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Long time behaviour of an exponential integrator for a
Vlasov-Poisson system with strong magnetic field

Emmanuel Frénod* Sever A. Hirstoagal Mathieu Lutz *

Eric Sonnendriicker?

Abstract

With the aim of solving in a four dimensional phase space a multi-scale Vlasov-
Poisson system, we propose in a Particle-In-Cell framework a robust time-stepping
method that works uniformly when the small parameter vanishes. As an exponential
integrator, the scheme is able to use large time steps with respect to the typical size of
the solution’s fast oscillations. In addition, we show numerically that the method has
accurate long time behaviour and that it is asymptotic preserving with respect to the
limiting Guiding Center system.

1 Introduction

In this paper we introduce a numerical scheme in order to simulate efficiently in time when
the parameter € vanishes the following four dimensional Vlasov equation

Ofe+v-Vyft+ <E5 + ivL> V[ =0, (1.1)
fE(X,V,tZO) :fO(XaV)v (12)

where x = (1, 2z2) stands for the position variable, v. = (v1,v2) for the velocity variable,
vt for (ve, —v1), f€ = f5(x,V,t) is the distribution function, fy is given, and E° = E°(x, t)
corresponds to the electric field. Weak-* and two-scale limits when e goes to zero of this
equation can be rigorously obtained following the methods introduced in [2] and [9]. We no-
tice that equations — can be obtained from the six dimensional drift-kinetic regime
by taking a constant magnetic field in the xs-direction and an electric field evolving in the
orthogonal plane to the magnetic field.
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The main application will be the case when the electric field E° is obtained by solving
the Poisson equation. In this case we will rather denote by E* the electric field and thus,
we will have to solve the following nonlinear system of equations:

O f*+v-Vxff+ (EE—F::VJ') -V ff =0, (1.3)
E° (X> t) = _vx¢€> _Ax(be = fgdv — Ny, (1'4)
R2
fE(x,v,t =0) = fo(x,v), (1.5)

where ¢° is the electric potential and n; is the background ion density. The system (1.3))-(1.4)
is a first step towards a six dimensional model which can be used for the study of plasma
under the influence of a strong magnetic field. The unknown f¢(x,v,t) represents the
distribution of electrons in phase space at time ¢ and thus, the system — describes
the particle dynamics under the additional effect of the self-consistent electric field. The
difficulty is that the large magnetic field, expressed by the v /e term, introduces a new
time scale, the rotation of particles around the magnetic field line, which is very small with
respect to that of the electric field evolution. We are thus faced with a multi-scale problem
whose numerical solution by standard methods requires heavy computational efforts.
We will also test our scheme when an external electric field in is given by

=¢ (x, 1) — ( 201+ L2 ) (1.6)

1+ 229

which is the gradient of the potential p(z1,z9) = x% + 2129 + x% The reason for this
particular case is twofold. First, we are able to write down the analytic solution to system
— which thus leads to the capabilities of a real error computation and of testing
our algorithm’s main (second step) approximation alone. Second, we can write analytically
the slow manifold, an important issue when testing the scheme for any initial condition (see
Section 2 in [3]). Indeed, it is interesting to see how the errors of the numerical scheme
change when a different initial condition is used. Thus, if for some particles the scheme
performs much better than for others, the corresponding errors might lead, when applying
the method in the Vlasov-Poisson case, to different errors in the electric field computation
and thus, to an amplification of the disparate errors.

In this work we perform the numerical solution of the Vlasov equation by parti-
cle methods (see [I]), which consist in approximating the distribution function by a finite
number of macroparticles. The trajectories of these particles are computed from the char-
acteristic curves

dXe

=V X# (0) = %o, (1.7)
dve 1
= - (V)T HE(XE, VE(0) = vo, (18)

of the Vlasov equation, whereas the electric field is computed, when coupling with Poisson
equation as in —, on a mesh in the physical space. The contribution of this paper
is to propose a numerical scheme in time for solving these characteristic curves when the
parameter € vanishes.



Before describing our strategy, we need to place it towards some existing approaches
clagsically known to solve multi-scale problems. When the electric field E° is zero, the
physical trajectory associated with (L.7)-(1.§)) is a circle of center ¢y = xg + evy and of
radius € |vgl, and the time period of the trajectory is 2me. Otherwise, the dynamical system
— can be viewed as a perturbation of the system obtained when the electric field
is zero. Hence, in the general case of an electric field depending on position and time, the
evolution of a given particle’s position is a combination of two disparate in time motions
(a stiff problem): a slow evolution of what was the center of the circle in the case where
EF is zero, usually called the Guiding Center, and a fast rotation of period about 2me
with a small radius around it (see Fig. [I]). We refer to Lee [14] and Dubin et al. [5] for
comprehensive physical viewpoint reviews about such questions. Consequently, if one wants
to do accurate simulation of the problem (1.3)-(L.5) using classical numerical schemes, one
needs small time steps, in particular smaller than 2me. Another way is to use not stiff
models instead of —, which can be simulated using larger time steps. Nevertheless,
in this case, such reduced models (as the Guiding Center model, see 2], [L0]) need to
incorporate information about the self-consistent electric field acting on particles position
and the additional effect generated by particles oscillations. One usual way to do this is
to use techniques based on Asymptotic Analysis and Homogenization Methods leading to a
limit equation in which the mutual influence of the particles can be expressed in terms of
their apparent motion, and afterwards to simulate this limit equation. We refer to Frénod,
Sonnendriicker [9, [10], Frénod, Raviart, Sonnendriicker [7], and Golse, Saint-Raymond [11]
for a theoretical point of view on these questions, and Frénod, Salvarani, Sonnendriicker
[8] for numerical applications of such techniques. In this paper, we propose an alternative
to such methods allowing to make direct simulations of systems — and —
with large time steps with respect to 2me. In addition, our scheme inherently incorporates
information about the real small oscillations in the solution and thus, one can recover this
information at a macroscopic time. This can not be reproduced by a reduced model or
can be partially done by homogenization. Concluding, the algorithm we propose has a
computational cost in time rather close to that of a reduced model but the accuracy close
to that of a high-order standard scheme for computing a reference solution.

Now, we start to summarize the basis of the method and the results of this paper.
The stiffness of equations (1.7)-(1.8) comes from the velocity equation and therefore we are
interested in solving in R? for several small values of ¢ the following type of ODE

o () = éMu O+ Ftu®), u0)=u, (1.9)

where M is a matrix giving a m/2-rotation in R? and where F represents a nonlinear term
playing the role of the electric field. As already mentioned, standard numerical schemes
require very small time step to capture the stiff behaviour. Following [6], in this paper, we
propose a method which is based on an exponential integrator in velocity. An exponential
integrator (see [12]) consists in solving exactly the linear (stiff) part by using the variation-
of-constants formula .
w(t) = etMyq +/ ¢SV (2 0 (7)) dr (1.10)
0
Once the stiff part is exactly solved, we proceed with the numerical treatement of the integral



term in as explained in [6]: we solve the ODEs over one fast period using an explicit
high-order solver and then, thanks to , we compute an approximation of the solution
over a large whole number of periods. Then, we introduce the following Guiding Center
decomposition

let C° be such that X° () = C° () — e (V (t))© (1.11)

and we show the main algorithm’s approximation to be equivalent to a linear approximation
of C®’s trajectory, an interesting issue when studying the particles’ long time behaviour.

Afterwards, we start applications with the linear case of E° given by . We thus cal-
culate the analytic solution to (1.1))-(L.2)-(1.6]), we check whether the scheme gives accurate
solutions on, close to, and far from the slow manifold (as in [3]), and eventually, we obtain
the same order of error for these three numerical solutions, in both short time and long time
simulations. Recalling that the fast oscillation is of order ¢, let us remark that from now
on, by short time we mean of order 1 and by long time, of order 1/e.

Finally, our numerical results underline that the scheme is robust when using various
large time steps compared to the fast oscillations and that it works uniformly when the
parameter € goes to zero. In addition, in the Vlasov-Poisson case, within long time simu-
lations, we show that the method is asymptotic preserving, meaning that it is accurate in
time in the limit e — 0, capturing the Guiding Center model in this limit (there is a huge
literature about asymptotic preserving schemes, we cite only the classical paper [13]).
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Figure 1: Tllustration of formula in the case when € = 0.01 and the electric field is
given by (L.6). The initial positions and velocities are (x3,v§) (left) and (x3,v3) (right)
introduced in (5.8). In green the evolution of the Guiding Center and in red the position’s
evolution. The final time is ¢ = 4.

The paper is organized as follows. In Section [2] we briefly recall the main steps of
the Particle-In-Cell (PIC) method for solving the Vlasov-Poisson system in which we are
interested. Then, Section [3] is devoted to the construction of the exponential integrator,
named the ETD-PIC algorithm, for advancing in time the particles’ position and velocity.
In Section ] we write the algorithm in terms of the Guiding Center position. Eventually,
in Section [5] we implement our method in the cases presented above and we validate it in
both, short and long times, simulations.



2 A Particle-In-Cell method

The numerical scheme that we describe in the next section is proposed in the framework of a
Particle-In-Cell method. A PIC method consists first in approximating the initial condition
fo in (1.2) by the following Dirac mass sum

v) = iwm (x = Xk,0) 0 (Vv — Vo), (2.1)

where {(ka,Vk?o)};iEl is a beam of N, macroparticles distributed in the four dimensional
phase space according to the density function fy. Afterwards, one approximates the solution

of (LI)-(T2), by
(x,v, 1) Zwké x — X5 ()6 (v — VL (1), (2.2)

where (X5 (t), V% (t)) is the position in phase space of macroparticle & moving along a
characteristic curve of equation

dxs
= Vi 2.3
dt ’ ( )
ave 1|

= - (Vi)™ +E° (Xt 2.4
5 =2 (Ve +EX ), (2.4)
X% (0) =xk0, V5 (0) =vip. (2.5)

Therefore, the problem consists in finding the positions and velocities ( ki1 Vin +1) at
time ty41 from their values at time t¢,, by solving . . ) with the initial condition

(Xi,n’ Vi,n)

When the problem ({2.3)-(2.4)) is coupled to the Poisson equation, the electric field term
in (2.4) is numerically computed in a macroparticle position at time ¢ as follows:

1. Construct a spatial grid (the Poisson grid).

2. Compute on this grid

Np
t) =D wiS (x — Xi (1), (2:6)
k=1

where S is a first order two dimensional spline.

3. Solve the Poisson equation —A,¢ (x,t) = p° (x,t) — n; on this grid and deduce the
grid electric field.

4. Interpolate the grid electric field with the same first order spline yielding the density

p° in order to obtain the electric field at the macroparticle position.



Eventually, an important question in the PIC method is the numerical integration of the
dynamical system —. Here is the contribution of this paper, to propose an accurate
numerical scheme when using large time steps compared to the fast oscillation. We thus
introduce in the next section a method based on exponential time differencing, following the
ideas in [6].

3 The exponential integrator in velocity for the Particle-In-
Cell method

We first detail the exponential time differencing (ETD) method for solving the stiff velocity
equation (2.4). Then, we describe the exponential integrator that we have implemented for
solving (2.3)-(2.4) in the framework of the PIC algorithm.

3.1 The exponential integrator in velocity

One way to solve efficiently stiff ODEs is to use an exponential time differencing approach
(see [3, [0, 12] and the references therein). Such a method is recognized to be accurate while
avoiding simulation with small time steps. In order to write down the scheme in our case
we follow the steps in [3]. Let M be the matrix defined by

=50 (3.1)

and let

o < cos () sin(r) ) (5.2)

—sin(7) cos(7)

be the exponential of M. Multiplying (T.8) by e~ =™ we obtain

d - TM —ITM 1 M dVE
& (et V‘f) e IM(_ZpvE : 3.3
ar € ¢ e T (3:3)
= e MzEs (X5, 7). (3.4)
Integrating this equality between s and t (where s < t) yields
t
Ve(t)=e s MVE(s)+e= M / e =Mz (X (1), 7)dr. (3.5)

Concerning the position equation, an integration between s and ¢ of (1.7)) yields
t
X®(t) =X (s) + / Ve (1) dr. (3.6)
S

Equation (3.5)) has the merit to solve exactly the stiff part in the velocity equation and thus,
we are left with the numerical treatement of the integral term.



3.2 The ETD-PIC method with large time steps

In this section we establish the time-stepping scheme following Section 4.2 in [6]. We write
— with s = t, and t = t,4+1 = t, + At in order to specify how the solution
is computed at time t,41 from its known value at time t,. We are thus faced with the
numerical computation of two integrals from ¢,, to t,+1.

Since we want to build a scheme with a time step At much larger than the fast oscillation,
we first need to find the unique positive integer N and the unique real r € [0, 27e) such that

At =N - (27e) + 7. (3.7)
The derivation of the scheme, Algorithm [3.5] is based on the following approximations.

Approximation 3.1. We have

tn+N-(27e) -
/ e = Mz (X8 (1), 7)dr ~ N - I, (3.8)
tn

where Z5 is defined by

tn+2me P
T = / e = Mz (XE (1),7)dr. (3.9)
ln
Approximation 3.2. We have
tn+N-(27e)
/ Ve (F)dr ~ N - J¢, (3.10)
t7L
where J5 is defined by

tn+2me
¢ — / Ve (1) dr. (3.11)
tn

Remark 3.3. Approzimations and are valid if we made the assumptions that the
velocity and the electric field evaluated at the particle position are quasi-periodic in time
(with a period close to 2me) and that this period does not change significantly with time. We
will see in the next section that the assumption of quasi-periodicity and small variations in
the period of the particle electric field only is enough to validate Approzimations[3.1 and[5.9

Lemma 3.4. Under Approxzimations and [3.9 we obtain

Proof. Applying formulas (3.5) and (3.6) with s =¢,, and ¢t = t,, + 2we we obtain

(veima)=(%)-(5) o



Applying again formulas (3.5) and (3.6) with s = ¢, and t = ¢, + N - (2mwe) yields

(i) )= () 7 (v o o

Injecting (3.10) and (3.8) in (3.14), we obtain

Xe (tn + N - (27me)) \ _ [ X5, J5
<V%%+Nm%@) “\ve )PV ) (3.15)
Injecting (3.13)) in (3.15) we obtain (3.12). This ends the proof of Lemma O

(XEUi;r;? Lemma , we deduce the following algorithm to compute (sz 1, V5, +1) from
n? n :

Algorithm 3.5. Assume that (X5, V%) the solution of (1.7)-(1.8) at time t,, is given.

1. Compute (X (t, + 27me), VE (t,, + 2me)) by using a fine Runge-Kutta solver with initial
condition (X5, V).

2. Compute (X° (t, + N - (27me)), VE (t, + N - (27e))) thanks to formula (3.12)), i.e., by
setting

(&)= (8) e (K138 ) ow

3. Compute (X%, V¢) at time t,4+1 by using a fine Runge-Kutta solver with initial condi-
tion (X%, VE) at time t, + N - (2me), obtained at the previous step.

4 Link with the Guiding Center Decomposition

We have seen in Introduction that the time evolution of a particle’s position following —
@ can be split into two parts: the slow motion of the Guiding Center C* (see formula
1.11))) and a fast oscillation about it. In this section, we mainly see that this decomposi-
tion can be used to show that Approximation is sufficient to justify the second step of

Algorithm
With this attempt, we first recall the formula giving the Guiding Center position

C (t) = X5 () + e (VE (1) *. (4.1)

Then, it is an easy fact to see that the rule in (3.16)) is equivalent to

(VaINE) - () (VB R) e

In the following, we see that the rule for the Guiding Center in (4.2) may be obtained
directly from the evolution of C® under an approximation similar to that in (3.8). To this
end, we derive in time equation (4.1) and making use of equations (1.7)-(L.8) leads to

dCs
d¢

(t) = e MEF (X° (1), 1), (4.3)



where MEF is (Ee)J' = (85, —EJ). Thus, we see that the Guiding Center experiences a
slow motion in time. Then, we integrate this equation between s and t (where s < t)

t
CE (1) = CF (s) + eM / =° (X (1), 7)dr, (4.4)

and using this equality with s =t,, and t =t, + N - (27¢e) yields
tn+N-(27e)
C? (tp, + N -(2me)) =C; +ecM B (X® (1), 7)drT. (4.5)

tn

Therefore, as done in Section under the assumption

tn+N-(27e) tn+2me
/ = (X°(7),7)dTr ~ N - B (X (7),7)dr (4.6)
tn tn
we deduce from (4.5) that
C® (tn + N - (2me)) ~ C;, + N - (C* (t,, + 2me) — C) . (4.7)

In conclusion, assuming that the time period of the electric field only does not change
significantly in time leads the approximation to be valid. Indeed, this assumption
allows us to use the approximations in and in . Then, following the lines of the
proof of Lemma[3.4] we obtain that is satisfied and thus, that approximation is
valid.

Finally, the Guiding Center gives information about the qualitative behaviour of the long
time position’s evolution. Indeed, being almost free of fast oscillations, the evolution of C*
easily brings out the curvature of the macroscopic motion of the particle position (see Figs.

and [2)). In the case of equations (1.1)), (1.2)), (1.6)), this macroscopic evolution is periodic
and the large period can be explicitly computed, being about 27/e (see Section [5.1.1)).

5 Validation of the numerical method

We now validate our algorithm in the test cases presented in Introduction. First, in all three
sections, our numerical experiments show that the scheme performs very well in robustness
and accuracy when using very large time steps with respect to the small scale of oscillations.
Then, in sections [5.1] and [5.2] within short and long time simulations, we show that the
scheme works uniformly when the small parameter vanishes. More precisely, Section is
concerned with an analytic case that allows us to compute the real errors of the method and,
in addition, to validate it when starting simulations with several types of initial conditions.
In Section we solve the Vlasov-Poisson system — and compare our method
against a solution estimated with a very small time step, a reference solution. At the end, in
Section we do long time numerical experiments and show that the scheme is asymptotic
preserving by comparisons with the limit Guiding Center model.



Figure 2: The linear case in Section with € = 0.01 and the initial condition (1,1,1,1):
the position’s evolution in time until ¢ = 360; the entire trajectory (left) and a zoom at the
begining of the dynamics (right); In green the result of the ETD scheme using a time step
At = 30¢ and in red the analytic solution given in formulas

5.1 A linear case

In this section we consider the Vlasov equation — provided with the external electric
field E° given by . In order to test our algorithm it will be interesting to localize the
initial conditions for which the fast oscillations disappear. This domain is usually called the
slow manifold (see [3] and the references therein). In Section we compute an analytic
expression of the solution, which allows us to compute the slow manifold. Then, in Section
we compare the outcome of the ETD-PIC method to the solution, starting with several
initial conditions.

5.1.1 Analytic solution

Let € be such that 0 < e <4/1— § ~ (0.366. Then, the solution of (1.7))-(L.8]) is given by:
X5 (t;x0,v0) =K (cos (ast) — % Gin (agt)> + K35 (sin (ast) + e cos (a@f))
€ €

b b
+ K3 (cos (bet) — f sin (bet)> + K} (sin (bet) + f cos (bgt)) ,
X5 (t;x0,v0) = — Kfue cos (ast) — K5ue sin (ast) — K5v, cos (bet) — Kjv. sin (bet),
Vi (t;x0,v0) = — Kjae <% cos (act) + sin (agt)) + K5a. (cos (agt) — % sin (aat)>
b b
— K35b, <; cos (bst) + sin (bst)) + Kjb. <cos (bet) — ;6 sin (baﬁ)) ,

Vs (t;x0,vo) =KTacuesin (a:t) — K5azu. cos (agt) + K5bove sin (bt) — Kib.ve cos (bet) ,
(5.1)

10



where

1 —4e? — V1 — 82 4 4et 5
ae = 522 ) (5.2)
B 1 —4e2 4 v/1 — 82 + 4¢t = 3
o 2¢2 ’ (53)
us = 2+ a? 2
Ve =24 bg,
2 (5.4)
a
we =1+ %7
e
Te = a? — bg,
and
521)5 _ 1 52v5w5 _ EVe
KIE :(52752)x€ Ue + (2762)x25u€ (2;52)1:5 0 To 1
KE £ + £ _ 2eue ___Eve + ewe £ Ve 1 =
2 _ a. (2—e2)a. Teae(2—e?) Ue Qe Te 2—g? (2—e?)acz. AcTe Zo,2
Kg B _ EQUE _ 62’wE EUge 0 V0.1
—e2)x, —e2)x, —e2)x, ’
Ki (22555). e _"52 65)311;5 _ (@ ;2115 1 Vo,2
(2—e?)bex, bexe (2—e?)bex, (2—e?)bex, bexe
(5.5)

We can thus observe that, in addition to the fast oscillations of period %—: ~ 2me, the
2T, 27
solution of ([1.7] . contains slow oscillations of perio =
In this case, the slow manifold corresponds to the 1nte1sectlon between the hyperplanes
{(x0,vo) such that K5(xo,vo) =0} and {(xo, vo) such that Kj(xo,vo) = 0}. Since the two
hyperplanes are different, the intersection is of dimension two. Straightforward computations
yield that

1 1
_Ue 0
e 5.6
0 : - (5.6)
_ 2eue EUe e3ue 25u5 eSue
2—¢2 + We + 2—¢2 + 2—g2

form a basis of this vector space. Subsequently, we denote by D» this space.

5.1.2 Short and long time numerical simulations

In this section we test the ETD-PIC method against the solution previously obtained. We
consider two different types of initial condition fy. The first one is with one macroparticle,
alternatively located on, close to, and far from the slow manifold. In the second case, we
consider a beam of macroparticles and we compute the maximum in time of the mean of
the Fuclidean errors.

11



Considering one particle alternatively on, close to, and far from the slow manifold means
that we take initial conditions

foxv)=68(x—x4)0(v—v}), (5.7)
where ¢ = 1,2,3, and (x{, v{) is on the slow manifold, (x3,v3) is close to the slow manifold,

and (XO, VO) is far from the slow manifold. For the numerical simulations we take
2eu e3u
1 1 3 €
=1(1,0,e,—
(X()vVO) < y Uy &y 2_€2+2_ >>
(ngvg) _ <1’_u875w57_ €U, +€w5 N U, ) 7 (5.8)

we U 2—g2 U 2 —¢?

(x5, vg) = (1,1,1,1).

Starting from the analytic formulas derived in the previous section, we have plotted in Fig.
the physical trajectories of the particles of which initial positions and velocities are (x%, v%)
and (xo, Vg) until final time 4. Using general formulas for the distances to the slow manifold
D, from these particles, we obtain the specific values in Table [I]

e =0.01 e = 0.005 € =0.001 | € =0.0005 | € =0.0001
=1 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000
1 =2 0.01999800 | 0.00999975 | 0.00199999 | 0.00099984 | 0.00018878
1=3 | 1.41477865 | 1.41435495 | 1.41421923 | 1.41421509 | 1.41422155

Table 1: Euclidean distances between the slow manifold and the points (xé,vé)i (12,3} in
(5-8), for several values of .
Denoting by (X¢ (t), V¢ (t)) the result of the ETD-PIC method and by (X%, (t), Vg, (t))
the solution, we compute the global Euclidean errors at final time 10,

en = max (X5 V) (tr) — (X5, Vial) (k)2 (5.9)

€{0,...,n}

where n € N corresponds to the ratio between the final time of simulation and the time step
At, for several values of € and of At (see Figs. [3| and 4| ). In Fig. [4] we have plotted the
error when starting with the close to the slow manifold particle introduced in (5.8)). Similar
error curves have been obtained for the particles on and far from the slow manifold in ([5.8).
Finally, in Fig.[6], we represent the global Euclidean errors at a large final time, for the three
types of particles.

Second, preparating the test case in Section[5.2] we consider the following initial condition

1 v? + v3
fo(x,v) = S22 (14 ncos (kzyx1 + kgyr2)) X (X) xp | ——55 , (5.10)
8mvy, 2vy,

where ky, =0, kg, =0.5, v, =1, 7 =0.1, and

X (%) = X[o,1] (1) X[0,47) (72) (5.11)

12
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Figure 3: Global Euclidean errors of the ETD-PIC method at time 10 for four values of ¢
(on the top: € = 0.01 (left) and e = 0.001 (right); on the bottom: ¢ = 0.0005 (left) and
e = 0.0001 (right)), obtained with three initial conditions differently positioned with regard
to the slow manifold Dy

where for any set Ain R, xy4(z) =1if z € A and 0 otherwise. We generate this distribution
function using 10* particles in R*. Thus, in Fig. [5| we compute the maximum of the mean
of the Euclidean errors

Me, = max Z (X5, V5) (te) — (X5 sots Viisol) (tr)

5.12
ke{0,...,n ( )

Iy | -

at final time 10, for several values of ¢ and of At.
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Figure 4: Global Euclidean errors of the ETD-PIC method at time 10 for several values of
€, obtained with an initial condition close to the slow manifold
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Figure 5: Maximum at time 10 of the mean of the Euclidean errors of the E'TD-PIC method
for several values of €, obtained with the initial condition fy defined by (5.10])

5.1.3 Comments about the numerical results

In the simulations done in Section we have implemented the Algorithm [3.5] as follows:
we use 27 /b, instead of 27e in equation and the same concerning the first two steps
of the algorithm. Then, within the first and the third steps, no high-order scheme was used
for solving the ODEs but the exact solution given by formulas (5.1)). Thus, we can establish
that the numerical error of our algorithm mainly consists of two parts: the error made in
the first step, by replacing the real fast period of oscillation by 27 /b, denoted by Ep and
the error made in the second step when following the macroscopic time evolution, denoted
by Ear.
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Figure 6: Global Euclidean errors of the ETD-PIC method at time 27 /a. ~ 1/e for four
values of €, obtained with three initial conditions differently positioned with regard to the
slow manifold D9

In a first test, when keeping ¢ fixed, we calculate the errors when starting simulation with
different particles (see Fig. [3 for short final time and Fig. [f] for long final time). When we
take as initial condition f&, the fast oscillations disappear and thus, Ep is zero. If we take as
initial condition fg or fg, we expect the error to be bigger for a particle off the slow manifold;
this point of view is in accordance with our numerical results. Thus, we can observe that
the smaller the distance to the slow manifold is, the smaller the corresponding error is. The
reason is that, closer to the slow manifold a particle is, smaller the macroscopic position’s
displacement is and thus, smaller the error Fjs is. Then, in long time simulations, the errors
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are obviously significant, due to our simple linear approximation of the macroscopic time
evolution. However, we note that for all values of €, the three errors have the same order in
magnitude (see the paragraph containing equation (1.6))). Finally, we point out that using
very precise periods in the first step of the algorithm may be an important issue in order
to reduce the error Ep that will propagate at macroscopic time when applying the second
step (this idea was already stressed in [6]). Nevertheless, in this test case, we have first
calculated the particles periods with the RK4 solver, as described in [6], and obtained that
the difference between these values and 27 /b, are very small, of order ¢3. In addition, we
have done simulations by using the computed periods instead of 27 /b, and the results are
very similar to those obtained with the period 27 /b..

In a second test, for a fixed particle, we calculate errors (see Fig. 4)) when using several
values of . For the three types of particles considered above, we have obtained smaller errors
with smaller ¢, the reason being similar: the scheme performs better when the macroscopic
change in position is smaller.

Eventually, the simulations (see Fig. show that the scheme works uniformly when ¢
vanishes when using also the beam of particles defined in ([5.10)).

5.2 Short time Vlasov-Poisson test case

In the present section we check the accuracy of our numerical scheme for the nonlinear
Vlasov-Poisson system at times of order 1, recalling that the period of the fast motion is of
order €. Thus, we consider equation — with the typical for the Landau damping
case initial condition ([16]) given by

fo(x,v) = L (1 +ncos (kizy + kowa) ) e vi + 03 (5.13)
= xp | — .
0 ) 27_‘_Utgh n 141 242 p 2Ut2h )

where v, = 1,7 =10.1, k1 = 0.5, ko = 0, and
Qi = [0;T1] x [0; T3], (5.14)

with Th = 27/ky; and T5 = 1. Next, in Section we give the parameters used for the
implementation of the reference solution and of our algorithm, the ETD-PIC method. The
simulations concerning the reference solution and the first and third step of Algorithm
are done by following the four steps described in Section Eventually, we comment the
numerical results of the comparisons ETD-PIC method versus a reference solution.

5.2.1 Numerical issues

We implement the initial condition above with N, = 2- 10° macroparticles. The weights are

N
=N

wk ke{l,...,Np},

so that the numerical initial condition have the total mass of that in (5.13):

/ fo (x,v)dxdv = / év” (x,v)dxdv = T'T>. (5.15)
Qy xR2 Oy xR2
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We solve numerically (1.3))-(1.5) by using classical periodic boundary conditions on the
physical domain ([I6]). In this way, we take n; = 1 in (1.4) ensuring that

/ (ps (x,t) —n;) dx =0, (5.16)
and thus, that the Poisson equation in has solution. Then, the Poisson equation is
solved by means of a Fast Fourier Transform method using 128 cells in the z;-direction and
16 cells in the xo-direction. As for the particles’ advection in time, when computing the
reference solution or within the first and the third step of Algorithm we use the explicit
fourth order Runge-Kutta scheme with At = 27¢/100.

For several small ¢, in Fig. [7] we plot the global error in densities, at final time ¢t = 4.
More precisely, after each time step we compute the grid densities corresponding to the
reference solution and to the ETD-PIC scheme, by using cubic splines. The local error is

thus the L?-norm
1 ) 1/2
= d
loll: = (75 | lotoPix)

of the difference between these densities; its calculation was done by the trapezoidal rule.
We have done tests for several values of the time step going from 0.1 to 1. Thus, the smaller
time step is sufficiently big so that N, the whole number of rapid periods enclosed in a time
step, be greater than 1. More precisely, following equation , N wvaries from 1 to 1591
when the values of € and of the time step are those in Fig.

These results show that the ETD-PIC scheme works uniformly when ¢ vanishes. In
addition, as already pointed out in the linear case in the previous section, the smaller ¢ is,
the smaller the displacement of a particle’s position is. Therefore, the smaller is the error
due to the second step of Algorithm [3.5] and thus, the better the scheme performs.

le-05 1E-06
S9e-06
de-06
1E-07
Te-06
6e-06
Se-06 1E-08
4e-06
3e-08
1E-09
2e-06
le-06
o | | | | | | | | 1E-10
01 0.2 03 04 05 06 07 08 0858 1 01 02 03 04 05 06 07 08 09 1

time step time step

Figure 7: Vlasov Poisson case with ¢ = 0.01, ¢ = 0.005, ¢ = 0.001, and ¢ = 0.0001. The
global error at time 4 of the ETD-PIC method with respect to a reference solution.

17



5.3 Long time Vlasov-Poisson test case

Now, we study the behaviour of the time-stepping scheme for long time simulation, more
precisely for times of order 1/e when the fast periodic motion is considered of order €. The
outcome of a simulation of this type was already illustrated in Fig. [2] in the linear case
presented above. In this section we do not compare the results obtained with the ETD-PIC
scheme to a reference solution since it would require very large CPU time. We will thus
do numerical comparisons with respect to a macroscopic free of oscillations model, which
can be simulated with time steps of order 1. Therefore, we are led to take into account the
Guiding Center model which is a good approximation when € vanishes of the Vlasov-Poisson

system ([1.3)-(L.5) (see [2], [10]).
5.3.1 The Vlasov model vs. the Guiding Center model

Let f¢ be the solution of (1.3))-(1.5). In order to see what happens for large final times, we
introduce the function ¢° defined by :

g (x,v,t) = f(x,v, é) (5.17)
Then, the function ¢° satisfy the following system of equations :
o+ Y Vg 4 L <E5(x, Hy 1vi> Vgt =0, (5.18)
€ € e’ €
B (t) =~V (xt). —Aed D) = [ gxvidvon, (519)
9" (x,v,t=0) = fo(x,v). (5.20)
Setting
£°(x,1) = E°(x, g), (5.21)
Y1) = 6%, ), (522)
we obtain the following dimensionless Vlasov-Poisson system :
oy + g -Vxg° + é (85(x, t)+ ivl> -Vyg© =0, (5.23)
E° (x,t) = —=Vx(x,t), —AxY*(x,t) = /2 g9 (x,v,t)dv — n;, (5.24)
9" (v, t =0) = fo(x,v). ) (5.25)

It is well known (see [2]) that, under some hypotheses for fy, the particle density asso-
ciated to the dynamical system (5.23)-(5.25)) weak-* converges when e goes to zero towards
the unique solution to the Guiding Center equation :

dfce +E - Vfec =0, (5.26)

E (Xa t) = —Vx¢(X, t)a —qub(X, t) = fGC — Ny, (527)

foo (%t = 0) = / fo (x,v) dv. (5.28)
R2
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In order to test the long time accuracy of the ETD-PIC scheme we compute
pixit) = [ o vty (5:29)
R2

and we compare the result with fgo. Notice that we need to replace 2me by 2me? in
Algorithm [3.5] since this is the order of the oscillations period in the Vlasov equation in
(5.23). Therefore, the large final times appearing in this section (e.g. Fig.[8) are of order 1.

5.3.2 Numerical results

Now, we compare the numerical result of the ETD-PIC scheme for solving the e-dependent
system — to that of a standard scheme for the Guiding Center model —
. For the numerical simulations of these equations we follow the steps of the classical
PIC method described in Section 2| We choose the following initial condition (the Kelvin-
Helmholtz instability test case, see [15], [4], [16])

1 V2 4 02
p(— 1 2

fO(X’ V) - 27TT1T2 x 2

> (sin(z2) +n cos(kiz1)), (5.30)

defined in 2y x R?, where Qy = [0;T1] x [0; Ty], Ty = 47, Ty = 27, n = 0.05, and ky = 27 /7.
We take N, = 10° macroparticles. Moreover we take 32 cells in the z{-direction and 32 cells
in the xo-direction for the construction of the physical mesh. In order that the Poisson
equation with periodic boundary conditions be solvable, we take n; = 0 in equations
and (5.27)), since the integral over £2x x R? in (x,v) of the initial condition in (5.30) is 0. As
in the previous section, we solve the Poisson equation by an usual Fast Fourier Transform.
The time step used for the fourth order Runge-Kutta scheme for pushing particles within
the first and the third step of Algorithm is 2me/100. Then, the particles used for the
Guiding Center model are pushed in time with the fourth order Runge-Kutta scheme. We
have done tests with several time steps and several values of € going from 0.001 to 0.01.
In Fig. [§| we observe the time evolution of the particles, first, by using the Guiding Center
model and second, the ETD-PIC method for the Vlasov-Poisson model with € = 0.005. The
time step is At = 0.01. More precisely, we represent in the physical space the contours of
the particle densities. These smooth densities in Fig. 8| are calculated by depositing 8 - 10°
macroparticles on a mesh with 128 x 64 cells by using cubic splines.

In Fig. [9] we represent the “global error” in densities (see Section[5.2.1)) at ¢ = 5. Now, the
“local error” is the difference between the discretization of the solution to the Vlasov-Poisson
system, computed with the ETD-PIC strategy, and the discretization of the solution to the
Guiding Center equation. Eventually, we show in Tables [2] and [3] how big is the time step
of the ETD-PIC method with respect to the fastest periodic motion (see formula with
2 instead of ¢ for the calculation of these numbers).

As a last validation of our scheme, we follow the time evolution of the Fourier coefficient
(1,1) of the electric field, solution to the Poisson equation in (5.24). In order to be in
agreement with works [15] and [4], we rather take

1 2 2
N (_v1 + v5

Jolx,v) = Ty P 2

> (sin(z1) + n cos(kaz2)) (5.31)
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as initial condition. In the sequel, for simplicity we denote ko by k. More precisely, for small
7, we can use (see [16]) a linear approximation of the Vlasov-Poisson system and thus we
can approximate the electric field by an analytic solution

E°(x,t) ~ 4nre“i sin(kxs) cos(w,t — @), (5.32)

where w, and w; are the real and the imaginary parts of w, the dominant complex root
of the function involved in the dispertion relation and re'® is the residue associated to
w = wy + iw; (see [16]). The approximation in turns out to be a very good one
on some time interval, between ¢ = 5 and ¢t = 10. From we can easily deduce wj,
the slope of the line approximating the evolution in time of the electric field. The growth
rate corresponds to this slope and it can be calculated from the Fourier coefficient (1,1) of
the electric field £°. It has been noticed in [I5] that the numerical growth rate can also
be obtained through an eigenvalue equation (see the Appendix). In Figs. and for
a fixed € and several values of k, we show that the evolution in time of the logarithm of
the absolute value of the real part of the (1,1) Fourier coefficient of ¢° (obtained with the
ETD-PIC scheme) converges numerically towards the corresponding numerical growth rates
obtained through the eigenvalue equation. In Fig. we can observe for a fixed k and
several values of ¢ that the linear phase of the time evolution of the Fourier coefficient has
the good slope given by the eigenvalue equation.

5.3.3 Comments about the numerical results

First, we can see in Fig. [§| that for several large final times, the particle densities obtained
with the Guiding Center equation and with the ETD-PIC scheme for Vlasov-Poisson model
with € = 0.005 are very close. This is a first step of validation of our method in the context
of long time simulations.

| At=1E-3 | At-=3E-3 | At—5E-3 | At— TE-3 | At—9E-3 | At—1E-2

€ =95.E-3 6 19 31 44 o7 63

€ =2.5E-3 25 76 127 178 229 254
e=1E-3 159 477 795 1114 1432 1591
e=1EA4 15915 47746 79577 111408 143239 159154

Table 2: The whole number of rapid full tours enclosed in a time step of the ETD-PIC
scheme, for several values of the time step and of ¢; related to the left panel in Fig. [9]

| e=1E3[e=3E-3 | c=5E-3 | c=TE-3 | ¢ =9E-3 [ e =1E-2 |
At=1E-2 [ 1591 176 63 32 19 15
At=5.E-3 | 79 88 31 16 9 7

Table 3: The whole number of rapid full tours enclosed in a time step of the ETD-PIC
scheme, for several values of € and of the time step; related to the right panel in Fig. [9]
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Next, we discuss the results concerning the behaviour of the global error. Recalling that
N is the integral number of the rapid full tours appearing in the second step of Algorithm 3.5]
we remark the following:

1. First, in Fig. @] (left panel), we can see that for each fixed e, the error decreases with
decreasing time step, although N is changing. Thus, the scheme works for small time
steps compared to the fast oscillation and is robust with respect to N. Second, we
observe that, the smaller ¢ is, the smaller the error is, despite that N is significantly
increasing when ¢ is smaller (see Table [2). This is an expected behaviour since the
Guiding Center model becomes a bhetter approximation of the Vlasov-Poisson model
when € goes to 0. Thus, the scheme works for big time steps with respect to the fast
oscillation also.

2. In Table[B|land the right panel in Fig.[9] we detail the above comments by taking several
values of €. First, justifying as in the item before, when the time step is kept fixed,
the error decreases with decreasing €. Second, we notice once again the robustness of
the scheme: the errors are stable when N is widely varying from 7 to 1591.

3. Concluding, the left panel in Fig. [9] shows that the ETD-PIC scheme is convergent
when At — 0, uniformly in €. Also, the right panel shows that the discretization of
the solution to the Vlasov-Poisson system converges when € — 0 to a discretization of
the Guiding Center model, independently of At. These facts underline the asymptotic
preserving behaviour of our scheme.

0.1556 | 0.2699 | 0.3657 | 0.4492 | 0.5223 | 0.5850 | 0.6361 | 0.6735 | 0.6920
k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

| e

Table 4: The numerical values of w/k (the growth rate is w) as a function of 1 — k, obtained
by solving the eigenvalue equation (see Appendix)

A Appendix: the eigenvalue equation

The eigenvalue equation allowing to obtain the growth rates of instability related to the
Guiding-center problem (5.26)-(5.28) has been derived in [15]. We recall this derivation, in
our notations.

We consider an inhomogeneous equilibrium solution f° = f%(z1) and the corresponding
equilibrium potential ¢° = ¢%(z1), which satisfies :

32¢0 -

> =
Oxy

—fo. (A1)

In practice, according to our choice of initial condition in (5.31]), we will take fO(x1) = sin(x)
and we will work on the torus, i.e., with periodic boundary conditions.
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Then we will linearize (5.26])-(5.27) around this equilibrium solution. In other words we are
looking for a solution of the form :

fao(t,x) = fO(a1) +nf(t,x), (A.2)
¢(t,x) = ¢°(21) + ne' (t,x), (A.3)
where 7 is a small parameter. Injecting (A.2)-(A.3) in (5.26])-(5.27) we obtain :
atfl - 85E2¢18I1 fO + 8931¢08$2f1 =0 (77) ) (A4)
82¢1 82¢1 o
a Ox? a ord I (4-5)

Neglecting the O (n) terms in (A.4) yields the following linearized problem :

Oif' = 02y O,y [ + 02, 0°00, f1 = 0, (A.6)
82¢1 82(]51 1

_ _ = fl A.
ox?  0x3 / (A7)

Now, we are looking for a couple of solution (f!, ') of (A.6)-(A.7) in the form :

~

It (t,x) = f1;(x1) iz giwt (A.8)
oL (t,x) = dyy (1) eM2e ™, (A.9)
Injecting (A.8)-(A.9) in (A.6)-(A.7) yields :

—iwfiy + il 10s, f0 + il 1100, 6° = 0, (A.10)
¢ ~ =
- ;ﬁé’l +Ph1y = fiy. (A.11)
Ty

Using (A.10) we express ]?l,l in terms of 5171. Afterwards, injecting this expression in (A.11]
we get the following equation on ¢ :

9% ~ 9%y ~
(¢ —wo) (ai;l - l2¢1,l> - Wvgocf)u =0, (A.12)
1 1
where
c= % (A.13)
vo (1) = Oy, 8% (1). (A.14)

In practice we will take :

¢"(x1) = sin(z1), (A.15)



Constructing an uniform grid of [0, 71], where Ty is the period of f° and ¢°, we can proceed
in the numerical resolution of (A.12)). We make the following discretisation:

~ i " i ﬁbé - é— 82al,l i ¢§ _2¢é+¢§i—
¢1,z($1):¢27 Oz, f1, (21) = +§Am1 E 0x? (v1) = = Ax? 1

(A.16)

and we obtain :

. , 92 . ,
<UO ("L'Zl) ¢§+1 + <_2UO (le) - ZQAx%UO (le) - 3;20 (le) Az%) ¢§ + Vo (5‘711) é—l)
1

=c (¢§+1 - (2+ Z2A$%) oL+ ¢§—1) . ( |
A7

The problem can then be written as Algt = eB'¢l. Consequently, the initial problem con-
sisting in finding w and ¢y ; satisfying equation (A.12)) can be rewritten under the following
eigenvalues problem : find a vector ¢! and a complex number ¢ such that (B)~1Al¢! = co'.
Then the instability growth rate corresponds to the greatest imaginary part of the eigenval-
ues. Congidering different values of the wave number k, it is possible to plot the quantity
w/k (where w is the growth rate) as a function of 1 — k. This is performed in Table 4
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Figure 8: Simulations of pj with the ETD-PIC method when ¢ = 0.005 (left) and of the
Guiding Center distribution function (right). From top to bottom we represent the densities’
contours at times ¢t = 5, t = 10, ¢t = 15, and ¢ = 20. The time step is At = 0.01 (The number
of fast periods in At is N = 63).
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Figure 9: The difference between the solution computed with the ETD-PIC method and the
solution to the Guiding Center equation as a function of the time step (left panel) and of €
(right panel) at final time ¢t =5
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Figure 10: In red, the evolution in time of the logarithm of the absolute value of the (1,1)
Fourier coefficient of ¢°. In green, the growth rate obtained through the eigenvalue equation
(see Table . Simulations with fixed At = ¢ = 0.005 and several values of k between 0.3

and 0.8 in the definition of the initial condition in (5.31)
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Figure 11: The growth rates for fixed k£ = 0.7 and several values of € from 0.5 to 0.005.
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Figure 12: The growth rates for fixed ¢ = 0.005 and three values of k.
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