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Abstract

We introduce a new recursive aggregation procedure called Bernstein Online Ag-
gregation (BOA). Its exponential weights include a second order refinement. The
procedure is optimal for the model selection problem in the iid setting, see [Tsy03];
the excess of risk of its batch version achieves the fast rate of convergence log(M)/n
in deviation when the loss is Lipschitz and strongly convex. The BOA procedure is
the first online algorithm that satisfies this optimal fast rate. The second order re-
finement is required to achieve the optimality in deviation as the classical exponential
weights cannot be optimal, see [Aud09]. This refinement is settled thanks to a new
online to batch conversion that estimates the deviations in the stochastic environment
with random second order terms. It converts a second order regret bound for BOA
similar than in [GSVE14] to a bound on the cumulative predictive risk in a general
stochastic context. The empirical second order term is shown to be sufficiently small
to assert the fast rate in the iid setting when the loss is Lipschitz and strongly convex.
We also introduce a multiple learning rates version of BOA. This fully adaptive BOA
procedure is also optimal, up to a log log(n) factor.

Keywords Exponential weighted averages, learning theory, individual sequences.

1 Introduction and main results

We consider the online setting where observations Ft = {(X1, Y1), . . . , (Xt, Yt)} are avail-
able recursively ((X0, Y0) = (x0, y0) arbitrary). The goal of statistical learning is to predict
Yt+1 ∈ R given Xt+1 ∈ X , for X a probability space, on the basis of Ft. In this paper,
we index with the subscript t any random element that is adapted with Ft. A learner is a
function X 7→ R, denoted ft, that depends only on the past observations Ft and such that
ft(Xt+1) is close to Yt+1. This closeness at time t+ 1 is addressed by the predictive risk

E[ℓ(Yt+1, ft(Xt+1)) | Ft]
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where ℓ : R2 → R is a loss function. We define an online learner f as a recursive algorithm
that produces at each time t ≥ 1 a learner: f = (f0, f1, f2, . . .). The accuracy of an online
learner is quantified by the cumulative predictive risk

Rn+1(f) =

n+1
∑

t=1

E[ℓ(Yt, ft−1(Xt)) | Ft−1].

Given a finite set H = {f1, . . . , fM} of online learners, we aim at finding optimal online
aggregation procedures

f̂ =
(

M
∑

j=1

πj,0fj,0,
M
∑

j=1

πj,1fj,1,
M
∑

j=1

πj,2fj,2 . . .
)

with Ft-measurable weights πj,t ≥ 0,
∑M

j=1
πj,t = 1, t = 0, . . . , n. We call deterministic

aggregation procedures fπ any online learner of the form

fπ =
(

M
∑

j=1

πjfj,0,

M
∑

j=1

πjfj,1,

M
∑

j=1

πjfj,2, . . .
)

with π = (πj)1≤j≤M with
∑M

j=1
πj = 1. Notice that π can be viewed as a probability

measure on the set {1, . . . ,M}. We will also use the notation πt for the probability mea-
sure (πj,t)1≤j≤M on {1, . . . ,M}. Then, fπ is denoted Eπ[fj ] and, with some abuse, f̂
is denoted Eπ̂[fj] = (Eπ0

[fj,0],Eπ1
[fj,1],Eπ2

[fj,2], . . .). The predictive performance of an

online aggregation procedure f̂ is compared with the best element of H or with the best
deterministic aggregation of H. Following the pioneer works [Nem00, Tsy03], we refer to
these two different objectives as, respectively, the convex Problem (C) or the model selec-
tion Problem (MS). The performance of online aggregation procedures is usually measured
using the deterministic regret (in the context of individual sequences prediction, see the
seminal book [CBL06]). In this paper, we use instead the excess of cumulative predictive
risk, defined as

Problem (C): Rn+1(f̂)− inf
π

Rn+1(fπ), Problem (MS): Rn+1(f̂)−min
j

Rn+1(fj).

A new online to batch conversion is used to extend the second order regret bounds
obtained for the deterministic regret to the cumulative predictive risk for any stochastic
environment, see Theorem 4.1. Thanks to the use of the cumulative predictive risk, no
assumption is required on the temporal dependence structure of the stochastic process
(Xt, Yt). However, there is no warranty of the optimality of the procedure at that stage.
To define properly the notion of optimality, we will consider the specific iid setting of
independent identically distributed observations (Xt, Yt) when the online learners are con-
stants: fj,t = fj, t ≥ 0. In the iid setting, we suppress the indexation with time t as

much as possible. The batch version of an online aggregation procedure f̂ is defined as
f̄ = (n + 1)−1

∑n
t=0

f̂t. The cumulative predictive risk Rn+1(f̂) provides an upper bound
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for the predictive risk R(f̄) with R(f) = E[ℓ(Y, f(X))]: Applying Jensen’s inequality, we
have for any convex loss ℓ that

R(f̄) ≤ Rn+1(f̂)

n+ 1
=

1

n+ 1

n+1
∑

t=1

E[ℓ(Yt, f̂t−1(Xt))] | Ft−1].

In the iid setting, lower bounds for the excesses of risk

Problem C: R(f̄)− inf
π

R(fπ), Problem MS: R(f̄)−min
j

R(fj).

are provided in [Nem00, Tsy03]. These lower bounds are called optimal rates of conver-
gence. For Problem (C), the optimal rate is

√

logM/n when M >
√
n and for Problem

(MS) the optimal rate is logM/n. The latter rate is called a fast rate of convergence. We
are now ready to define the notion of optimality of an online aggregation procedure we
will use:

Definition 1.1 (from [Tsy03] in the batch setting). An online aggregation procedure is
optimal for Problems (C) or (MS) if its batch version achieves, respectively, the optimal
rates

√

logM/n or logM/n with high probability, i.e. there exists C > 0 such that with
probability 1− e−x, x > 0, it holds

R(f̄)− inf
π

R(fπ) ≤ C

√
logM + x√

n
or R(f̄)−min

j
R(fj) ≤ C

logM + x

n
.

The notion of optimality for Problem (MS) is very restrictive. Very few known pro-
cedures achieve the fast rate logM/n with high probability and none of them are issued
from online procedures. In this article, we provide the first online aggregation procedure,
called Bernstein Online Aggregation (BOA), that is proved to be optimal. Before defining
it properly, let us review the existing optimal procedures for Problem (MS).

The batch procedures in [Aud07, LM09, LR13] achieve the optimal rate in deviation.
A priori, they are less explicit as they require to optimize a non regular criteria. This
practical issue has been solved in the context of quadratic loss with gaussian noise in
[DRXZ12]. The algorithm is a recursive greedy one and not an online one. On the opposite,
before our work no online algorithm achieves the optimal fast rate in deviation. Most
popular progressive aggregation rules are exponential weights algorithms (EWA) studied
in [Vov90, HKW98]. Batch versions of EWA coincides with the Progressive Mixture Rules
(PRMs). The properties of the excess of risk of such procedures have been extensively
studied in [Cat04]. PRMs achieve the fast optimal rate logM/n in expectation in the iid
context; see [Cat04, JRT08]. However, PRMs are suboptimal in deviation, i.e. the optimal
rate cannot hold with high probability, see [Aud07, DRXZ12].

The optimal BOA procedure is obtained using a necessary second order refinement of
EWA. Figure 1 describes the computation of the weights in the BOA procedure. Other
procedures already exist with different second order refinements, see [Aud09, HK10]. None
of them have been proved to be optimal for (MS) in deviation. The choice of the second
order refinement is crucial. In this paper, the second order refinement is chosen as

ℓj,t = ℓ(Yt, fj,t−1(Xt))− Eπt−1
[ℓ(Yt, fj,t−1(Xt))]
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Parameters: Learning rate η > 0.
Initialization: Set πj,0 > 0 such that

∑M
j=1

πj,0 = 1.
For: Each time round 1 ≤ t ≤ n, compute the weight vector πt = (πj,t)1≤j≤M :

πj,t =
exp(−ηℓ(Yt, fj,t−1(Xt))− η2ℓ2j,t)πj,t−1

Eπt−1
[exp(−ηℓ(Yt, fj,t−1(Xt))− η2ℓ2j,t)]

=
exp(−ηℓj,t(1 + ηℓj,t))πj,t−1

Eπt−1
[exp(−ηℓj,t(1 + ηℓj,t))]

.

Figure 1: The BOA algorithm

thanks to the new online to batch procedure that we describe below. Notice that the
second order refinement ℓj,t tends to stabilize the procedure as the distances between the
losses of the learners and the aggregation procedure are costly.

We achieve an upper bound for the excess of risk by following standard arguments. We
first derive a second order bound on the regret (or excess of losses) in the deterministic
setting: for any deterministic π

Rn+1(f̂)−Rn+1(fπ) where Rn+1(f) =

n+1
∑

t=1

ℓ(Yt, ft−1(Xt)).

Then we extend it to an upper bound on the excess of risk Rn(f̂)−Rn(fπ) in any stochastic
environment. In previous works, the online to batch conversion follows from an application
of a Bernstein inequality for martingales. It provide a control of the deviations in the
stochastic environment via the predictable quadratic variation, see for instance [Fre75,
Zha05, KT08]. Here we prefer to use an empirical counterpart of the classical Bernstein
inequality, based on the quadratic variation instead of the predictive quadratic variation.
For any martingale (Mt), we denote ∆Mt = Mt − Mt−1 its difference (∆M0 = 0 by
convention) and [M ]t =

∑t
j=1

∆M2
j its quadratic variation. We will use the following new

empirical Bernstein inequality:

Theorem 1.1. Let M be a martingale such that ∆Mt ≥ −1/2 a.s. for all t ≥ 0. Then
for any n ≥ 0 we have E[exp(Mn − [M ]n)] ≤ 1.

Empirical Bernstein’s inequalities have already been developed in [AMS06, MP09] and
use in the multi-armed bandit and penalized ERM problems. Applying Theorem 1.1, we
estimate successively the deviations of two different martingales

1. ∆Mj,t = −ηℓj,t as a function of j, distributed as πt−1 on {1, . . . ,M} given Fn+1,

2. Mj,t = η(Rt(f̂) − Rt(fj) − Rt(f̂) + Rt(fj)) such that ∆Mj,t = η(Et−1[ℓj,t] − ℓj,t)
where Et−1 denotes the expectation of (Xt, Yt) conditionally on Ft−1.

The first application 1. of Theorem 1.1 will provide a second order bound on the regret in
the deterministic setting whereas the second 2. will provide the online to batch conversion.
In both cases, the second order term will be equal to η−1|M ]n+1 = η

∑n+1

t=1
ℓ2j,t after

renormalization. It is the main motivation of BOA; as our notion of optimality requires

4



an online to batch conversion, the necessary cost is a second order term appearing in the
empirical online to batch conversion. An online procedure will achieve good performances
in the batch setting if the second order bound of the regret is similar than this necessary
cost. We describe below why the BOA procedure achieves this aim.

In the first application 1. of Theorem 1.1, we have Eπt−1
[∆Mt] = 0 and we verify that

∆Mt is centered. An application of Theorem 1.1 yields the regret bound of Theorem 3.1:

Eπ̂[Rn+1(fj)] ≤ inf
π

{

Eπ

[

Rn+1(fj) + η

n+1
∑

t=1

ℓ2j,t +
log(πj/πj,0)

η

]}

.

Such second order bounds also hold for the regret of other algorithms, see [CBMS07].
The procedure introduced in [HK10] achieves a second order regret bound that is not
comparable with the one of BOA. In [GSVE14], the authors introduced the ML-prod
and ML-pol procedures that satisfies the same regret bound. Using our new online to
batch conversion, this second order regret bound is converted to the stochastic setting.
Application 2. of Theorem 1.1 yields the bound on the excess of cumulative risk of Theorem
4.2. With probability 1− e−x, x > 0, we have

Eπ̂[Rn+1(f)] ≤ inf
π

{

Eπ

[

Rn+1(fj) + 2η
n+1
∑

t=1

ℓ2j,t +
log(πj/πj,0) + x

η

]}

.

Thanks to the use of the cumulative predictive risk, this bound is valid in any stochastic
environment. We will extend it in various directions. We will introduce

• the sub-gradient trick to bound the excess of risk in Problem (C),

• the multiple learning rates for adapting the procedure and

• the batch version of BOA to achieve the fast rate of convergence in Problem (MS).

In order to solve Problem (C), we use the sub gradient trick, see [CBL06]. When the
loss ℓ is convex with respect to its second argument, its sub-gradient is denoted ℓ′. In
this case, we consider a convex version of the BOA procedure described in Figure 1. The
original loss ℓ is replaced with its linearized version

ℓ′(Yt, f̂t−1(Xt))fj,t−1(Xt). (1)

Then we consider the second order refinement

ℓj,t = ℓ′(Yt, f̂t−1(Xt))(fj,t−1(Xt)− f̂t−1(Xt)).

With some abuse of notation, we will still denote it as ℓj,t. Linearizing the loss, we can

compare the regret of the (sub-gradient version of the) BOA procedure f̂ = Eπ̂[fj] with the
best deterministic aggregation of the elements in the dictionary. We obtain in Theorem
3.1 a second order regret bound on the regret for Problem (C)

Rn+1(f̂) ≤ inf
π

{

Rn+1(fπ) + η

n+1
∑

t=1

Eπ[ℓ
2
j,t] +

Eπ[log(πj/πj,0)]

η

}

.
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The bounds ale holds on the excess of risk with high probability from an application of
the new online to batch conversion, see Theorem 4.2.

When trying to optimize the regret bound in the learning rate η > 0, we obtain

√

Eπ[log(πj/πj,0)]
∑n+1

t=1
Eπ[ℓ

2
j,t]

≤ Eπ

[

√

√

√

√

log(π−1

j,0 )
∑n+1

t=1
ℓ2j,t

]

,

As π is unknown, this tuning parameter is not tractable in practice. Its worst case ver-

sion maxj

√

log(π−1

j,0 )/
√

∑n+1

t=1
ℓ2j,t is not satisfactory. Multiple learning rates have been

introduced by [BM05] to solve this issue (see also [GSVE14]). We also solve this issue
by introducing the multiple learning rates version of BOA in Figure 2. Here we are

Parameters: Learning rates ηj > 0.

Initialization: Set πj,0 > 0 such that
∑M

j=1
πj,0 = 1.

For: Each time round 1 ≤ t ≤ n, compute the weight vector πt = (πj,t)1≤j≤M :

πj,t =
exp(−ηjℓj,t(1 + ηjℓj,t))πj,t−1

Eπt−1
[exp(−ηjℓj,t(1 + ηjℓj,t))]

. (2)

Figure 2: The multiple learning rates BOA algorithm

able to extend the second order regret bounds for Problem (C) to the multiple learn-
ing rates BOA procedure in Theorem 3.2. The multiple learning rates ηj can be tuned

as
√

log(π−1

j,0 )/
√

maxj
∑n+1

t=1
ℓ2j,t. The resulting procedure satisfies a second order regret

bound but is not recursive. The random variable Mt = Rt(f̂)−Rt(fπ)− (Rt(f̂)−Rt(fπ))
is not adapted to Ft but to Fn+1. One cannot apply the online to batch conversion and
one cannot provide bounds in deviation on the excess of risk.

Thus, we introduce a recursive procedure with adaptive multiple learning rates (ηj,t)
in Figure 3. The novelty, compared with classical adaptive procedures developed in

Parameter: a rule to sequentially pick the learning rates (ηj,t) for 1 ≤ j ≤ M and 1 ≤ t ≤ n.

Initialization: Set Lj,0 = 0, ηj,0 = 0, πj,0 > 0 such that
∑M

j=1
πj,0 = 1.

For: each time round t ≥ 1,

1. Compute recursively
Lj,t = Lj,t−1 + ℓj,t(1 + ηj,t−1ℓj,t),

2. Compute the weights vector πt = (πj,t)1≤j≤M :

πj,t =
ηj,t exp(−ηj,tLj,t)πj,0
Eπ0

[ηj,t exp(−ηj,tLj,t)]
.

Figure 3: The adaptive BOA procedure
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[CBMS07], is the dependence of the learning rates with respect to j and that the learning
rates appear in the exponential and as a factor. We consider the learning rates

ηj,t = min







1

2Ej
,

√

√

√

√

log(π−1

j,0 )
∑t

s=1
ℓ2j,s







, t ≥ 0,

where Ej is a known estimate of the range of the linearized loss (1) of the learner fj,
1 ≤ j ≤ M . We also give a fully adaptive version of the algorithm for cases when the
ranges Ej are unknown. For these adaptive BOA procedures, we obtain regret bounds
such as

Rn+1(f̂) ≤ inf
π

{

Rn+1(fπ) + CEπ

[

√

√

√

√

n+1
∑

t=1

ℓ2j,t log(π
−1

j,0 ) + CEj log(π
−1

j,0 )
]}

,

for some ”constant” C > 0 that grows as log log(n), see Theorems 3.3 and 3.4 for details.
Such second order bounds involving excess losses terms as the ℓj,ts have been proved for
other algorithms in [GSVE14], and we refer to this article for nice consequences of such
bounds. Here again, the online to batch conversion holds in any stochastic environment
and we obtain with probability 1− e−x, x > 0

Rn+1(f̂) ≤ inf
π

{

Rn+1(fπ) + CEπ

[

√

√

√

√

n+1
∑

t=1

ℓ2j,t(log(π
−1

j,0 ) + x) + C(Ej log(π
−1

j,0 ) + x)
]}

,

It is remarkable to obtain a result for the excess of risk with no assumption on the de-
pendence of the stochastic observations. Formerly, such inequalities where derived under
very restrictive dependent assumptions, see [ALW13, MR10, AD13]. The generality of
our results is due to the use of the cumulative predictive risk. It is the correct criteria
to assert the prediction accuracy of online algorithms as it coincides with the cumulative
loss for deterministic observations and with the classical risk in the iid setting. Moreover,
it appears naturally when using the minimax theory approach, see [AABR09]. However,
up to our knowledge, it is the first time that the cumulative predictive risk is used to
compare an online procedure with deterministic aggregation procedures. The optimality
for Problem (C) is proved in the very general setting: under a boundedness assumption,
the rate of convergence of Rn+1(f̂)/(n + 1) is smaller than

√

log(M)/n.
The fast rate of convergence log(M)/n of Problem (MS) comes from a careful study of

the second order terms
∑n+1

t=1
ℓ2j,t. It is known that it also require more conditions on the

loss, see [Lec07, Aud09]. We restrict us to losses ℓ that are strongly convex and Lipschitz
functions in the iid setting, see [KT08] for an extensive study of this context. Inspired by
the work of [LR13], we modify the loss in the BOA procedure and we use the mixture of
the original and the linearized loss. The second order refinement in the BOA procedure
becomes:

ℓj,t = ℓ′(Yt, f̂t−1(Xt))(fj,t−1(Xt)− f̂t−1(Xt)) + ℓ(Yt, fj,t−1(Xt))− Eπt−1
[ℓ(Yt, fj,t−1(Xt))],
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for all 1 ≤ j ≤ M , 1 ≤ t ≤ n+1. We also fix the initial weights uniformly πj,0 = M−1. We
obtain in Theorem 4.4 the fast rate of convergence for the BOA procedure; with probability
1− e−x, x > 0,

R(f̄) ≤ Rn+1(f̂)

n+ 1
≤ min

1≤j≤M
R(fj) +

log(M) + 2x

η(n + 1)
,

for η smaller than a constant depending on the range. The result follows from our online
to batch conversion. The second order term is estimated with the excess of risk using the
strong convexity assumption on the loss. Such optimality should also hold for the other
algorithms provided in [GSVE14]. We conclude by providing the version of the fast rate
bound with the best possible η for the adaptive BOA at the price of larger ”constants”
that grows at the rate log log(n).

The paper is organized as follows: We present the second order regret bounds for
different versions of BOA in Section 3. The new online to batch conversion and the excess
of risk rbounds in a stochastic environment are provided in Section 4. In the next Section,
we introduce some useful probabilistic preliminaries.

2 Preliminaries

Similarly than in [Aud09], the recursive argument for supermartingales will be at the core
of the proofs developed in this paper. It will be used jointly with the variational form of
the entropy to provide second order regret bounds.

2.1 The proof of the martingale inequality in Theorem 1.1

The proof of the empirical Bernstein inequality for martingales of Theorem 1.1 follows
from an exponential inequality and by a classical recursive supermartingales argument,
see [Fre75]. As X = ∆Mt ≥ −1/2 a.s., from the inequality log(1 + x) ≥ x − x2 for
x > −1/2 (stated as Lemma 1 in [CBMS07]), we have

X −X2 ≤ log(1 +X) ⇔ exp(X −X2) ≤ 1 +X ⇔ Et−1[exp(X −X2)] ≤ 1. (3)

Here we used that Et−1[X] = 0 as X = ∆Mt is a difference of martingale. The proof ends
by using the classical recursive argument for supermartingales; from the definition of the
difference of martingale X = ∆Mt, we obtain as a consequence of (3) that

E[exp(Mt − [M ]2t )] ≤ E[exp(Mt−1 − [M ]2t−1)].

As E[exp(M0−[M ]20)] = 1, applying a recursion for t = 1, . . . , n provides the desired result.

2.2 The variational form of the entropy

The relative entropy (or Kullback-Leibler divergence) K(Q,P ) = EQ[log(dQ/dP )] is a
pseudo-distance between any probability measures P and Q. Let us remind the basic
property of the entropy: the variational formula of the entropy originally proved in full
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generality in [DV75]. We consider here a version well adapted for obtaining second order
regret bounds:

Lemma 2.1. For any probability measure P on X and any measurable functions h, g :
X → R we have:

EP [exp(h− EP [h]− g)] ≤ 1

⇐⇒ EQ[h]− EP [h] ≤ EQ[g] +K(Q,P ), for any probability measure Q. (4)

The left hand side corresponds to the right hand side with Q equals the Gibbs measure
EP [e

h−g]dQ = eh−gdP .

That the Gibbs measure realizes the dual identity is at the core of the PAC-bayesian
approach. Exponential weights aggregation procedures arise naturally as they can be
considered as Gibbs measures, see [Cat07].

3 Second order regret bounds for the BOA procedure

3.1 First regret bounds and link with the individual sequences frame-
work

We work conditionally on Fn+1; it is the deterministic setting, similar than in [Ger13],
where (Xt, Yt) = (xt, yt) are provided recursively for 1 ≤ t ≤ n. In that case, the cumula-
tive loss Rn+1(f) quantify the prediction of f = (f0, f1, f2, . . .). We have

Theorem 3.1. Assume that η > 0 satisfies

η max
1≤t≤n+1

max
1≤j≤M

ℓj,t ≤ 1/2, (5)

then the cumulative loss of the BOA procedure satisfies

Eπ̂[Rn+1(fj)] ≤ inf
π

{

Eπ

[

Rn+1(fj) + η

n+1
∑

t=1

ℓ2j,t

]

+
K(π, π0)

η

}

.

Moreover, if ℓ is convex with respect to its second argument, we have

Rn+1(f̂) ≤ min
π

{

Rn+1(fπ) + η
n+1
∑

t=1

Eπ[ℓ
2
j,t] +

K(π, π0)

η

}

.

Proof. We consider ∆Mj,t+1 = −ηℓj,t+1 that is a centered random variable on {1, . . . ,M}
when distributed as πt. Under the assumption (5), ∆Mj,t+1 ≥ −1/2 for any 0 ≤ t ≤ n
a.s.. An application of the inequality (3) provides the inequality

Eπt[exp(−ηℓj,t+1(1 + ηℓj,t+1))] ≤ 1. (6)
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We have from the recursive definition of the BOA procedure provided in Figure 1 the
expression

πj,t =
exp(−η

∑t
s=1

ℓj,s(1 + ηℓj,s))πj,0

Eπ0
[exp(−η

∑t
s=1

ℓj,s(1 + ηℓj,s))]
.

Plugging the expression of the weights πj,t in the inequality (6) provides

Eπ0

[

exp
(

− η

t+1
∑

s=1

ℓj,s(1 + ηℓj,s)
)]

≤ Eπ0

[

exp
(

− η

t
∑

s=1

ℓj,s(1 + ηℓj,s)
)]

.

By the recursive argument for supermartingales we obtain

Eπ0

[

exp
(

−η

n+1
∑

t=1

ℓj,t(1 + ηℓj,t)
)]

≤ 1.

Equivalently, using the variational form of the entropy (4),

0 ≤ inf
π

{

Eπ

[

η
n+1
∑

t=1

ℓj,t + η2
n+1
∑

t=1

ℓ2j,t

]

+K(π, π0)
}

, (7)

π denoting this time any probability measure on {1, . . . ,M}. The first regret bound in
Theorem 3.1 follows from the identity

∑n+1

t=1
ℓj,t = Rn+1(fj)− Eπ̂[Rn+1(fj)]. The second

result follows by an application of the classical sub-gradient trick, i.e. noticing that

Rn+1(f̂)−Rn+1(fπ) =

n+1
∑

t=1

ℓ(Yt, f̂t−1(Xt))− ℓ(Yt,Eπ[fj,t−1](Xt))

≤
n+1
∑

t=1

ℓ′(Yt, f̂t−1(Xt))(f̂t−1(Xt)− Eπ[fj,t−1](Xt))

= Eπ

[

n+1
∑

t=1

ℓ′(Yt, f̂t−1(Xt))(f̂t−1(Xt)− fj,t−1(Xt))
]

= −Eπ

[

n+1
∑

t=1

ℓj,t

]

.

The second order term in the last regret bound is equal to

n+1
∑

t=1

Eπ[ηℓ
2
j,t] =

n+1
∑

t=1

Eπ[ηℓ
′(Yt, f̂t−1(Xt))

2(f̂t−1(Xt)− fj,t−1(Xt))
2].

This term can be small because the sub-gradient is small and because the deterministic
aggregation π is close to the BOA procedure. Such second order upper bounds can heavily
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depend on the behavior of the different learners fj. Thus, a unique learning rate cannot
be efficient in cases where the learners have different second order properties. To solve
this issue, we consider the multiple learning rates version of BOA described in Figure 2.
We can extend the preceding regret bound to this more sophisticated procedure:

Theorem 3.2. Consider that ℓ is convex with respect to its second argument and multiple
learning rates ηj , 1 ≤ j ≤ M , that are positive. If

max
1≤t≤n+1

max
1≤j≤M

ηjℓj,t ≤ 1/2, a.s.,

then the cumulative loss of the BOA procedure with multiple learning rates satisfies

Rn+1(f̂) ≤ inf
π

{

Rn+1(fπ) + Eπ

[

ηj

n+1
∑

t=1

ℓ2j,t +
log(πj/πj,0) + log(Eπ0

[η−1

j ]/Eπ[η
−1

j ])

ηj

]}

.

Proof. Let us consider the weights π′
i,t = η−1

i πi,t/Eπt [η
−1

j ], for all 1 ≤ i ≤ M and 0 ≤ t ≤
n+ 1. Then, for any function hj measurable on {1, . . . ,M} we have the relation

Eπ′

t
[ηjhj ] = Eπt[hj ]/Eπt [η

−1

j ], 1 ≤ t ≤ n+ 1. (8)

We consider ∆Mt = −ηjℓj,t+1. Thanks to relation (8), it is a centered random variable on
{1, . . . ,M} when distributed as π′

t. Moreover, the weights (π′
t) also satisfy the recursive

relation (2). Thus, one can apply the same reasoning than in the proof of Theorem 3.1.
We obtain, equivalently than the inequality (7), that

0 ≤ inf
π′

{

Eπ′

[

ηj

n+1
∑

t=1

ℓj,t + η2j

n+1
∑

t=1

ℓ2j,t

]

+K(π′, π′
0)
}

,

for π′ denoting any probability measure on {1, . . . ,M}. Using the identity (8) to define π
from π′, and multiplying the above inequality with Eπ[η

−1

j ] > 0, we have

0 ≤ inf
π

{

Eπ

[

n+1
∑

t=1

ℓj,t + ηj

n+1
∑

t=1

ℓ2j,t +
log(π′

j/π
′
j,0)

ηj

]}

,

The proof ends by identifying log(π′
j/π

′
j,0) and using the sub-gradient trick as in the proof

of Theorem 3.1.

Notice that a simple corollary of the proof above is the simplified upper bound

Rn+1(f̂) ≤ min
π

{

Rn+1(fπ) + Eπ

[

ηj

n+1
∑

t=1

ℓ2j,t+1 +
log(1/π′

j,0)

ηj

]}

,

where π′
0 is defined as π′

i,0 = η−1

i πi,t/Eπt [η
−1

j ]. Then the initial weights πj,0 are modified.
They favor the learners with small learning rates ηj . It constitutes a drawback of the
multiple learning rates version of BOA as we will see that small learning rates will be
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associated with bad strategies. One can solve this issue by choosing the initial weights
differently than classically. For example, with no information on the learners fj, the initial
weights can be chosen equal to

πj,0 =
ηj

∑M
j=1

ηj
such that π′

j,0 =
1

M
, 1 ≤ j ≤ M.

In this case, log(1/π′
j,0) ≤ log(M) and the weights have the expression

πj,t =
ηj exp(−ηj

∑t
s=1

ℓj,s(1 + ηjℓj,s)πj,0

Eπ0
[ηj exp(−ηj

∑t
s=1

ℓj,s(1 + ηjℓj,s)]
, 1 ≤ j ≤ M.

The form of the weights becomes similar than the one of the adaptive BOA introduced in
Figure 3 and studied in the next section. The second order regret bounds becomes

Rn+1(f̂) ≤ min
π

{

Rn+1(fπ) + 2
√

log(M)Eπ

[

√

√

√

√

n+1
∑

t=1

ℓ2j,t

]}

,

for learning rates tuned optimally

ηj =

√

log(M)
∑n+1

t=1
ℓ2j,t

, 1 ≤ j ≤ M.

However, the resulting procedure is not recursive. Such non recursive strategies are not
convertible to the batch setting.

Second order regret bounds similar than the one of Theorem 3.2 have been obtained in
[GSVE14] in the context of individual sequences. In this context, studied in [CBL06], we
consider that Yt = yt for a deterministic sequence y0, . . . , yn ((Xt) is useless in this context).
We have Ft = {y0, . . . , yt}, 0 ≤ t ≤ n, and the online learners fj = (yj,1, yj,2, yj,3, . . .) of the

dictionary are called the experts. The cumulative loss is now Rn+1(f̂) =
∑n+1

t=1
ℓ(yt, ŷt) for

any aggregative strategy ŷt = f̂t−1 =
∑M

j=1
πj,t−1yj,t where πj,t−1 are measurable functions

of the past {y0, . . . , yt−1}.

3.2 A new adaptive method for exponential weights

We described in Figure 3 the adaptive version of the BOA algorithm. Notice that the
adaptive version of the exponential weights

πj,t =
ηj,t exp(−ηj,tLj,t)πj,0
Eπ0

[ηj,t exp(−ηj,tLj,t)]
,

is different from [CBMS07] as the multiple learning rates ηj,t depend on j. Moreover, the
multiple learning rates appear in the exponential and as a multiplicative factor to solve
the issue concerning the modification of the initial weights described above. Adaptive pro-
cedures with such multiplicative forms have been studied in [GSVE14]. Multiple learning
rates versions can be investigated for other exponential weights than for those of BOA.
We obtain a second order regret bound for the BOA procedure similar than in [GSVE14]:
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Theorem 3.3. Assume that ℓ is convex with respect to its second argument and that the
learning rates (ηj,t)t are non increasing and satisfy

max
1≤t≤n+1

max
1≤j≤M

ηj,t−1ℓj,t ≤ 1/2, a.s.,

then the cumulative loss of the adaptive BOA procedure satisfies

Rn+1(f̂) ≤ inf
π

{

Rn+1(fπ)+Eπ

[

n+1
∑

t=1

ηj,t−1ℓ
2
j,t+

log(π−1

j,0 ) + log
(

1 + Eπ0

[

log
(

ηj,1
ηj,n

)])

ηj,n

]}

.

Proof. We adapt the reasoning of the proof of Theorem 3.2 for learning rates depending
on t. Thus, the recursive argument holds only approximatively. For any 1 ≤ t ≤ n, let us
consider the weights π′

t as

π′
j,t =

η−1

j,t πj,t

Eπt [η
−1

j,t ]
.

We consider ∆Mj,t+1 = −ηj,tℓj,t+1 a centered random variable on {1, . . . ,M} when dis-
tributed as π′

t. As ∆Mj,t+1 ≥ −1/2, j = 1, . . . ,M , we apply the inequality (3):

Eπ′

t
[exp(−ηj,tℓj,t+1(1 + ηj,tℓj,t+1))] ≤ 1.

By definition of the weights π′
t and πt, we have for any 1 ≤ t ≤ n the expression

π′
j,t =

exp(−ηj,t
∑t

s=1
ℓj,s(1 + ηj,s−1ℓj,s))πj,0

Eπ0
[exp(−ηj,t

∑t
s=1

ℓj,s(1 + ηj,s−1ℓj,s))]
. (9)

Using the expression of the weights in the preceding inequality provides

Eπ0

[

exp
(

− ηj,t

t+1
∑

s=1

ℓj,s(1+ ηj,s−1ℓj,s)
)]

≤ Eπ0

[

exp
(

− ηj,t

t
∑

s=1

ℓj,s(1+ ηj,s−1ℓj,s)
)]

. (10)

Using the basic inequality x ≤ α−1xα+α−1(α−1) ≤ xα+α−1(α−1) for x = exp(−ηj,t
∑t−1

s=0
ℓj,s+1(1+

ηj,sℓj,s+1)) ≥ 0 and α = ηj,t−1/ηj,t ≥ 1, we obtain for all 2 ≤ t ≤ n

Eπ0

[

exp
(

− ηj,t

t
∑

s=1

ℓj,s(1 + ηj,s−1ℓj,s)
)]

≤ Eπ0

[

exp
(

− ηj,t−1

t
∑

s=1

ℓj,s(1 + ηj,s−1ℓj,s)
)]

+ Eπ0

[ηj,t−1 − ηj,t
ηj,t−1

]

. (11)

Then, combining the inequalities (10) and (11) recursively for t = n, . . . , 2 and then (10)
for t = 1 we obtain

Eπ0

[

exp
(

− ηj,n

n+1
∑

t=1

ℓj,t(1 + ηj,t−1ℓj,t)
)]

≤ 1 +

n
∑

t=2

Eπ0

[ηj,t−1 − ηj,t
ηj,t−1

]

.
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We apply the variational form of the entropy (4) in order to derive that

0 ≤ Eπ′

[

ηj,n

n+1
∑

t=1

ℓj,t(1 + ηj,t−1ℓj,t)
]

+ log
(

1 +
n
∑

t=2

Eπ0

[ηj,t−1 − ηj,t
ηj,t−1

])

+K(π′, π0)

for any probability measure π′ on {1, . . . ,M}. We bound the last term K(π′, π0) ≤
Eπ′ [log(π−1

j,0 )]. By comparing with the integral of 1/x on the interval [ηj,n, ηj,1], we es-
timate

n
∑

t=2

ηj,t−1 − ηj,t
ηj,t−1

≤
n
∑

t=2

∫ ηj,t−1

ηj,t

dx

x
≤

∫ ηj,1

ηj,n

dx

x
≤ log

( ηj,1
ηj,n

)

.

The proof ends by choosing π′
j = η−1

j,nπj/Eπ[η
−1

j,n] and using the sub-gradient trick as in the
proof of Theorem 3.1.

3.3 The adaptive BOA procedure when the range is known

We now consider the case where the effective ranges Ej > 0 of the linearized errors are
known:

max
1≤t≤n+1

|ℓj,t| ≤ Ej, 1 ≤ j ≤ M. (12)

The second order regret bound provided in Theorem 3.3 can be easily optimized in ηj,t
and we tune the learning rates as

ηj,t = min







1

2Ej
,

√

√

√

√

log(π−1

j,0 )
∑t

s=1
ℓ2j,s







, 1 ≤ t ≤ n, 1 ≤ j ≤ M. (13)

The learning rates are similar than those of Section 4.1 in [CBMS07] except that they
depend on j through Ej ,

∑t
s=1

ℓ2j,s and log(π−1

j,0 ); see [GSVE14] for similar multiple learning
rates. We restrict ourself to cases where πj,0 < 1 to consider only positive learning rates
ηj,t > 0 for all 1 ≤ j ≤ M . We provide below a second order regret bound for the adaptive
BOA procedure:

Theorem 3.4. If ℓ is convex with respect to its second argument, if (12) holds and if the
learning rates are tuned as in (13) then the cumulative loss of the adaptive BOA procedure
satisfies

Rn+1(f̂) ≤ inf
π

{

Rn+1(fπ) + Eπ

[

√

√

√

√

n+1
∑

t=1

ℓ2j,t

(

√

2 log(π−1

j,0 )√
2− 1

+
Bn

√

log(π−1

j,0 )

)

+ Ej(2 log(π
−1

j,0 ) + 2Bn + 1)
]}

,

where Bn = log(1 + 2−1 log(n)) for all n ≥ 1.
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Proof. The proof is an application of the result of Theorem 3.3 using similar arguments
than the proof of Theorem 5 in [CBMS07]. An exception is the additional term log(1 +
Eπ0

[log(ηj,1/ηj,n)]) that is easily bounded using the estimates

log
( ηj,1
ηj,n

)

= log
( 1

2Ejηj,n

)

+
≤ 1

2
log

(

∑n
t=1

ℓ2j,t
4E2

j log(M)

)

+
≤ log(n)

2
.

The second order regret bound for the adaptive BOA procedure is very similar to the
ones obtained in [GSVE14]. Thus, the regret bounds in case of small excess losses and
against iid sequences developed in [GSVE14] are also satisfied by the BOA procedure.

3.4 The adaptive BOA procedure when the ranges are unknown

When the effective ranges of the linearized error are not known, we have to estimate it.
Let c > 0 be some constant chosen arbitrarily big enough to consider that 2−c is negligible.
To adapt the reasoning of [CBMS07], we consider an estimator Ej,t of the range at time t:
Ej,t = 2k+1 where k ≥ −c is the smallest integer such that max1≤s≤t |ℓj,t| ≤ 2k, 1 ≤ j ≤ M .
Then we define the learning rates as

ηj,t = min







1

Ej,t
,

√

√

√

√

log(π−1

j,0 )
∑t

s=1
ℓ2j,s







, 1 ≤ t ≤ n, 1 ≤ j ≤ M. (14)

This rule for updating learning rates is similar than the one in [CBMS07] except the
dependence on j. We also restrict the range of Ej,t to define correctly ηj,1 when ℓj,1 = 0.
Assuming that the ranges Ej defined in (12) satisfies 2−c ≤ Ej ≤ E for all 1 ≤ j ≤ M , we
have

Theorem 3.5. If ℓ is convex with respect to its second argument, if (12) holds and if the
learning rates are tuned as in (14) then the cumulative loss of the adaptive BOA procedure
satisfies,

Rn+1(f̂) ≤ inf
π

{

Rn+1(fπ) + Eπ

[

√

√

√

√

n+1
∑

t=1

ℓ2j,t

(

√

2 log(π−1

j,0 )√
2− 1

+
Bn,E + 8Ej
√

log(π−1

j,0 )

)

+ 4Ej(log(π
−1

j,0 ) +Bn,E + 3)
]}

,

where Bn,E = log(1 + 2−1 log(n) + log(E) + c log(2)) for all n ≥ 1.

Proof. We apply the same recursive argument than in the proof of Theorem 3.3. But we
have to distinguish two cases, depending wether ηj,tℓj,t+1 ≤ 1/2 or not.

We consider the set of indices that Tj such that Ej,t < Ej,t+1. For such indices, possibly
ηj,tℓj,t+1 > 1/2 but as −ηj,tℓj,t+1 ≤ ηj,tEj,t+1 we have

Eπ′

t
[exp(−ηj,t(ℓj,t+1(1 + ηj,tℓj,t+1) + Ej,t+11ηj,tℓj,t+1>1/2))] ≤ 1.
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Then, from the expression of the weights π′
t in (9) we obtain

Eπ0

[

exp
(

− ηj,t

(

t
∑

s=0

ℓj,s+1(1 + ηj,sℓj,s+1) + Ej,t+11ηj,tℓj,t+1>1/2

))]

≤ Eπ0

[

exp
(

− ηj,t

t−1
∑

s=0

ℓj,s+1(1 + ηj,sℓj,s+1)
)]

. (15)

Second, we consider the indices t that do not belong to Tj. Then ηj,tℓj,t+1 ≤ 1/2 and
the same reasoning than in the proof of Theorem 3.3 applies. The recursive formulas (10)
and (11) hold. To conclude, we apply recursive formulas (10), (11) and (15) and we obtain
the upper bound

Eπ0

[

exp
(

− ηj,n

n
∑

t=0

(

ℓj,t+1(1 + ηj,tℓj,t+1) + Ej,t+11ηj,tℓj,t+1>1/2

)]

≤ 1 + Eπ0

[

log
( ηj,1
ηj,n

)]

.

We have the elementary bounds
∑

t∈Tj
Ej,t+1 ≤ 8Ej and log(ηj,1/ηj,n) ≤ log(

√
nE/2−c).

Then Theorem 3.5 is proved using similar arguments than in the proof of Theorem 6 in
[CBMS07].

The advantage of the adaptive BOA procedure compared with the procedures studied
in [GSVE14] is to be adaptive to unknown ranges. The price to pay is an additional term
depending on the variability of the adaptive learning rates ηj,t through time. Such losses
are avoidable in the case of one single adaptive learning rate ηj,t = ηt, for all 1 ≤ j ≤ M .
Wether this extra term can be avoided in the multiple learning rates case is an open
question.

4 Optimality of the BOA procedure in a stochastic environ-

ment

4.1 An empirical online to batch conversion

We now turn to a stochastic setting where (Xt, Yt) are random elements observed recur-
sively with 1 ≤ t ≤ n. Thanks to the empirical Bernstein inequality of Theorem 1.1, the
cumulative predictive risk is bounded in term of the regret and a second order term. This
new online to batch conversion is provided in Theorem 4.1 below. The main motivation of
the introduction of the BOA procedure is the following reasoning: as a second order term
appears necessarily in the online to batch conversion, a procedure that admits a similar
second order term on the regret bound has nice properties in the stochastic environment.
The BOA procedure achieves this strategy as the second order term of the regret bound
is the same than the one appearing in the online to batch conversion. Let us go back for
a moment to the most general case:

ℓj,t = ℓ(Xt, fj,t(Xt−1))− Eπt−1
[ℓ(Xt, fj,t(Xt))]
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for some online aggregation procedure (πt)0≤t≤n, i.e. πt is Ft-measurable. Assume the
existence of non increasing sequences (ηj,t)t that are adapted to (Ft) for each 1 ≤ j ≤ M
and that satisfy

max
1≤t≤n+1

max
1≤j≤M

ηj,t−1ℓj,t ≤ 1/2, a.s.. (16)

We have the following general online to batch conversion. It can be seen as an empirical
counterpart of the conversion provided in [Zha05, KT08]. Thanks to the use of the cumu-
lative predictive risk, the conversion holds in a completely general stochastic context; no
assumption is done on the stochastic environment.

Theorem 4.1. The cumulative predictive risk of any aggregation procedure satisfies, with
probability 1− e−x, x > 0:

Eπ̂[Rn+1(fj)]−Rn+1(fj)

≤ Eπ̂[Rn+1(fj)]−Rn+1(fj) +

n+1
∑

t=1

ηj,t−1ℓ
2
j,t +

log
(

1 + E

[

log
(

ηj,1
ηj,n

)])

+ x

ηj,n
.

Proof. We first note that for each 1 ≤ j ≤ M the sequence (Mj,t)t with Mj,t = η(Rt(f̂)−
Rt(fj)−(Rt(fπ)−Rt(fj))) is a martingale adapted with the filtration (Ft). Its difference is
equal to ∆Mj,t = η(Et−1[ℓj,t]− ℓj,t). Then the proof will follow from the classical recursive
argument for supermartingales. However, as the learning rates ηj,t are not constant, we
adapt this recursive argument as in the proof of Theorem 3.3.

For any 1 ≤ j ≤ M , 1 ≤ t ≤ n+1, denoting X = −ηj,t−1ℓj,t we check that X ≥ −1/2.
We can apply (3) conditionally on Ft−1 and we obtain

Et−1[exp(−ηj,t−1(ℓj,t − Et−1[ℓj,t])− η2j,t−1ℓ
2
j,t)] ≤ 1.

Here we used the fact that ηj,t−1 is Ft−1-measurable. Then we have

E

[

exp
(

− ηj,t−1

(

t
∑

s=1

(ℓj,s − Es−1[ℓj,s])− ηj,s−1ℓ
2
j,s

))]

≤ E

[

exp
(

− ηj,t−1

(

t−1
∑

s=1

(ℓj,s − Es−1[ℓj,s])− ηj,s−1ℓ
2
j,s

))]

.

To apply the recursive argument we use the basic inequality x ≤ xα + (α − 1)/α for
α = ηj,t−2/ηj,t−1 ≥ 1 and

x = exp
(

− ηj,t−1

(

t−1
∑

s=1

(ℓj,s − Es−1[ℓj,s])− ηj,s−1ℓ
2
j,s

))

.
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We obtain

E

[

exp
(

− ηj,t−1

(

t
∑

s=1

(ℓj,s − Es−1[ℓj,s])− ηj,s−1ℓ
2
j,s

))]

≤ E

[

exp
(

− ηj,t−2

(

t−1
∑

s=1

(ℓj,s − Es−1[ℓj,s])− ηj,s−1ℓ
2
j,s

))]

+ E

[ηj,t−2 − ηj,t−1

ηj,t−1

]

.

The same recursive argument than in the proof of Theorem 3.3 is applied; we get

E

[

exp
(

− ηj,n

(

n
∑

t=1

(ℓj,t − Et−1[ℓj,t])− ηj,s−1ℓ
2
j,s

))]

≤ 1 + E

[

log(
ηj,1
ηj,n

)
]

.

We end the proof by the Chernoff device.

4.2 Second order bounds on the excess of cumulative predictive risk

Based on the result of Theorem 4.1, we derive batch versions of the main results of Section
3 for the BOA procedure. As an example, using the second order regret bound of Theorem
3.1 and the online to batch conversion of Theorem 4.1 we obtain

Theorem 4.2. Assume that η > 0 satisfies condition (5). The cumulative risk of the
BOA procedure satisfies, with probability 1− e−x, x > 0:

Eπ̂[Rn+1(fj)] ≤ inf
π

{

Eπ

[

Rn+1(fj) + 2η

n+1
∑

t=1

ℓ2j,t

]

+
K(π, π0) + x

η

}

.

Moreover, if ℓ is convex with respect to its second argument, we have, with probability
1− e−x, x > 0:

Rn+1(f̂) ≤ inf
π

{

Rn+1(fπ) + 2η

n+1
∑

t=1

Eπ[ℓ
2
j,t] +

K(π, π0) + x

η

}

.

Proof. We prove the result by integrating the result of Theorem 4.1 with respect to any
deterministic π and noticing that, as ηj,t = η is constant, log(ηj,1/ηj,n) = 0.

Similarly, we can extend Theorems 3.2 and 3.4. Below we provide the extension of the
adaptive case of Theorem 3.5 as the proof is more involved; the boundedness condition
(16) is no longer satisfied for any 1 ≤ t ≤ n+ 1 and Theorem 4.1 does not apply directly.
We have

Theorem 4.3. Under the hypothesis of Theorem 3.5, the cumulative risk of the adaptive
BOA procedure satisfies with probability 1− e−x, x > 0,

Rn+1(f̂) ≤ inf
π

{

Rn+1(fπ) + Eπ

[

√

√

√

√

n+1
∑

t=1

ℓ2j,t

(

(
√
2 + 1)2

√

log(π−1

j,0 ) +
2Bn,E + 16Ej + x

√

log(π−1

j,0 )

)

+ 4Ej(logM + 2Bn,E + 6 + x)
]}

,

18



where Bn,E = log(1 + 2−1 log(n) + log(E) + c log(2)) for all n ≥ 1.

Proof. As the boundedness condition (16) is not satisfied for all 1 ≤ t ≤ n+ 1, we cannot
apply directly the result of Theorem 4.1. However, one can adapt the proof of the Theorem
4.1 as we adapted the proof of Theorem 3.4 for proving Theorem 3.5. Let us denote Tj the
set of indices such that Ej,t < Ej,t+1. For t ∈ Tj possibly ηj,tℓj,t+1 > 1/2 and the recursive
argument for supermartingales do not apply directly. But as −ηj,t(ℓj,t+1 − Et−1[ℓj,t+1]) ≤
ηj,tEj,t+1 we apply instead

Et−1

[

exp
(

− ηj,t(ℓj,t+1 − Et−1[ℓj,t+1])− ηj,tEj,t+11ηj,tℓj,t+1>1/2

)]

≤ 1.

Thus the proof ends by an application of the recursive argument for supermartingales as
in the proof of Theorem 3.5.

Let us discuss the constants. First, nE2 is a crude estimate of
∑n

t=1
ℓ2j,t. Second, if

n ≤ eM then Bn ≤ log(M). Thus, if M is sufficiently large, Bn,E is comparable with
log(M). We continue the discussion for M sufficiently large satisfying n ≤ eM and M ≥ c.
Choosing π0 uniform on {1, . . . ,M}, the second order bound becomes

Rn+1(f̂) ≤ inf
π

{

Rn+1(fπ)+Eπ

[

√

√

√

√ max
1≤j≤M

n+1
∑

t=1

ℓ2j,t

]8(log(M) + 2E) + x
√

log(M)

}

+12E(2 logM+2+x).

(17)
The second order term max1≤j≤M

∑n
t=1

ℓ2j,t is a natural candidate to assert the complexity

of the problem of aggregation; the more the
∑n

t=1
ℓ2j,t are uniformly small and the more one

can aggregate the elements of the dictionary optimally. Moreover, this complexity term is
observable and it would be interesting to develop a parsimonious strategy that would only
aggregate the elements of the dictionary with small complexity terms

∑n
t=1

ℓ2j,t. Reducing
also the size M of the dictionary, the second order bound (17) can be reduced at the price
to decrease the generality of Problem (C), i.e. the number of learners in H.

The upper bound in (17) is an empirical bound for Problem (C), see also [Cat04] for a
detailed study of such empirical bounds in the iid context. It would be interesting to know
wether the complexity term max1≤j≤M

∑n
t=1

ℓ2j,t is the optimal one or not. We are not
aware of empirical lower bounds for Problem (C). The bounds developed by [Nem00, Tsy03]
are deterministic. To assert the optimality of BOA, it is easy to turn from an empirical
bound to a deterministic one. As ℓ2j,t ≤ E2, Equation (17) implies

Rn+1(f̂)

n+ 1
≤ infπ Rn+1(fπ)

n+ 1
+ 8E

√

log(M)

n+ 1
+

16E2 + x
√

(n+ 1) log(M)
+ 12E

logM + 2 + x

n+ 1
.

Then the BOA procedure is optimal for Problem (C) in the sense of the Definition (17):
in the iid context, the excess of risk of the batch version of the BOA procedure is of
order

√

logM/n. Notice that the generality of this optimal rate is remarkable. With no
assumption on the dependence structure of the stochastic environment, this rate is also
the one of the mean predictive risk for Problem (C). However, as the mean predictive risk
is not deterministic, it should be more natural to have an empirical optimal rate.
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4.3 Optimal learning for Problem (MS)

The BOA procedure is optimal for Problem (C) and the optimal rate of convergence is also
valid in the general stochastic context. To turn to Problem (MS), we restrict our study to
the context of Lipschitz strongly convex losses with iid observations. In the iid context,
(Xt, Yt) are iid copies of (X,Y ) and the learners are assumed to be constant fj = fj,t,
t ≥ 0, 1 ≤ j ≤ M . We then have (n+1)−1Rn+1(fj) = R(fj) = E[ℓ(Y, fj(X))]. It is always

preferable to convert any online learner f̂ to a batch learner by averaging

f̄ =
1

n+ 1

n
∑

t=0

f̂t

as an application of Jensen inequality gives R(f̄) ≤ (n+ 1)−1Rn+1(f̂). Remind that from
[Tsy03] the optimal rate for Problem (MS) is a fast rate of convergence log(M)/n. Such fast
rates cannot be obtained without regularity assumption on the loss ℓ, see [Lec07, Aud09].
In the sequel ℓ : R

2 → R is a loss function satisfying the following assumption called
(LIST) after [KT08]

(LIST) the loss function ℓ is Cℓ-strongly convex and Cb-Lipschitz continuous in its second
coordinate on a convex set C ⊂ R.

Recall that a function g is c strongly convex on C ⊂ R if there exists a constant c > 0 such
that

g(αa + (1− α)a′) ≤ αg(a) + (1− α)g(a′)− c

2
α(1− α)(a− a′)2,

for any a, a′ ∈ C, 0 < α < 1. Under the condition (LIST), few algorithms are known to
be optimal in deviation, see [Aud07, LM09, LR13]. All of them are batch procedures.

Notice that Assumption (LIST) is restrictive and can hold only locally; on a compact
set C, the minimizer f(y)∗ of f(y) ∈ R → ℓ(y, f(y)) exists and verifies, by strong convexity,

ℓ(y, f(y)) ≥ ℓ(y, f(y)∗) +
Cℓ

2
(f(y)− f(y)∗)2.

Moreover, by Lipschitz continuity, ℓ(y, f(y)) ≤ ℓ(y, f(y)∗) + Cb|f(y)− f(y)∗|. Thus, nec-
essarily the diameter D of C is finite and satisfies CℓD ≤ 2Cb. Then we deduce that
|ℓj,t| ≤ CbD, 1 ≤ t ≤ n + 1, 1 ≤ j ≤ M , and under (LIST) the ranges are estimated by
E = CbD.

Inspired by the Q-aggregation procedures of [LR13], we consider under (LIST) a
mixture of the original and the linearized loss. The second order refinement in the BOA
procedure becomes:

ℓj,t = ℓ′(Yt, f̂t−1(Xt))(fj,t−1(Xt)− f̂t−1(Xt)) + ℓ(Yt, fj,t−1(Xt))− Eπt−1
[ℓ(Yt, fj,t−1(Xt))],

for all 1 ≤ j ≤ M , 1 ≤ t ≤ n + 1. We obtain the optimality of the BOA procedure for
Problem (MS).
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Theorem 4.4. In the iid setting, under the condition (LIST), for the uniform initial
weights πj,0 = M−1, 1 ≤ j ≤ M , and any learning rate satisfying

48C2
b (1 + 3CbD/100)η ≤ Cℓ, (18)

then the cumulative predictive risk of the BOA procedure satisfies, with probability 1−e−x,

R(f̄) +
Cℓ

2(n + 1)

n
∑

t=0

E[(f̂t(X) − f̄(X))2] ≤ Rn+1(f̂)

n+ 1
≤ min

1≤j≤M
R(fj) +

log(M) + 2x

η(n+ 1)
.

Proof. The proof starts from the second order empirical bound provided in Theorem 4.2.
As the optimal rate is deterministic, we first convert the empirical second order term into
a deterministic one. From the classical Bennett’s inequality, as ηℓj,t ≤ (48C2

b )
−1CℓCbD ≤

(24)−1 under (18), then ηℓ2j,t ≤ CbD/24 and we have

Et−1[exp(ηℓ
2
j,t − (1 + CbD(e− 2)/24)ηEt−1[ℓ

2
j,t)]] ≤ 1

We estimate (e − 2)/24 ≤ 3/100. Applying the recursive supermartingales argument and
an union bound, we obtain the deterministic version of the result of Theorem 4.2: with
probability 1− e−x, x > 0,

Rn+1(f̂) + Eπ̂[Rn+1(fj)] ≤ inf
π

{

Rn+1(fπ) + Eπ[Rn+1(fj)]

+ 2(1 + 3CbD/100)η
n+1
∑

t=1

Eπ[Et−1[ℓ
2
j,t]] +

2x+K(π, π0)

η

}

.

The optimal fast rate comes from a careful analysis of the second order deterministic
bound. Form the Lipschitz property, the sub-gradient ℓ′ is bounded by Cb and thus

Eπ[Et−1[ℓ
2
j,t]] ≤ 4C2

bEπ[Et−1[(fj(Xt−1)−f̂t−1(Xt−1))
2]] ≤ 4C2

b (V (π)+E[(fπ(X)−f̂t−1(X))2])

where V (π) = Eπ[E[(fj(X) − fπ(X))2]]. As Rn+1(fπ) = R(fπ), Eπ[Rn+1(fj)] = Eπ[R(fj)]
and K(π, π0) ≤ log(M), combining those bounds we obtain

Rn+1(f̂)

n+ 1
+

Eπ̂[Rn+1(fj)]

n+ 1
≤ inf

π

{

R(fπ) + Eπ[R(fj)]

+ γ
(

V (π) +
1

n+ 1

n
∑

t=0

E[(fπ(X) − f̂t(X))2]
)

+
2x+ log(M)

η(n+ 1)

}

(19)

with γ = 8C2
b (1 + CbD(e − 2))η. The rest of the proof is inspired by the reasoning of

[LR13]. First, one can check that

V (π)− V (π′) =< ∇V (π′), (π − π′) > −E[(fπ(X)− fπ′(X))2]
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where π and π′ are any weights vectors and < ·, · > denotes the scalar product on R
M .

Moreover, by Cℓ-strong convexity, one can also check that

R(fπ)−R(fπ′) ≥< ∇R(fπ′), (π − π′) > +
Cℓ

2
E[(fπ(X)− fπ′(X))2].

Thus the function H: π → R(fπ) + Eπ[R(fj)] + γV (π) is convex as 0 ≤ γ ≤ Cℓ/2 under
(18). Moreover, if one denotes π∗ a minimizer of H, we have for any weights π

H(π)−H(π∗) ≥
(Cℓ

2
− γ

)

E[(fπ(X)− fπ∗(X))2].

Thus, applying this inequality to π̂ we have

Cℓ/2− 2γ

n+ 1

n
∑

t=0

E[(fπ∗(X)− f̂t(X))2] ≤ Rn+1(f̂)

n+ 1
+

Eπ̂[Rn+1(fj)]

n+ 1
+

−
(

R(fπ∗) + Eπ∗ [R(fj)] + γV (π∗)
)

+
γ

n+ 1

n
∑

t=0

V (πt).

Then, combining this last inequality with the inequality (19), we derive that

Cℓ/2− 2γ

n+ 1

n
∑

t=0

E[(fπ∗(X)− f̂t(X))2] ≤ 2x+ log(M)

η(n+ 1)
+

γ

n+ 1

n
∑

t=0

V (πt).

Plugging in this new estimate into (19) we obtain

Rn+1(f̂)

n+ 1
+

Eπ̂[Rn+1(fj)]

n+ 1
− 2γ2

Cℓ − 4γ

1

n+ 1

n
∑

t=0

V (πt) ≤ R(fπ∗) + Eπ∗ [R(fj)] + γV (π∗)

+
Cℓ − 2γ

Cℓ − 4γ

2x+ log(M)

η(n+ 1)
.

Now, using Cℓ-strong convexity as in Proposition 2 of [LR13], we have for any probability
measure π

R(fπ) ≤ Eπ[R(fj)]−
CℓV (π)

2
.

As under condition (18) it holds

2γ2

Cℓ − 4γ
≤ Cℓ

2
and

Cℓ − 2γ

Cℓ − 4γ
≤ 2,

we can use the strong convexity argument for any πt, 0 ≤ t ≤ n. We obtain

2
Rn+1(f̂)

n+ 1
≤ R(fπ∗) + Eπ∗ [R(fj)] + γV (π∗) + 2

2x+ log(M)

η(n+ 1)
.
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The proof ends by noticing that by definition of π∗ we have

R(fπ∗) + Eπ∗ [R(fj)] + γV (π∗) ≤ 2 min
1≤j≤M

R(fj).

The lower bound on Rn+1(f̂)/(n + 1) follows by an application of the strong convexity
argument applied to f̄ = (n+ 1)−1

∑n
t=0

f̂t.

Theorem 4.4 provides the optimality of the BOA procedure for Problem (MS) because

R(f̄) ≤ min
1≤j≤M

R(fj) +
log(M) + 2x

η(n + 1)
.

The additional term
Cℓ

2(n + 1)

n
∑

t=0

E[(f̂t(X) − f̄(X))2]

is the benefit of considering the batch version of BOA under the strong convexity as-
sumptions (LIST). As the fast rate is optimal, the partial sums

∑n
t=0

E[(f̂t(X)− f̄(X))2]
must converge to a small constant. Thanks to the Lipschitz assumption on the loss,
it implies that the difference |R(f̄) − R(f̂n)| ≤ CbE[(f̂nX) − f̄(X))2] is small. As-
suming that f̄ is converging with n, the convergence of the partial sums implies that
E[(f̂nX) − f̄(X))2] = o(n−1). The difference |R(f̄) − R(f̂n)| is negligible compared with
the fast rate log(M)/n. Then, at the price of some constant C > 1, we also have

R(f̂n) ≤ min
1≤j≤M

R(fj) + C
log(M) + 2x

η(n+ 1)
.

The tuning parameter η can be considered as the inverse of the temperature β of the
Q-aggregation procedure studied in [LR13]. In the Q-aggregation, the tuning parameter
β is required to be larger than 60C2

b /Cℓ. It is a condition similar to our restriction (18)
on η. The larger is η satisfying the condition (18) and the best is the rate of convergence.
The choice 48C2

b (1 + 3CbD/100)η∗ = Cℓ is optimal. The resulting BOA procedure is non
adaptive in the sense that it depends on the constants appearing in the condition (LIST).
As Cℓ/C

2
b ≤ (CbD)−1, it also depends on the range CbD that can be unknown. On the

contrary, the multiple learning rates BOA procedure achieves to tune automatically the
learning rates. At the price of larger ”constants” that grows as log log(n), we extend the
preceding optimal rate of convergence to the adaptive BOA procedure:

Theorem 4.5. In the iid setting, under the condition (LIST), for the uniform initial
weights πj,0 = M−1, 1 ≤ j ≤ M with M ≥ 3, the cumulative predictive risk of the adaptive
BOA procedure satisfies, with probability 1− e−x,

Rn+1(f̂)

n+ 1
≤ min

1≤j≤M
R(fj) +

34 log(M) + 2Bn,CbD + 16CbD + 2x

η∗(n+ 1)

+
CbD(log(M) + 2Bn,CbD + 6 + x)

n+ 1
.

where Bn,CbD = log(1 + 2−1 log(n) + log(CbD) + c log(2)) for all n ≥ 1.
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Proof. The proof starts from the second order empirical bound provided in Theorem 3.5
in the iid context under (LIST), where |ℓj,t| ≤ CbD; using the Young inequality, we have
for any η > 0

Rn+1(f̂)

n+ 1
+

Eπ̂[Rn+1(fj)]

n+ 1
≤ inf

π

{

R(fπ) + Eπ[R(fj)] + 2ηEπ

[

n+1
∑

t=1

ℓ2j,t

]}

+
B(n,CbD,M) + x

η
+ CbD(log(M) + x+ 2Bn,CbD + 6),

where, using that (a+ b)2 ≤ 2(a2 + b2), (
√
2 + 1)4 ≤ 34, Bn,Ej

≤ Bn,CbD and log(M) ≥ 1,

B(n,CbD,M) ≤ 34 log(M) + 2Bn,CbD + 16CbD.

Then we can use the Bennett inequality as in the proof of Theorem 4.4 to obtain the
deterministic second order bound

Rn+1(f̂)

n+ 1
+
Eπ̂[Rn+1(fj)]

n+ 1
≤ inf

π

{

R(fπ)+Eπ[R(fj)]+
2(1 + 3CbD/100)η

n+ 1
Eπ

[

n+1
∑

t=1

Et−1[ℓ
2
j,t]

]}

+
B(n,CbD,M) + 2x

η(n+ 1)
+

E(log(M) + x+ 2Bn,CbD + 6)

n+ 1
.

The proof ends similarly than the one of Theorem 4.4. For η∗ satisfying the equality in
the condition (18), we obtain

Rn+1(f̂)

n+ 1
≤ min

1≤j≤M
R(fj) +

B(n,CbD,M) + 2x

η∗(n+ 1)
+

E(log(M) + x+ 2Bn,CbD + 6)

n+ 1
.

The result follows from the expression of B(n,CbD,M).

The BOA procedure is explicitly computed with complexity O(Mn). It is a practical
advantage compared with the batch procedure studied in [Aud07, LM09, LR13] that re-
quire an optimization routine. This issue has been solved in [DRXZ12] for the square loss
using greedy sequential algorithms that approximate the Q-aggregation procedure. Note
that in the case of the square loss, the second order refinement is equal to

ℓj,t = (fj,t−1(Xt) + f̂t−1(Xt)− 2Yt)
2 − Eπt−1

[(fj,t−1(Xt) + f̂t−1(Xt)− 2Yt)
2].

The quality of a learner is asserted by the prediction accuracy of the average of its predic-
tion and the aggregative prediction.
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[LR13] G. Lecué and P. Rigollet, Optimal learning with Q-aggregation, arXiv preprint
arXiv:1301.6080., 2013.

[MP09] A. Maurer and M. Pontil, Empirical bernstein bounds and sample variance
penalization, COLT, 2009.

[MR10] M. Mohri and A. Rostamizadeh, Stability bounds and for φ-mixing and β-
mixing processes, JMLR 4 (2010), 1–26.

[Nem00] A. Nemirovski, Topics in non-parametric statistics, Lectures on Probability
Theory and Statistics: Ecole d’Ete de Probabilites de Saint-Flour XXVIII-
1998 28 (2000), 85.

[Tsy03] A. B. Tsybakov, Optimal rates of aggregation, Learning Theory and Kernel
Machines, Springer Berlin Heidelberg, 2003.

[Vov90] V.G. Vovk, Aggregating strategies, Proc. Third Workshop on Computational
Learning Theory, 1990.

[Zha05] T. Zhang, Data dependent concentration bounds for sequential prediction algo-
rithms, Learning Theory, Springer Berlin Heidelberg, 2005.

26


