Hadamard.
In the next sections, when we will deepen the works of Hadamard and Pólya
on the entire function theory related to Riemann zeta function, we also will try
to clarify, as far as possible, these latter aspects of the 1859 Riemann paper
which mainly constitute one of the central cores of the present work.

Following (Stopple 2003, Chapter 10, Section 10.1), it was Riemann to re-
alize that a product formula for ξ(s) would have had a great signi�cance for
the study of prime numbers. The �rst rigorous proof of this product formula
was due to Hadamard but, as himself remember, it took almost three decades
before he reached to a satisfactory proof of it. Likewise, also H.M. Edwards
(1974, Chapter 1, Sections 1.8-1.19) a�rms that the parts concerned with (2)
are the most di�cult portion of the 1859 Riemann's paper (see also (Bottazzini
& Gray 2013, Chapter 5, Section 5.10)). Their goal is essentially to prove that
ξ(s) can be expressed as an in�nite product, stating that

�[...] any polynomial p(t) can be expanded as a �nite product p(t) =
p(0)

∏

ρ(1 − t/ρ) where ρ ranges over the roots of the equation p(t) = 0 [ex-
cept that the product formula for p(t) is slightly di�erent if p(0) = 0]; hence
the product formula (2) states that ξ(t) is like a polynomial of in�nite degree.
Similarly, Euler thought of sin x as a �polynomial of in�nite degree5� when he
conjectured, and �nally proved, the formula sin x = πx

∏

n∈N

(

1− (x/n)2
)

. On
other hand, [...] ξ(t) is like a polynomial of in�nite degree, of which a �nite
number of its terms gives a very good approximation in any �nite part of the

5Following (Bottazzini & Gray 2013, Chapter 8, Section 8.5.1), amongst the functions
that behave very like a polynomial, there is the Riemann ξ function. In this regards, see
also what will be said in the next section 5 about Lee-Yang theorems and, in general, the
theory concerning the location of the zeros of polynomials.
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plane. [...] Hadamard (in 1893) proved necessary and su�cient conditions for
the validity of the product formula ξ(t) = ξ(0)

∏

ρ(1− t/ρ) but the steps of the
argument by which Riemann went from the one to the other are obscure, to
say the very least�.

The last sentence of this Edwards' quotation is historically quite interesting
and would deserve further attention and investigation. Furthermore, H.M. Ed-
wards states too that

�[...] a recurrent theme in Riemann's work is the global characterization
of analytic functions by their singularities. See, for example, the Inaugurald-
issertation, especially Article 20 of Riemann's Werke (pp. 37-39) or Part 3
of the introduction to the Riemann article �Theorie der Abel'schen Functio-
nen�, which is entitled �Determination of a function of a complex variable by
boundary values and singularities�. See also Riemann's introduction to Pa-
per XI of the his collected works, where he writes about � [...] our method,
which is based on the determination of functions by means of their singular-
ities (Umtetigkeiten und Unendlichwerden) [...]�. Finally, see the textbook of
Ahlfors (1979), namely the section 4.5 of Chapter 8, entitled �Riemann's Point
of View��,

according to which Riemann was therefore a strong proponent of the idea
that an analytic function can be de�ned by its singularities and general prop-
erties, just as well as or perhaps better than through an explicit expression,
in this regards showing, with Riemann, that the solutions of a hypergeometric
di�erential equation can be characterized by properties of this type. In short,
all this strongly suggests us the need for a deeper re-analysis of Riemann ÷uvre
concerning these latter arguments, as well as a historical seek for the math-
ematical background which was at the origins of his celebrated 1859 number
theory paper. From what has just been said, it turns out clear that a look
at the history of entire function theory, within the general and wider complex
function theory framework, is needed to clarify some of the historical aspects of
this in�uential seminal paper which, as Riemann himself recognized, presented
some obscure points. In this regards, also Gabriele Torelli (1901, Chapter VIII,
Sections 60-64) claimed this last aspect, pointing out, in particular, on the Rie-
mann's ansätz according to which the entire function ξ(t) is equal, via (3), to
the Weierstrass' in�nite product of primary factors without any exponential
factor. As is well-known, this basic question will be brilliantly solved by J.
Hadamard in his famous 1892 paper that, inter alia, will mark a crucial mo-
ment in the history of entire function theory (see (Maz'ya & Shaposhnikova
1998, Chapter 9, Section 9.2) and next sections).

An historical account of entire factorization theorems from Weierstrass on-
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ward. To begin, we wish to preliminarily follow the basic textbook on complex
analysis of Giulio Vivanti (1859-1949), an Italian mathematician whose main
research �eld was into complex analysis, becoming an expert of the entire
function theory. He wrote some notable treatises on entire, modular and poly-
hedral analytic functions: a �rst edition of a prominent treatise on analytic
functions appeared in 1901, under the title Teoria delle funzioni analitiche,
published by Ulrico Hoepli in Milan, where the �rst elements of the theory of
analytic functions, worked out in the late 19th-century quarter, are master-
fully exposed into three main parts, giving a certain load to the Weierstrass'
approach respect to the Cauchy's and Riemann's ones. The importance of this
work immediately arose, so that a German edition was carried out, in collab-
oration with A. Gutzmer, and published in 1906 by B.G. Teubner in Leipzig,
under the title Theorie der eindeutigen analytischen funktionen. Umarbeitung
unter mitwirkung des verfassers deutsch herausgegeben von A. Gutzmer, which
had to be considered as a kind of second enlarged and revised edition of the
1901 �rst Italian edition according to what Vivanti himself said in the preface
to the 1928 second Italian edition, entitled Elementi della teoria delle fun-
zioni analitiche e delle trascendenti intere, again published by Ulrico Hoepli
in Milan, and written following the above German edition in which many new
and further arguments and results were added, also as regards entire func-
tions. Almost all the Vivanti's treatises are characterized by the presence of
a detailed and complete bibliographical account of the related literature, this
showing the great historical attention that he always put in drawing up his
works. Therefore, he also was a valid historian of mathematics besides to be
an able researcher (see (Janovitz & Mercanti 2008, Chapter 1) and references
therein), so that his works are precious sources for historical studies, in our
case as concerns entire functions. The above mentioned Vivanti's textbook on
complex analysis has been one of the most in�uential Italian treatises on the
subject. It has also had wide international fame thanks to its German edition.

Roughly speaking, the transcendental entire functions may be formally
considered as a generalization, in the complex �eld, of polynomial functions.
Following (Vivanti 1928, Sections 134-135), (Marku²evi£ 1988, Chapter VII)
and (Pierpont 1914, Chapter VIII, Sections 127 and 140), the great analogy
subsisting between these two last function classes suggested the search for an
equal formal analogy between the corresponding main properties. To be pre-
cise, the main properties of polynomials concerned either with the existence of
zeros (Gauss' theorem) and the linear factor decomposition of a polynomial,
so that it was quite obvious trying to see whether these could be, in a cer-
tain way, extended to entire functions. As regards the Gauss' theorem, it was
immediately realized that it couldn't subsist because of the simple counterex-
ample given by the fundamental elementary transcendental function ex which
does not have any zero in the whole of complex plane. On the other hand, just
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this last function will provide the basis for building up the most general entire
function which is never zero, which has the general form eG(x), where G(x) is
an arbitrary entire function, and is said to be an exponential factor. Then,
the next problem consisted in �nding those entire functions having zeros and
hence how it is possible to build up them from their zero set. In this regards,
it is well-known that, if P (z) is an arbitrary non-zero polynomial with zeros
z1, ..., zn ∈ C\0, having z = 0 as a zero with multiplicity λ (supposing λ = 0 if
P (0) = 0), then we have the following well-known �nite product factorization6

P (z) = Czλ
n
∏

j=1

(

1−
z

zj

)

(4)

where C ∈ C \ 0 is a constant, so that a polynomial, except a constant fac-
tor, may be determined by its zeros. For transcendental entire functions, this
last property is much more articulated respect to the polynomial case: indeed,
whilst the indeterminacy for polynomials is given by a constant C, for transcen-
dental entire functions it is larger and related to the presence of an exponential
factor which is need to be added to warrant the convergence of in�nite product
development. A great part of history of the approach and resolution of this
last problem is the history of entire function factorization. Nevertheless, we
also wish to report what says Giacomo Bellacchi (1894, Chapter XI, Section
98) about this last problem. To be precise, he states that

�Se a1, a2, a3, ..., an, .... simboleggino le radici semplici di una funzione olo-
morfa f(z), ed il quoziente f(z) :

∏

(z− an) non si annulli per alcuna di esse,
la sua derivata logaritmica ψ′(z) = f ′(z)/f(z)−

∑

(1/(z − an)) è olomorfa in
tutto il piano; moltiplicando i due membri per dz ed integrando, Cauchy giunse

6It is noteworthy the historical fact pointed out by Giuseppe Bagnera (1927, Chapter III,
Section 12, Number 73), in agreement to what has been likewise said above, according to
which already Cauchy himself had considered �rst forms of in�nite product developments,
after the Euler's work. Also Bagnera then, in this his work, quotes Betti's work on elliptic
functions and related factorization theorems. Instead, it is quite strange that the Italian
mathematician Giacomo Bellacchi (1838-1924) does not cite Betti, in his notable historical
work on elliptic functions (Bellacchi 1894) in regards to entire function factorization theo-
rems which are treated in the last chapter of this his work; this is also even more strange
because Chapter XI of his book is centered around the 1851 Riemann dissertation on com-
plex function theory, without quoting the already existed Italian translation just due to
Betti. Furthermore, Bellacchi studied at the Scuola Normale Superiore of Pisa in the 1860s,
for which it is impossible that he had not known Betti (see (Maroni 1924)). On the other
hand, also (Loria 1950, Chapter XLIV, Section 741) refers that Weierstrass found inspiration
for his factorization theorem, a result of uncommon importance according to Gino Loria,
generalizing a previous Cauchy's formula: indeed, both Cauchy and Gauss are quoted at p.
120 of the 1879 French translation of the original 1876 Weierstrass paper. This, to further
con�rmation of what has been said above.
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alla formula f(z) = Ceψ(z)
∏

(1− z/an), dove C è una costante�

[�If a1, a2, a3, ..., an, .... represent the simple roots of a holomorphic function
f(z), and the ratio f(z) :

∏

(z − an) is not zero for each root, then its loga-
rithmic derivative ψ′(z) = f ′(z)/f(z) −

∑

(1/(z − an)) is holomorphic in the
whole of plane; multiplying both sides by dz and integrating, Cauchy reached
the formula f(z) = Ceψ(z)

∏

(1− z/an), where C is a constant�],

so that it seems, according to Bellacchi, that already Cauchy had descried
the utility of exponentials as convergence-producing factors, in a series of his
papers published in the Tome XVII of the Comptes Rendus de l'Académie des
Sciences (France); this supposition is also con�rmed by Hancock (1910, Chap-
ter I, Art. 14). Nevertheless, following (Vivanti 1928, Sections 135-141), the
rise of the �rst explicit formulation of the entire function factorization theorem
was given by Weierstrass in 1876 (see (Weierstrass 1876)) and was mainly moti-
vated by the purpose to give a solution to the latter formal problem, concerning
the convergence of the in�nite product development of a transcendental entire
function f(z) having an in�nite number of zeros, namely z = 0, with multi-
plicity λ, and z1, ..., zn, ... such that 0 < |zj| ≤ |zj+1|, zj ̸= zj+1 j = 1, 2, ...,
trying to extend the case related to a �nite number of zeros z1, ..., zn, in which
such a factorization is given by

f(z) = eg(z)zλ
n
∏

j=1

(

1−
z

zj

)

, (5)

to the case of in�nite zeros, reasoning, by analogy, as follows. The set of in�nite
zeros zj is a countable set having only one accumulation point, that at in�nite.
Therefore, for every in�nite increasing natural number sequence {ρi}i∈N, it will
be always possible to arrange the zeros zj according to their modulus in such
a manner to have the following non-decreasing sequence |z1| ≤ |z2| ≤ ... with
limn→∞|zn| = ∞. In such a case, if one wants, by analogy, to extend (5) as
follows

f(z) = eg(z)zλ
∞
∏

j=1

(

1−
z

zj

)

, (6)

then it will not be possible to fully avoid divergence's problems inherent to the
related in�nite product. The �rst hint towards a possible overcoming of these
di�culties, was suggested to Weierstrass (see (Weierstrass 1856a)) by looking
at the form of the inverse of the Euler integral of the second kind - that is to
say, the gamma function - and given by

1

Γ(z)
= z

∞
∏

j=1

(

1 +
z

j

)( j

1 + j

)z

= z

∞
∏

j=1

(

1 +
z

j

)

e−z log
j+1

j , (7)
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from which he descried the possible utility of the exponential factors there
involved to, as the saying goes, force the convergence of the in�nite product
of the last equality; these his ideas concretized only in 1876 with the explicit
formulation of his celebrated theorem on the entire function factorization.

As we have said above, Weierstrass (1856a) attributes, however, the in�nite
product expansion (7) to Gauss, but some next historical studies attribute to
Euler this formula, that he gave in the famous 1748 Introductio in Analysin
In�nitorum. Indeed, as has been said above, from the 1879 French transla-
tion of the original 1876 Weierstrass paper, it turns out that both Cauchy and
Gauss are quoted (at page 120), before to introduce the primary factors. Nev-
ertheless, P. Ullrich (1989, Section 3.5) says that the real motivation to these
Weierstrass' results about entire function factorization were mainly due to at-
tempts to characterize the factorization of quotients of meromorphic functions
on the basis of their zero sets, rather than to solve the above problem related
to the factorization of a polynomial in dependence on its zeros. Furthermore,
Ullrich (1989, Section 3.5) observes too that other mathematicians dealt with
questions concerning entire function factorization methods, amongst whom are
just Enrico Betti and Bernard Riemann, the latter, in his important 1861 som-
mersemester lectures on analytic functions, arguing, as has already been said,
upon the construction of particular complex functions with simple zeros, even
if, all things considered, he didn't give, according to Ullrich (1989, Section 3.5),
nothing more what Euler done about gamma function through 1729 to his cele-
brated 1748 treatise on in�nitesimal analysis7. Instead, as we have seen above,
D. Laugwitz (1999, Chapter 1, Section 1.1.6) states that Riemann's work on
meromorphic functions was ahead of the Weierstrass' one, having been carried
out with originality and simplicity. To this point, for our purposes, it would
be of a certain importance to deepen the possible relationships between Rie-
mann and Weierstrass, besides to what has been said above: for instance, in
this regards, Laugwitz (1999, Chapter 1, Section 1.1.5) says that Riemann was
aware of the Weierstrass' works until 1856-57, in connection with the com-
position of his paper on Abelian functions, in agreement with what has been
said in the previous sections. Again according to (Laugwitz 1999, Chapter 1,
Section 1.1.6), one of the key themes of Riemann's work on complex function
theory was the determination of a function from its singularities which, in turn,
implies the approach of another problem, the one concerning the determina-
tion of a function from its zeros. In this regards, Riemann limited himself to
consider the question to determine a function with in�nitely many zeros whose
only point of accumulation is ∞. What he is after is the product representa-
tion later named after Weierstrass. Riemann uses a special case to explain the

7Following (Lunts 1950), (Marku²eci£ 1988, Chapter VII) and references therein, also
Loba£evskij, since 1830s, made some notable studies on gamma function which preempted
times.
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general procedure. He does it in such a way that by following his direction one
could immediately give a proof of the Weierstrass product theorem. Therefore,
it would be hoped a deeper study of these 1857-61 Riemann's lectures on com-
plex function theory to historically clarify this last question which is inside
the wider historical framework concerning the work of Riemann in complex
function theory.

Furthermore, to this point, there seems not irrelevant to further highlight,
although in a very sketchily manner, some of the main aspects of the history of
gamma function. To this end, we follow the as many notable work of Reinhold
Remmert (1998) which, besides to mainly be an important textbook on some
advanced complex analysis topics, it is also a very valuable historical source
on the subject, which seems to remember the style of the above mentioned Vi-
vanti's textbook whose German edition, on the other hand, has always been a
constant reference point in drawing up the Remmert's textbook itself. Follow-
ing (Remmert 1998, Chapter 2), the early origins of gamma function should be
searched into the attempts to extend the function n! to real arguments. Euler
was the �rst to approach this problem since 1729, giving a �rst expression of
this function, in a letter to Goldbach (see (Whittaker & Watson 1927, Chap-
ter XII, Section 12.1)), providing a �rst in�nite product expression of this new
function, but only for real values. Gauss, who did not know Euler work, also
taking into account Newton's work on interpolation (see (Schering 1881, Sec-
tions XI and XII)), in 1811 considered as well complex values, denoting such
a new function with Π, while it was Legendre, in 1814, to introduce a uni�ed
notation both for Euler and Gauss functions, denoting these latter with Γ(z)
and speaking, since then, of gamma function. Afterwards, in 1854, Weierstrass
began to consider an Euler in�nite product expansion of the function 1/Γ(z),
that he denoted with Fc(z) and is given by 1/Γ(z) = zeγz

∏∞

j=1(1+ z/j)e−z/j,
where γ is the well-known Euler-Mascheroni constant8, from which he maybe
recognized, for the �rst time, the importance of the use of exponential factors
as in�nite product convergence-producing elements. However, according to
(Whittaker & Watson 1927, Chapter XII, Section 12.1), the formula (7) had
already been obtained by F.W. Newman (1848) starting from Euler's expres-
sion of gamma function given by (7).

Following (Vivanti 1928, Section 135-141), (Remmert 1998, Chapter 3)
and, above all, (Bottazzini & Gray 2013, Section 6.7), Weierstrass extended
the product (5) in such a manner to try to avoid divergence problems with
the ad hoc introduction, into the product expansion, of certain forcing con-
vergence factors. This attempt was successfully attended, since 1874, as a
solution to a particular question - the one which may be roughly summarized
as the attempt to build up an entire transcendental function with prescribed
zeros - which arose within the general Weierstrass' intent to solve the wider

8See (Pepe 2012) for a contextual brief history of the Euler-Mascheroni constant.
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problem to �nd a representation for a single-valued function as a quotient of
two convergent power series. To be precise, he reached, amongst other things,
the following main result

�Given a countable set of non-zero complex points z1, z2, ..., such that 0 <
|z1| ≤ |z2| ≤ ... with limn→∞ |zn| = ∞, then it is possible to �nd, in in�nite
manners, a non-decreasing sequence of natural numbers p1, p2, ... such that
the series

∑∞

j=1 |z/zj|
pj+1 be convergent for every �nite value of z, in such a

manner that the most general entire function which is zero, with their own
multiplicity, in the points z1, z2, ..., and has a zero of order λ in the origin, is
given by9

f(z) = eg(z)zλ
∞
∏

j=1

(

1−
z

zj

)

Ej(z) (8)

where Ej(z) = (1 − z)(
∑j

i=1 z
i/i) for j ≥ 1 and E0(z) = 1 − z, g(z) being an

arbitrary entire function, and the in�nite product is absolutely convergent for
each �nite value of |z|�.

The factors Ej(z) will be later called Weierstrass' factors, whilst the num-
bers pj will be called convergence exponents. The sequence Ej(z)j∈N0

plays a
very fundamental role in the Weierstrass' theorem: from the equation

1− z = exp(log(1− z)) = exp(−
∑

i≥1

zi/i), (9)

Weierstrass obtained the formula Ej(z) = exp(−
∑

i>j z
j/j) in proving conver-

gence properties which, on the other hand, would have been easier obtained
by means of the following estimates

|Ej(z)− 1| ≤ |z|j+1, ∀j ∈ N0, ∀z ∈ C, |z| ≤ 1 (10)

that have been proved only later. Amongst the �rst ones to have made this,
seems there having been L. Fejér (see (Hille 1959, Section 8.7)), but the argu-
ment appears as early as 1903 in a paper of Luciano Orlando10 (1903) which
starts from Weierstrass' theorem as treated by Borel's monograph on entire
functions. As has already been said above, Weierstrass was led to develop his

9Historically, in relation to (8), the function f(z) was usually denoted, d'après Weier-
strass, by G(z), whilst zλ

∏

∞

j=1(1− z/zj)Ej(z) was named canonical (or primitive) function
- see (Sansone 1972, Chapter IV, Section 3), where there are too many interesting historical
notes.

10Luciano Orlando (1887-1915) was an Italian mathematician prematurely died in the
First World War - see the very brief obituary (Marcolongo 1918) as well as (Rouse Ball
1937, Appendix II, pp. 430-431). His supervisors were G. Bagnera and R. Marcolongo who
led him to make researches in algebraic integral equation theory and mathematical physics.
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theory by the chief objective to establish the general expression for all analytic
functions meromorphic in C except in �nitely many points, reaching the scope
after a series of previous futile attempts only in 1876, with notable results,
spelt out in (Weierstrass 1876), concerning the class of transcendental entire
functions. But what was new and sensational in the Weierstrass' construction
was just the introduction and the application of the so-called convergence-
producing factors (or primary factors or Weierstrass' factors) which strangely
have no in�uence on the behavior and distribution of the zeros.

Towards the theory of entire functions. In his necrology to Weierstrass,
Poincaré (1899, Section 6) said that Weierstrass' major contribution to the
development of function theory was just the discovery of primary factors. Also
Hermite was, in a certain sense, astonished and intrigued from the introduction
of this new Weierstrass' notion of prime factor, which he considered of capital
importance in analysis and making later notable studies in this direction; he
also suggested to Èmile Picard to do a French translation of the original 1876
Weierstrass' work, so opening a French research trend on this area. En pas-
sant, we also point out the fact that, from the notion of prime factor and from
the convergence of the in�nite product

∏

j∈NEj(z/aj), representing an entire
transcendental function vanishing, in a prescribed way, in each aj, Hilbert
drew inspiration to formulate his valuable algebraic notion of prime ideal11.
Following (Pincherle 1922, Chapter IX, Section 137), (Vivanti 1928, Section
136), (Burckel 1979, Chapter XI), (Remmert 1998, Chapters 3 and 6), (Ull-
rich 1989, Section 3.5) and (Bottazzini & Gray 2013, Sections 5.11.5 and 6.7),
since the late 1850s, Enrico Betti had already reached notable results, about
convergence properties of in�nite products of the type (6), very near to the
Weierstrass' ones related to the resolution of a fundamental problem of en-
tire function theory, the so-called Weierstrass' problem12 (see (Pincherle 1922,
Chapter IX, Section 137)). Betti exposed these outcomes in his celebrated
1859-60 Pisa lectures on advanced analysis entitled La teorica delle funzioni
ellittiche (see (Betti 1903-1913, Tomo I, XXII)), published in the Tomes III and

11Usually, the notion of prime ideal of the commutative algebra, with related operations,
would want to be stemmed from the factorization of natural numbers.

12Following (Forsyth 1918, Chapter V, Section 50) and (Bottazzini & Gray 2013, Section
4.2.3.2), in relation to the in�nite product expression of an entire transcendental function
prior to 1876 Weierstrass' paper, attention should be also paid to a previous 1845 work of
A. Cayley on doubly periodic functions. Furthermore, following (Tannery & Molk 1893,
Section 85), into some previous 1847 works of G. Eisenstein on elliptic functions, some
notable problems having to do with the construction of analytic functions with prescribed
zeros as a quotient of entire functions with the involvement of certain transcendental entire
functions of exponential type (similar to the Weierstrass problem as historically related to
meromorphic functions), had already been considered. See also certain function's quotients
stemmed from the developments of certain determinants given in (Gordan 1874). In any
case, all these historical considerations con�rm, once again, that the prolegomena of entire
function factorization theorems should be searched in the general history of elliptic functions.
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IV of the Annali di matematica pura ed applicata, Series I, after having pub-
lished, in the Tome II of these Annali, an Italian translation of the celebrated
1851 Riemann's inaugural dissertation on complex function theory, which can
be considered as an introduction to his next lectures on elliptic functions. In-
deed, in these latter, Betti before all places an Introduction on the general
principles on complex functions, essentially based on these 1851 Riemann lec-
tures. From the point 3. onward of this Introduction, Betti starts to deal with
entire functions, their �nite and in�nite zeros (there called roots), as well as
on possible quotients between them. In particular, taking into account what
is said in (Briot & Bouquet 1859), he considered in�nite products of the type
∏

ρ(1−z/ρ), where ρ are the zeros of an entire function, with the introduction
of a factor of the type ew, where w is an arbitrary entire function, to make
convergent this in�nite product. Furthermore, Betti dealt with this type of
in�nite products starting to consider in�nite product representations of the
following particular function es(z) = z

∏∞

m=1(m/(m + 1))z(1 + z/m), which
satis�es some functional equations and veri�es the relation Γ(z) = 1/es(z).
Therefore, as Weierstrass too will do later, Betti started from the consider-
ation of the in�nite product expansion of the inverse of the gamma function
for studying the factorization of entire functions. Therefore, Betti guessed
the utility of the convergence factors having exponential form, looking at the
in�nite product expansion of Gamma function, similarly to what Weierstrass
will do. Afterwards, Betti proved some theorems which can be considered
particular cases of the next Weierstrass' results, concluding a�rming that

�Da questi teoremi si deduce che le funzioni intere potranno decomporsi in
un numero in�nito di fattori di primo grado ed esponenziali, e qui compar-
isce una prima divisione delle funzioni intere. Quelle che hanno gl'indici delle
radici in linea retta, e quelle che le hanno disposte comunque nel piano; le
prime, che sono espresse da un prodotto semplicemente in�nito, le chiamer-
emo di prima classe, le seconde, che sono espresse da un prodotto doppiamente
in�nito, le diremo di seconda classe. Le funzioni di prima classe si dividono
anch'esse in due specie, la prima, che comprende quelle che hanno gl'indici
delle radici disposti simmetricamente rispetto a un punto, e che possono es-
primersi per un prodotto in�nito di fattori di primo grado, le altre, che hanno
gl'indici delle radici disposti comunque sopra la retta, le quali si decomporranno
in fattori di primo grado ed esponenziali. Ogni funzione intera di prima classe
della prima specie potrà decomporsi nel prodotto di più funzioni intere della
stessa classe di seconda specie, e data una funzione della seconda specie se ne
potrà sempre trovare un'altra che moltiplicata per la medesima dia per prodotto
una funzione della prima specie. Le funzioni di seconda classe si dividono
anch'esse in due specie; la prima comprenderà quelle che hanno gl'indici delle
radici disposti egualmente nei quattro angoli di due assi ortogonali, in modo
che facendo una rotazione intorno all'origine di un quarto di circolo, gl'indici
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di tutte le radici vengano a sovrapporsi, le quali funzioni possono esprimersi
per un prodotto doppiamente in�nito di fattori di primo grado; la seconda com-
prenderà quelle che hanno gl'indici disposti comunque, e si decompongono in
un prodotto doppiamente in�nito di fattori di primo grado e di fattori espo-
nenziali. Data una funzione della seconda specie se ne potrà sempre trovare
un'altra che moltiplicata per quella dia una funzione della prima specie�.

[�From these theorems, we deduce that entire functions might be decom-
posed into an in�nite number of �rst degree factors and exponential factors, so
that here there is a �rst classi�cation of entire functions according to that their
root's indexes lie along a line or are arbitrarily placed in the plane; the former
are said to be of �rst class and are expressed by a simply in�nite product, while
the latter are said to be of second class and are expressed by a doubly in�nite
product. The functions of the �rst class are, in turn, classi�ed into two kinds:
the �rst one comprises those functions having the root's indexes symmetrically
placed respect to a point and that can be expressed by an in�nite product of �rst
degree factors; the second one comprises those functions having root's indexes
arbitrarily placed along a line and that can be expressed by an in�nite product
both of �rst degree factors and of exponential factors. Each entire function
of �rst class and of �rst kind might be decomposed into the product of other
entire functions of the same class and of the second kind; furthermore, given a
function of the second kind, it is always possible to �nd another function that
multiplied by the former, the product gives rise to another function of the �rst
kind. Likewise, the functions of the second class are divided into two kinds:
the �rst one comprises those functions having the root's indexes equally placed
into the four angles of the two orthogonal cartesian axes in such a manner
that all these are overlapped through a π/2 radian rotation around the origin,
and are decomposable into a doubly in�nite product of �rst degree factors; the
second one includes those functions having the root's indexes arbitrarily placed
and that are decomposable into a doubly in�nite product of �rst degree factors
and exponential factors. Furthermore, given a function of the second kind, it
is always possible to �nd another function that multiplied by the former, the
product gives rise to a function of �rst kind�].

Then, Betti carries on treating entire functions in the �rst part of his lessons on
elliptic functions, followed by a second part devoted to quotients of functions,
mentioning either the paper (Weierstrass 1856a) and the paper (Weierstrass
1856b). Therefore, Betti's work on entire function factorization, made in the
period 1860-63, was very forerunner of the Weierstrass' one: this is con�rmed
either by (Rouse Ball 1937, Appendix II, pp. 376-384)) and by (Federigo En-
riques 1982, Book III, Chapter I, Section 6), in which it is pointed out that the
fundamental Weierstrass' theorem on the factorization of entire transcendental
functions from their zeros, had already been discovered by Betti, highlighting
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however as the Pisa's mathematician, with singular personal disinterestedness,
wanted not claim it as due to him. Indeed, following Francesco Cecioni's com-
ments about some works of Ulisse Dini (see (Dini 1953-59, Volume II)), it turns
out that Betti's work could easily reach, only with very slight modi�cations,
the same generality and abstraction of the Weierstrass' one, as Dini explicitly
proved in (Dini 1881); furthermore, Dini proved too that Betti's work could
be able to give a particular case, given in the years 1876-77, of the general
Gösta Mittag-Le�er theorem - see (Mittag-Le�er 1884), (Vivanti 1928, Sec-
tion 145), (Loria 1950, Chapter XLIV, Section 752) and (Bottazzini & Gray
2013, Section 6.7.6) - independently by what Weierstrass himself was doing in
the same period, in regards to these latter arguments. Cecioni says that this
Dini's work had already been worked out since 1880, whilst the Weierstrass'
theorem was published in 1876 - see (Weierstrass 1876). Thus, much before,
namely in 1860, Betti had proved, as we have already said, a particular but
important case of this theorem, albeit he didn't go beyond, because the results
achieved by him were enough to his pragmatic scopes concerning Abelian and
elliptic functions13, and, as also Pincherle (1922, Chapter IX, Section 135) has
claimed, the Weierstrass' method was essentially the same of the Betti's one
with slight modi�cations. In the years 1876-77, also G. Mittag-Le�er proved a
particular case of a more general theorem that he will give later, to be precise
in 1884, after a long series of previous works in which he gradually, through
particular cases, reached the general form of this his theorem as nowadays we
know it. In the meanwhile, Weierstrass reconsidered Mittag-Le�er's works,
since the early 1880s, in relation to what himself have done on the same sub-
ject. Also F. Casorati (1880-82) had some interesting ideas similar to the
Mittag-Le�er's ones, giving further contributions to the subject (see (Loria
1950, Chapter XLIV, Section 750)). Almost at the same time, amongst oth-
ers, Ernst Schering (1881), Charles Hermite (1881), Émile Picard (1881), Fe-
lice Casorati (1882), Ulisse Dini (1881), Paolo Gazzaniga14 (1882) and Claude

13In this regards, also Salvatore Pincherle (1899, Chapter IX, Section 175) reports that
Betti solved the Weierstrass' problem in a quite general case.

14Some historical sources refer of Paolo Cazzaniga, whereas others refer of Paolo Gaz-
zaniga, but, very likely, they are the same person, that is to say, Paolo Gazzaniga (1853-
1930), an Italian mathematician graduated from Pavia University in 1878 under the super-
vision of Felice Casorati. In the years 1878-1883, he was interim assistant professor at Pavia,
then he spent a period of study in Germany under the Weierstrass and Kronecker supervi-
sion. Afterwards, from 1888, he became professor at the high school Tito Livio in Padua,
teaching too in the local University. He was also one of the most in�uential teachers of Tullio
Levi-Civita during his high school studied. Gazzaniga's researches mainly concerned with
applied algebra and number theory. Furthermore, Paolo Gazzaniga has to be distinguished
from Tito Camillo Cazzaniga (1872-1900), a prematurely died Italian mathematician, grad-
uated from Pavia University in 1896, whose researches concerned with matrix theory and
analytic functions according to the research trend of Ernesto Pascal (1865-1940) during his
teaching in Pavia. Both Tito Cazzaniga (see (Rouse Ball 1937, Appendix II, pp. 412-413))
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Guichard (1884), achieved notable results about the general problem to build
up a complex function with prescribed singularities, although related to a gen-
erality degree less than that of the Mittag-Le�er results. Thus, the history of
the Mittag-Le�er theorem makes too its awesome appearance within the gen-
eral history of meromorphic functions, a part of which may be retraced in the
same Mittag-Le�er 1884 paper in which, amongst other things, also the 1881
work of Ulisse Dini is quoted. However, both Schering (1881, Section XVI) and
Casorati (1880-82, p. 269, footnote (***)), in discussing the above mentioned
Mittag-Le�er results, quote Betti's work on Weierstrass' theorem; in partic-
ular, the former speaks of Betti's convergence factors and the latter states that

�Anche il sig. Dini, nella sua Nota sopra citata, dimostra questo teorema,
riducendo lo studio del prodotto in�nito a quello della serie dei logaritmi dei
fattori; riduzione di cui s'era già valso felicemente, per il caso di distribuzione
degli zeri a distanze non mai minori di una quantità �ssa d, il sig. Betti nella
Introduzione della sua Monogra�a delle funzioni ellittiche (Annali di Matem-
atica, Tomo III, Roma, 1860), dove precede assai più oltre di Gauss nella via
che mena al teorema del sig. Weierstrass�.

[�Also Mr. Dini, in his Note of above, proves this theorem, reducing the
study of the in�nite product to the study of the series of the logarithms of the
factors; reduction, this, that had already been used by Mr. Betti in the Intro-
duction to his monograph on elliptic functions (Annali di Matematica, Tome
III, Rome, 1860) for the case of a distribution of zeros having reciprocal dis-
tances not less than a �xed quantity d; in doing so, he much foregoes Gauss in
a fashion which leads to the theorem of Mr. Weierstrass�.]

Therefore, from the Mittag-Le�er's works onward, together to all those works
made by other mathematicians amongst whom are Dini, Schering, Casorati,
Hermite, Picard, Cazzaniga, Guichard and Weierstrass himself, it starts the
theory of entire transcendental functions whose early historical lines have been
traced in the previous sections. In any case, with Mittag-Le�er, we have the
most general theorems for the construction, by in�nite products, of a meromor-
phic function with prescribed singularities. To be precise, following (Gonchar
et al. 1997, Part I, Introduction) and (Vivanti 1901, Section 215), the works by
Weierstrass, Mittag-Le�er and Picard, dating back to the 1870s, marked the
beginning of the systematic studies of the theory of entire and meromorphic
functions. The Weierstrass and Mittag-Le�er theorems gave a general descrip-
tion of the structure of entire and meromorphic functions, while the represen-
tation of entire functions as an in�nite product à la Weierstrass, served as basis
for studying properties of entire and meromorphic functions. The Picard the-

and Paolo Gazzaniga are quoted in (Vivanti 1901) but not in (Vivanti 1928).
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orem opened the theory of value distribution of meromorphic functions, while
the J.L.W.V. Jensen works, at the late 1890s, were of a great importance for
further developments of the theory of entire and meromorphic functions which
started, in the same period, to gradually become a separate and autonomous
mathematical discipline after the pioneering works of Laguerre, Hadamard,
Poincaré, Lindelö� and Borel, up until the Rolf Nevanlinna work of the early
1900s. All that will be in-depth studied in the next section, where we shall deal
with the main lines of the history of entire and meromorphic functions whose
theory basically starts just from the entire function factorization theorems.

En passant, we also note that the Weierstrass' entire function factoriza-
tion theorem has had further remarkable applications in many other pure and
applied mathematical contexts. In this place, we wish to point out another
possible interesting historical connection. To be precise, following (Marku²e-
vi£ 1967, Volume II, Chapters 8 and 9), (Burckel 1979, Chapter VII) and
(Remmert 1998, Chapter 4), a very similar problem to that considered by
Weierstrass was the one considered in (Marku²evi£ 1967, Volume II, Chapter
8, Theorem 8.5) where, roughly, a bounded analytic function with prescribed
zeros is constructed by means of certain in�nite products introduced by Wil-
helm Blaschke (1915) in relation to questions related to the Giuseppe Vitali
convergence theorem for sequences of holomorphic functions, and de�ned upon
those complex numbers assigned as given zeros of that function that has to be
determined. We shall return later on such aspects concerning Blaschke prod-
ucts, which form a special class of Weierstrass' products, when we will go on
in deepening the history of entire function theory; due to this, to our historical
purposes, we would want to try to analyze whether the previous Weierstrass'
work on entire function factorization theorems have played a certain role in
the Blaschke's work.
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