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Abstract

We introduce a new recursive aggregation procedure called Bernstein Online Ag-
gregation (BOA). The exponential weights include an accuracy term and a second
order term that is a proxy of the quadratic variation as in [17]. This second term
stabilizes the procedure that is optimal in different senses. We first obtain optimal
regret bounds in the deterministic context. Then, an adaptive version is proved to
solve the so-called impossible tuning problem already solved in [15]. The second order
bounds in the deterministic context are extended to a general stochastic context using
the cumulative predictive risk. Such conversion provides the main result of the paper,
an inequality of a novel type comparing the procedure with any deterministic aggrega-
tion procedure for an integrated criteria. It provides an observable confident interval
on the excess of risk of the BOA procedure. To assert the optimality, we consider
finally the iid case for strongly convex and Lipschitz continuous losses and we prove
that the rate of convergence is of the optimal order given in [27]. The batch version
of the BOA procedure is then the first adaptive solution satisfying an optimal oracle
inequality with high probability.

Exponential weighted averages, Learning theory, Individual sequences.

1 Introduction and main results

We consider the online setting where observations Ft = {(X1, Y1), . . . , (Xt, Yt)} are avail-
able recursively ((X0, Y0) = (x0, y0) arbitrary). The goal of statistical learning is to predict
Yt+1 ∈ R given Xt+1 ∈ X , for X a probability space, on the basis of Ft. In this paper,
we index with the subscript t any random element that is adapted with Ft. A learner is a
function X 7→ R, denoted f̂t, that depends only on the past observations Ft and such that
f̂t(Xt+1) is close to Yt+1. This closeness at time t+ 1 is addressed by the predictive risk

E[ℓ(Yt+1, f̂t(Xt+1)) | Ft]

where ℓ : R2 → R is a loss function. We define an online learner f̂ as a recursive algorithm
that produces at each time t ≥ 1 a learner: f̂ = (f̂0, f̂1, f̂2, . . .). The accuracy of an online
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learner is quantified by the cumulative predictive risk

Rn(f̂) =
1

n+ 1

n
∑

t=0

E[ℓ(Yt+1, f̂t(Xt+1)) | Ft]. (1)

Given a finite set F = {f1, . . . , fM} of online learners, it is well known that any procedure
that will select one learner is suboptimal. Thus, recursive aggregation procedures

f̂ =

M
∑

j=1

πjfj =
(

M
∑

j=1

πj,0fj,0,

M
∑

j=1

πj,1fj,1,

M
∑

j=1

πj,2fj,2 . . .
)

have been intensively studied, see the seminal book [10]. The predictive performance of
the resulting online learner f̂ can be compared with the best element of the dictionary
F or with the best deterministic aggregation of the online learners of the dictionary. We
denote fπ = Eπ[fj] any such deterministic aggregation procedures

fπ =
(

M
∑

j=1

fj,0,

M
∑

j=1

fj,1,

M
∑

j=1

fj,2, . . .
)

with π = (πj)1≤≤M a measure on {1, . . . ,M}.

In this article, we provide a new recursive procedure, called Bernstein Online Ag-
gregation (BOA), and we compare it with the best deterministic aggregation fπ. The
weights πt = (πj,t)1≤j≤M are defined following a recursive rule. This rule, and the name of
the Bernstein Online Aggregation procedure, derived from the study of the concentration
properties of the difference between the cumulative predictive risk and the cumulative
regret

n
∑

t=0

E[ℓ(Yt+1, f̂t(Xt+1)) | Ft]−E[ℓ(Yt+1, f̂π∗(Xt+1)) | Ft]−ℓ(Yt+1, f̂t(Xt+1))+ℓ(Yt+1, f̂π∗(Xt+1)

(2)
where π∗ is the best element or the best deterministic weights. It is a martingale (Mt)
adapted to the filtration (Ft). Recall that for any martingale (Mt) adapted to a fil-
tration (Ft), we denote ∆Mt = Mt − Mt−1 the difference of martingale, < M >t=
∑t

j=1E[∆M2
j | Ft] and [M ]t =

∑t
j=1∆M2

j its (predictable) quadratic variation. Instead
of using the classical Bernstein inequality for martingales [14, 30], we develop its empir-
ical counterpart that provides concentration of M via a variance term in [M ] instead of
< M >:

Theorem 1.1. Let M be a martingale such that

E(∆M4
t− | Ft−1) ≤ E(∆M2

t− | Ft−1), t > 0. (3)

Then for any stopping time τ we have

P(Mτ ≥
√

2η[M ]τx+ 7x/4) ≤ e−x, x > 0.
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Empirical Bernstein’s inequality have already been developed in [4, 25] to use suc-
cessfully a variance proxy into, respectively, the multi-armed bandit and penalized ERM
problems. Applying Theorem 1.1, we estimate the deviations of Mn in (2) via its quadratic
variation [M ]. An optimal aggregation procedure is a procedure that has a minimal cumu-
lative regret and a minimal quadratic variation. However, in our context (2), the quadratic
variation [M ] depends on π∗ that is unknown and we will use a proxy of the quadratic
variation denoted Vj,n+1 =

∑n+1
t=1 ℓ2j,t, where

ℓj,t = ℓ(Yt, fj,t−1(Xt))− Eπt−1
[ℓ(Yt, fj′,t−1(Xt))],

estimates ∆Mt, 1 ≤ t ≤ n+ 1, as in (2) with π∗ any Dirac mass at {j}, 1 ≤ j ≤ M .

The BOA procedure is an exponential weights procedure that tends to minimize the
quadratic variation through the terms ℓj,t. This procedure favors online learners that
predicts accurately and that are close to the last aggregative online learner, ensuring the
stability in time and a small quadratic variation. It is derived in 3 different versions: the
aggregation procedure itself described in Figure 1 and denoted f̂ , its randomized version
of BOA, denoted f̄ , and defined as P(f̄t = fj,t) = πj,t and its batch version, denoted f̃ ,

and defined as f̃ = 1
n+1

∑n
t=0 f̂t.

Parameters: Temperature parameter η > 0.
Initialization: Set πj,0 > 0 such that

∑M
j=1 πj,0 = 1 and f̂0 =

∑M
j=1 πj,0fj,0.

For: Each time round 1 ≤ t ≤ n,

1. Compute the weight vector πt = (πj,t)1≤j≤M recursively from π0: πj,t/πj,t−1 =

exp(−2−1ηℓ(Yt, fj,t−1(Xt))− η2ℓ2j,t)
∑M

j=1 exp(−2−1ηℓ(Yt, fj,t−1(Xt))− η2ℓ2j,t)
,

2. Output the aggregated prediction f̂t = Eπt[fj,t],

Figure 1: The BOA algorithm

With no convexity assumption on the loss, only the randomized version of BOA can
be compared with the best element of the dictionary. The cumulative predictive risk
associated with the randomized procedure is then

Rn(f̄) =

n+1
∑

t=1

E[Eπt−1
[ℓ(Yt, fj,t−1(Xt))] | Ft−1].

Thus it explains the term Eπt−1
[ℓ(Yt, fj′,t−1(Xt))] in the proxy of the quadratic variation

of Mn in (2). Notice that such randomized algorithms that take into account a proxy of
the variance have been studied in the iid context by [6]. In all the sequel, we focus on
the less general context of a convex loss ℓ as the extension to the randomized version and
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general loss is straightforward. We denote ℓ′ its sub gradient with respect to its second
argument. For convex losses, the aggregation procedure f̂ provides sharper cumulative
predictive risks than the randomized one f̄ as, by Jensen’s inequality, Rn(f̂) ≤ Rn(f̄).

In the prediction from experts context, exponential weights aggregation with a proxy
of the variance has been considered in [17]. In this article, we use the sub gradient trick,
see [10], and replace in BOA the loss ℓ(Yt, fj,t−1(Xt)) with its linearized approximation
Eπt−1

[ℓ′(Yt, fj′,t−1(Xt))]fj,t−1(Xt). The proxy of the quadratic variation Vj,n+1 =
∑n+1

t=1 ℓ2j,t
is then modify such that

ℓj,t = Eπt−1
[ℓ′(Yt, fj′,t−1(Xt))(fj,t−1(Xt)− fj′,t−1(Xt))].

Linearizing the loss, we can compare the regret of the BOA procedure with the best
deterministic aggregation of the elements in the dictionary. Working conditionally on the
observations, we obtain as a first result a deterministic bound on the regret

R(f̂) ≤ min
π

{

R(fπ) + 2ηEπ[Vj,n+1] +
2

η
K(π, π0)

}

.

Here R(f) is the cumulative loss of any online learner f = (f0, f1, f2, . . .):

R(f) =

n
∑

t=0

ℓ(Yt+1, ft(Xt+1)).

The optimality of such regret bounds is difficult to assert. Following the pioneer work
of [11], we analyze the second order properties of a new adaptive version of exponential
weights, see Figure 2 for its application on the BOA procedure. The novelty, compared
with classical adaptive procedures developed in [11], is the dependence of the learning
rates with respect to j. It solves the so called impossible tuning question, see [11, 15], by
considering the rule for learning rates

ηj,t = min

{

1

E
,

√

log(M)
∑t

s=1 ℓ
2
j,s

}

, t ≥ 0

where E is a known bound of the linearized losses Eπt−1
[ℓ′(Yt, fj′,t−1(Xt))]fj,t−1(Xt). We

also give a fully adaptive version of the algorithm for cases when the bound E is unknown.
For these adaptive BOA procedures, we obtain regret bounds of the form

R(f̂) ≤ min
π

{

R(fπ) + CEπ

[

√

Vj,n+1

]

√

logM
}

+ CE logM,

for some ”constant” (increasing in log log n) C > 0, see Theorems 3.2 and 3.3 for details.
The optimality of such bounds is difficult to assert because it depends on the variance
term Vj,n+1. For the square loss, as ℓ′(x, y)2 ≤ 4ℓ(x, y), we derive optimal regret bounds
of the form

R(f̂) ≤ min
1≤j≤M

R(fj) + CE logM.
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Parameter: a rule to sequentially pick the learning rates (ηj,t).

Initialization: Set Lj,0 = 0, ηj,0 = η0, πj,0 > 0 such that
∑M

j=1 πj,0 = 1 and f̂0 =
∑M

j=1 πj,0fj,0.
For: each time round t ≥ 1,

1. Compute recursively

Lj,t = Lj,t−1 + Eπt−1
[ℓ′(Yt, fj′,t−1(Xt))]fj,t−1(Xt) + 2ηj,t−1ℓ

2
j,t,

2. Compute the weights vector πt = (πj,t)1≤j≤M :

πj,t =
ηj,t exp(−2−1ηj,tLj,t)πj,0

∑M
j=1 ηj,t exp(−2−1ηj,tLj,t)πj,0

,

3. Output the aggregated prediction f̂t = Eπt[fj,t],

Figure 2: The adaptive BOA algorithm

Such bounds are also achieved by classical exponential weighting algorithms with no proxy
of the quadratic variation, see [28, 16]. It is natural as the cumulative loss is not a risk
and thus it only depends on the accuracy of the procedure, and not on its second order
properties.

The proxy of the quadratic variation is necessary when we convert this results from the
cumulative loss to the cumulative predictive risk. For the same adaptive BOA procedure,
we obtain with probability 1− e−x, x > 0

Rn(f̂) ≤ min
π

{

Rn(fπ) +CEπ

[

√

Vj,n+1

]

√

logM(1 + x(logM)−1)
}

+ CE(logM + x).

It is remarkable to obtain a result for an integrated criteria with no assumption on the
dependence of the stochastic observations Fn. It is the main result of the paper and
the main motivation for the introduction of the BOA procedure; without the proxy of
the quadratic variation, it seems impossible to convert a result on the regret to a result
on a risk of this form. Formerly, such inequalities where derived under very restrictive
dependent assumptions, see [2, 26, 3]. It is due to the use of the cumulative predictive
risk. It is the correct criteria to assert the accuracy of predictive online algorithms as it
coincides with the cumulative loss for deterministic observations and with the classical risk
R(f) = E[ℓ(Y, f(X))] for iid observations (where we can suppress the index t). Moreover,
it appears naturally when using the minimax theory approach, see [1]. However, up to
our knowledge, it is the first time that the cumulative predictive risk is used to compare
online procedures with deterministic aggregation procedures. There is no warranty of the

optimality of such results as lower bounds with similar random rates Eπ

[

√

Vj,n+1

]√
logM

are unknown.
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The optimality of the BOA procedure is provided in a more restrictive context of iid
observations when the online learners of the dictionary are constants: fj,t = fj, t ≥ 0. In
such context, applying Jensen’s inequality we always have

E

[

ℓ
(

Y,
1

n+ 1

n+1
∑

t=1

Eπt−1
[fj](X)

)]

≤ Rn(f̂) =
1

n+ 1

n+1
∑

t=1

E[ℓ(Yt,Eπt−1
[fj,t−1](Xt))] | Ft−1]

Then the batch conversion of BOA f̃ = (n + 1)−1
∑n+1

t=1 Eπt−1
[fj′ ] is always preferable.

When the loss is Lipschitz continuous and strongly convex, we obtain an inequality in
deviation; with probability 1− e−x, x > 0, we have

R(f̃) ≤ min
1≤j≤M

R(fj) +C
logM + x+ x2

n+ 1
.

The fast rate logM/(n + 1) is optimal, see [27]. Notice that the proxy of the variance
is necessary; without it, the BOA procedure coincides with the Progressive Mixture Rule
of [8] that is optimal in expectation [18]. However, this procedure is suboptimal in de-
viation [5]. Thus, the stabilization term in the BOA procedure is necessary to control
the deviations of exponential weights algorithms. There is few other optimal procedures
in deviation in this iid context. The procedures in [5, 20] achieve the optimal rate using
some prior information on the dictionary. In the Q-aggregation procedure of [21] as in
the BOA procedure, no such extra-information is required. A priori, the Q-aggregation
procedure is less explicit: it requires to calibrate an extra parameter and to optimize a
non regular criteria. These practical issues have been solved in the context of quadratic
loss with gaussian noise in [12]. On the opposite, the BOA procedure is explicit and fully
adaptive in a general context.

2 Variational formula and Bernstein’s inequalities

Classically, Bernstein’s inequality is derived from an estimate of the Laplace transform
and the Chernoff device. In order to derive empirical Bernstein’s inequality of Theorem
1.1, we prefer to use another approach originally developed by Marton [24] and based on
the variational formula of the entropy:

Lemma 2.1 (Donsker-Varadhan [13] variational formula). For any probability measures
P on X and any measurable function h : X → R we have:

EP [exp(h− EP [h])] ≤ 1 ⇐⇒ EQ[h]− EP [h] ≤ K(Q,P ), ∀Q (4)

that corresponds to the Gibbs measure EP [e
h]dQ = ehdP .

That the Gibbs measure realizes the dual identity is at the core of the PAC-bayesian
approach and proofs of optimality of exponential aggregation, see [9]. The novelty of
the paper is to systematically consider the variational form of the Laplace transform to
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linearize the concept of concentration of measures. In the following, the concentration of
a measure P is expressed through the transport problem of its mass to any measure Q,
see [29] for details and applications in mathematical statistics. The starting point of the
proof of the empirical Bernstein inequality of Theorem 1.1 is the following Lemma

Lemma 2.2. For any measures P and Q, for any random variable X the following relation
holds

EQ[X] ≤ EP [X] +
√

2(EQ[X2
+] + EP [X2

−])K(Q,P ).

Proof. By Young’s inequality, it is equivalent that for any λ > 0 we have

EQ[X] ≤ EP [X] + λ(EQ[X
2
+] + EP [X

2
−])/2 +

K(Q,P )

λ
. (5)

Multiplying this inequality by λ > 0 we obtain

EQ[λ(X − EP [X])− λ2(X2
+ + EP [X

2
−])/2] ≤ K(Q,P ).

By the variational form of the entropy, it is equivalent that the inequality holds for Q
satisfying

dQ

dP
=

exp(λ(X − EP [X]) − λ2(X2
+ + EP [X

2
−])/2)

EP [exp(λ(X − EP [X])− λ2(X2
+ + EP [X

2
−])/2)]

.

We then obtain the dual form of the result as

EP [exp(λX − λ2X2
+/2)] ≤ exp(λEP [X] + λ2

EP [X
2
−/2]).

This last inequality holds as for any real number x ∈ R we have the relation exp(x −
x2+/2) ≤ 1 + x+ x2−/2.

Now we are ready to prove an exponential inequality of a random variable similar to
the Bernstein’s one with, instead of the variance, its own square.

Theorem 2.3. Let X be any random variable such that EP [X
4
−] ≤ EP [X

2
−], then

EP

[

exp
(

λ(X − EP [X]) − λ2

2(1− 7λ/4)
X2

)]

≤ 1, 0 < λ < 4/7.

Proof. From the previous Lemma 2.2 applied to the non positive random variable −X2
−

we obtain

EP [X
2
−] ≤ EQ[X

2
−] +

√

2EP [X4
−]K(Q,P ).

By assumption, we obtain the estimate

EP [X
2
−] ≤ EQ[X

2
−] +

√

2EP [X2
−]K(Q,P ).

By standard computation, using the Young inequality, we derive that for any λ > 0

EP [X
2
−] ≤ 4−1(

√

2K(Q,P )+
√

2K(Q,P ) + 4EQ[X2
−])

2 ≤ EQ[X
2
−]
(

1+
λ

2

)

+K(Q,P )
(

1+
1

2λ

)

.
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Plugging this estimate in the inequality (5), we obtain

EQ[X]− EP [X] ≤ λ(1 + λ/2)

2
EQ[X

2] +
(2 + λ2

2λ
+

1

4

)

K(Q,P )

For λ < 2, we have 1 + λ/2 ≤ (1 − λ/2)−1 and 2 + λ2 ≤ 2(1 − λ/2) + 3λ. Thus, denoting
η = λ/(1 − λ/2) we obtain

EQ[X]− EP [X] ≤ η

2
EQ[X

2] +
(1

η
+

7

4

)

K(Q,P ), η > 0. (6)

Using the variational form of the entropy we obtain

EP

[

exp
( 4η

4 + 7η
(X − EP [X])− 4η2

2(4 + 7η)
X2

)]

≤ 1.

The desired result follows considering λ = 4η/(4 + 7η).

We are now ready to prove the empirical Bernstein inequality for martingales of Theo-
rem 1.1. It follows the exponential inequality 2.3 by an application of classical submartin-
gale arguments of [14]. Below, we detail another proof that uses only simple algebra and
the decomposition of the entropy as the reasoning will be used in the proof of Theorem
??:

Proof. of Theorem 1.1. We apply (6) to P = Pt, the distribution of δMt and Qt condi-
tionally on Ft−1

EQt[∆Mt]− EPt[∆Mt] ≤
η

2
EQt[∆M2

t ] +
(1

η
+

7

4

)

K(Qt, Pt).

As EPt[∆Mt] = 0 by assumption, summing up for 1 ≤ t ≤ τ , we obtain:

τ
∑

t=1

EQt[∆Mt] ≤
η

2

τ
∑

t=1

EQt[∆M2
t ] +

(1

η
+

7

4

)

τ
∑

t=1

K(Qt, Pt).

Integrating with respect to Q, remarking that EQ[
∑τ

t=1 K(Qt, Pt)] = K(Q,P ) for P the
distribution of Mτ and the decomposition of the entropy

EQ

[

τ
∑

t=1

K(Qt, Pt)
]

= EQ

[

τ
∑

t=1

log(dQt/dPt)
]

= EQ

[

log
(dQ1 · · · dQτ

dP1 · · · dPτ

)]

= K(Q,P ) (7)

we obtain

EQ[Mτ ] ≤
η

2
EQ[[M ]τ ] +

(1

η
+

7

4

)

K(Q,P ).

Now we consider Q as restriction of P to the event

A =
{

Mτ ≥ η

2
[M ]τ +

(1

η
+

7

4

)

x, η > 0
}

⊇
{

Mτ ≥
√

2[M ]τx+ 7x/4
}

.

Then K(Q,P ) = log(1/P (A)) ≥ x and the desired result follows.
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3 Second order bounds for the regret

3.1 First regret bound and link with the individual sequences framework

We work first conditionally on Fn; it is the deterministic setting where (Xt, Yt) = (xt, yt)
are provided recursively for 1 ≤ t ≤ n. In this case, we consider the cumulative loss
R(f) for any online learner f = (f0, f1, f2, . . .) to assert the accuracy of the prediction.
We focus on convex losses and then the sub gradient trick is useful to compare the BOA
procedure with the best convex mixture of experts fπ rather than with the best expert. We
estimate the regret of the BOA procedure with respect to the best possible deterministic
aggregation of the online learners of the dictionary:

Theorem 3.1. Assume that η > 0 satisfies

η max
1≤t≤n+1

max
1≤j≤M

ℓj,t+ ≤ 1. (8)

The cumulative loss of the BOA procedure satisfies

R(f̂) ≤ min
π

{

R(fπ) + 2η

n
∑

t=0

Eπ[ℓ
2
j,t+1] + 2

K(π, π0)

η

}

.

Proof. We prove Theorem 3.1 with an application of the entropy based method described
in the previous Section. A substantial advantage of this approach is also to simplify the
proofs as it linearizes the concentration problem.

First, we study the concentration properties of the aggregation procedure. We work
sequentially, conditionally on the observations of the sample Fn. For any 1 ≤ j ≤ M ,
0 ≤ t ≤ n, under (8),we have

(ηℓj,t+)
4 ≤ (ηℓj,t+)

2, j ∈ {1, . . . ,M}.
We denote πt the measure on the index space {1, . . . ,M} such that πt(j) = πt,j, 1 ≤ j ≤ M .
We apply the transport inequality (6) to −ηℓj,t+1 for P = πt and Q = πt+1, two measures
on {1, . . . ,M}. Taking η = 4 in (6) we obtain

Eπt[ηℓj,t+1] ≤ Eπt+1
[ηℓj,t+1] + 2Eπt+1

[η2ℓ2j,t+1] + 2K(πt+1, πt).

By convexity, we can apply Jensen’s inequality and we have Eπt[ηℓj,t+1] ≥ 0. By definition
of the Kullback-Leibler divergence, we have

0 ≤ Eπt+1

[

2−1ηℓj,t+1 + η2ℓ2j,t+1 + log(dπt+1/dπt)
]

. (9)

By the specific form of (πt), we have for any t ≥ 1

2−1ηℓj,t+1 + η2ℓ2j,t+1 + log(dπt+1/dπt) =− log
(

Eπt

[

exp
(

2−1ηℓj,t+1 + η2ℓ2j,t+1

)])

= log
(

Eπ0

[

exp
(

t−1
∑

s=0

2−1ηℓs+1(j) + η2ℓ2s+1(j)
)])

− log
(

Eπ0

[

exp
(

t
∑

s=0

2−1ηℓs+1(j) + η2ℓ2s+1(j)
)])

.
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Summing up for t = 0, . . . , n we obtain

0 ≤ − log
(

Eπ0

[

exp
(

n
∑

t=0

2−1ηℓj,t+1 + η2ℓ2j,t+1

)])

.

Using the variational form of the entropy (4) we have

0 ≤ inf
π

{

Eπ

[

n
∑

t=0

ηℓj,t+1 + 2η2ℓ2j,t+1 + 2K(π, π0)
]}

.

In the sequel, we denote

Eπ̂[R(fj)] =

n+1
∑

t=1

Eπt[ℓ(Yt, fj,t−1(Xt))]. (10)

We derive the desired result using the classical sub-gradient trick, i.e. noticing that

Eπ̂[R(fj)]−R(fπ) ≤
n
∑

t=0

Eπt[ℓ(Yt+1, fj′,t(Xt+1))]− Eπ[ℓ(Yt+1, fj,t(Xt+1))]

≤ Eπ

[

n
∑

t=0

Eπt [ℓ
′(Yt+1, fj′,t(Xt+1))(fj′,t(Xt+1)− fj,t(Xt+1))]

]

≤ −Eπ

[

n
∑

t=0

ℓj,t

]

.

We conclude applying the Jensen’s inequality R(f̂) ≤ Eπ̂[R(fj)].

In the upper bound, we call proxy of the variance the term

n
∑

t=0

Eπ[ℓ
2
j,t+1] ≤

n
∑

t=0

Eπt[ℓ
′(Yt+1, fj,t(Xt))

2
Eπ[(fj,t(Xt)− fj′,t(Xt))

2]].

This proxy can be small because the sub-gradient is small or because the aggregation
strategy π is close to the BOA strategy. We will see at the end of Section 3.4 that the
square of the sub-gradient is small because it is proportional to the loss when it is quadratic.

The first application of Theorem 3.1 is the context of individual sequences prediction
[10]. We can consider that Yt = yt for a deterministic sequence y0, . . . , yn. We have
Ft = {y0, . . . , yt}, 0 ≤ t ≤ n, and the online learners fj = (yj,1, yj,2, yj,3, . . .) of the

dictionary are called the experts. The regret is now R(f̂) =
∑n+1

t=1 ℓ(yt, ŷt) for learner

predictions ŷ = (ŷ1, . . . , ŷn) where ŷt = f̂t−1 =
∑M

j=1 πj,t−1yj,t where πj,t−1 are measurable
functions of the past {y0, . . . , yt−1}. The estimate obtained in Theorem 3.1 is called a
second order bound after the seminal paper [11].

10



3.2 A new adaptive method for exponential weights

From Theorem 3.1, it is tempting to optimize the second order bound of the regret with
respect to η:

η∗ =
{ 1

max1≤t≤n+1 max1≤j≤M ℓj,t+
,

√

K(π, π0)

Vj,n+1

}

,

where Vj,n+1 =
∑n

t=0 ℓ
2
j,t+1, to obtain the regret bound

R(f̂) ≤ min
π

{

R(fπ) + 4Eπ

[

√

Vj,n+1

]

√

K(π, π0)
}

.

However, in practice, the optimal measure π is unknown and the term K(π, π0) is not
explicit and thus also η∗. Moreover, the resulting BOA procedure will not be recursive
as η∗ depends on the observations (Xt, Yt) through ℓj,t, 1 ≤ t ≤ n + 1. It is possible to
adapt the BOA procedure by tuning the inverse temperature parameter η recursively with
respect to the observations. We described in Figure 2 the adaptive version of the BOA
algorithm. Notice that the adaptation of the exponential weights

πj,t =
ηj,t exp(−2−1ηj,tLj,t)πj,0

∑M
j=1 ηj,t exp(−2−1ηj,tLj,t)πj,0

,

is new as the learning rates ηj,t depends on the element of the dictionary j and appear
into the exponential and as a factor. Adaptative procedures with such multiplicative forms
have been studied in [15] to solve the impossible tuning problem, but with weights that are
not exponential. Notice that the adaptive weights are only well defined when the learning
rates are positive: ηj,t > 0, 1 ≤ j ≤ M , 0 ≤ t ≤ n and that such multiplicative adaptive
form can be investigated for other exponential weights than for those of BOA. We obtain
the regret of this procedure:

Theorem 3.2. If the learning rates are non increasing and satisfy

ηj,t−1ℓj,t+ ≤ 1, 1 ≤ t ≤ n+ 1, 1 ≤ J ≤ M, (11)

then the cumulative loss of the adaptive BOA procedure satisfies

R(f̂) ≤ min
π

{

R(fπ) + 2Eπ

[

n
∑

t=0

ηj,tℓ
2
j,t+1

]

+ Eπ

[2 log(π−1
j,0 )

ηj,n

]

+ Eπ

[ 2

ηj,n
log

(

1 +

n
∑

t=1

M
∑

j=1

πj,0
e

(ηj,t−1

ηj,t
− 1

))]}

.

Proof. We denote π̃j,t the weights satisfying

π̃j,t =
exp(−2−1ηj,tL̃j,t)πj,0

∑M
j=1 exp(−2−1ηj,tL̃j,t)πj,0

,

11



for L̃j,t =
∑t

s=0 ℓj,s + 2ηj,sℓ
2
j,s, and π̃t the measure on {1, . . . ,M} such that π̃t(j) = π̃j,t.

We use the same notation than in the proof of Theorem 3.1. Under (11) we apply the
transport inequality (6) to −ηj,tℓj,t+1 for P = π̃n and Q the Dirac mass on {j} for any
1 ≤ j ≤ M . For η = 4 in (6) we obtain

Eπ̃n [2
−1ηj,tℓj,n+1] ≤ 2−1ηj,nℓj,n+1 + η2j,nℓ

2
j,n+1 − log(π̃j,n).

We remark that by definition we have Eπ̃n [2
−1ηj,nℓj,n+1] = 0,

2−1ηj,nℓj,n+1 + η2j,nℓ
2
j,n+1 = 2−1ηj,n(L̃j,n+1 − L̃j,n) and

− log(π̃j,n) = 2−1ηj,nL̃j,n + log(π−1
j,0 ) + log

(

M
∑

j=1

π̃j,n

)

.

Combining these identities, we derive that for any 1 ≤ j ≤ M ,

0 ≤ 2−1ηj,nL̃j,n+1 + log(π−1
j,0 ) + log

(

M
∑

j=1

π̃j,n

)

.

To estimate the last term of the upper bound, we will prove that for all 1 ≤ t ≤ n we have

M
∑

j=1

π̃j,t ≤
M
∑

j=1

π̃j,t−1 +
1

e

(

M
∑

j=1

ηj,t−1

ηj,t
πj,0 − 1

)

(12)

We remark that for any 1 ≤ j ≤ M

π̃j,t
πj,0

= exp(−2−1ηj,tL̃j,t) = exp(−2−1ηj,tℓj,t − ηj,tηj,t−1ℓ
2
j,t) exp(−2−1ηj,tL̃j,t−1) (13)

= (exp(−2−1ηj,t−1ℓj,t − η2j,t−1ℓ
2
j,t) exp(−2−1ηj,t−1L̃j,t−1))

ηj,t/ηj,t−1 .

As ηj,t is non increasing with t for any j, we have that α = ηj,t−1/ηj,t ≥ 1. Then, following
the reasoning in [15], we use the inequality x ≤ xα + (α − 1)/e for any x ≥ 0 and α ≥ 1
to derive that

π̃j,t ≤ exp(−2−1ηj,t−1ℓj,t − η2j,t−1ℓ
2
j,t)π̃j,t−1 +

1

e

(ηj,t−1

ηj,t
− 1

)

πj,0

Summing up this bound for 1 ≤ j ≤ M , using the fact that
∑M

j=1 πj,0 = 1, we obtain that

M
∑

j=1

π̃j,t ≤
M
∑

j=1

exp(−2−1ηj,t−1ℓj,t − η2j,t−1ℓ
2
j,t)π̃j,t−1 +

1

e

(

M
∑

j=1

ηj,t−1

ηj,t
πj,0 − 1

)

But we remark that
∑M

j=1 exp(−2−1ηj,t−1ℓj,t − η2j,t−1ℓ
2
j,t)π̃j,t−1

∑M
j=1 π̃j,t−1

= Eπ̃t−1
[exp(−2−1ηj,t−1ℓj,t − η2j,t−1ℓ

2
j,t)]

12



and the inequality (12) follows from an application of Theorem 2.3 with λ = 2−1, P = π̃t−1

and X = ηj,t−1ℓj,t that is centered by definition of f̂t. Using recursively (12) and noticing

that
∑M

j=1 π̃j,0 =
∑M

j=1 πj,0 = 1 we obtain

log
(

M
∑

j=1

π̃j,n

)

≤ log
(

1 +
n
∑

t=1

1

e

(

M
∑

j=1

ηj,t−1

ηj,t
πj,0 − 1

))

.

Combining the obtained bounds, by definition of Lj,n+1, we have for any 1 ≤ j ≤ M

n
∑

t=0

Et[ℓ
′(Yt+1, fj′,t(Xt+1))fj′,t(Xt+1)] ≤

n
∑

t=0

Et[ℓ
′(Yt+1, f̂j′,t(Xt+1))]fj(Xt+1)

+ 2

n
∑

t=0

ηj,tℓ
2
j,t+1 +

2 log(π−1
j,0 )

ηj,n
+

2

ηj,n
log

(

1 +

n
∑

t=1

M
∑

j=1

πj,0
e

(ηj,t−1

ηj,t
− 1

))

.

The minimum for 1 ≤ j ≤ M of this upper bound is equal to the linear optimization
problem in the measure π on {1, . . . ,M}

Et[ℓ
′(Yt+1, f̂j′,t(Xt+1))]fπ(Xt+1) + 2Eπ

[

n
∑

t=0

ηj,tℓ
2
j,t+1

]

+ Eπ

[2 log(π−1
j,0 )

ηj,n

]

+ Eπ

[ 2

ηj,n
log

(

1 +

n
∑

t=1

M
∑

j=1

πj,0
e

(ηj,t−1

ηj,t
− 1

))]

We conclude by the sub-gradient trick as in the proof of Theorem 3.1.

Notice that the proof and the upper bound of Theorem 3.2 has a different flavor than
those of Theorem 3.1. The proof of Theorem 3.1 is based on a recursive argument. It
asserts the optimality of the exponential weights for such sequential transport problem
via the variational formula of the entropy (4). The upper bound involves the Kullback-
Leibler divergence K(π, π0) as the proof relies on a transport problem to any measure π on
{1, . . . ,M}. The proof of Theorem 3.2 is rougher in the sense that the transport problem
is now restricted to Dirac measures on {1, . . . ,M}. We can still compare the accuracy of
the procedure with the best deterministic aggregation of the experts because of linearity.
However, we cannot assert the optimality of the adaptive weights with such multiplicative
form and the upper bound involves Eπ[log(π

−1
j,0 )] that is a rough upper bound of K(π, π0).

Finally notice that classical adaptive exponential procedures involve learning rates that
do not depend on {j} and thus the multiplicative form disappears:

πj,t =
exp(−2−1ηtLj,t)πj,0

∑M
j=1 exp(−2−1ηtLj,t)πj,0

.

Then a recursive argument similar to the proof of Theorem 3.1 can be used (see the
Appendix D of the preliminary version of [6] available on arXiv:math/0703854). It assert
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the optimality of such adaptive procedure via the variational formula of the entropy (4).
Then we conjecture that the impossible tuning can be solved only by relaxing the transport
problem to Dirac measures only and the regret bounds with a complexity term larger than
K(π, π0).

3.3 The adaptive BOA procedure when the range is known

First consider the case where the effective range of the linearized error is known: it exists
E ≥ 1 such that |ℓj,t| ≤ E, 1 ≤ t ≤ n + 1, 1 ≤ J ≤ M . We tune the learning rates in the
following way

ηj,t = min

{

1

E
,

√

log(M)
∑t

s=1 ℓ
2
j,s

}

, t ≥ 0. (14)

The learning rates are similar than those of Section 4.1 in [11] except that they depend on
j through the quadratic variation proxy

∑t
s=1 ℓ

2
j,s. We restrict to the cases where M > 1

to consider only positive learning rates ηj,t > 0. Notice that here the constants in the
bound should be sharper if adding a multiplicative constant to the quadratic variation
proxy

∑t
s=1 ℓ

2
j,s as in [11].

Theorem 3.3. If |ℓj,t| ≤ E, 1 ≤ t ≤ n + 1, 1 ≤ J ≤ M (M > 1) and the learning rates
are tuned as in (14) then the adaptive BOA procedure achieves, for all n ≥ 1,

R(f̂) ≤ min
π

{

R(fπ) + 2Eπ

[

√

Vj,n+1

](

√
2 logM√
2− 1

+
Bn,E√
logM

)}

+ E(2 logM + 2Bn,E + 1),

where Vj,n+1 =
∑n

t=0 ℓ
2
j,t+1 and Bn,E = log

(

1 + E(E+1)

e
√

log(M)
+ logn

2e

)

.

Proof. We estimate

log
(

1 +

n
∑

t=1

M
∑

j=1

πj,0
e

(ηj,t−1

ηj,t
− 1

))

≤ Bn,E.

Using that
√
1 + x− 1 ≤ x/2, x > 0, we have

n
∑

t=1

(ηj,t−1

ηj,t
− 1

)

≤ |ℓj,1|E
√

log(M)
− 1 +

n
∑

t=2





√

√

√

√

∑t
s=1 ℓ

2
j,s

max{∑t−1
s=1 ℓ

2
j,s, E

√

log(M)}
− 1





≤ |ℓj,1|E
√

log(M)
− 1 +

n
∑

t=2





√

√

√

√1 +
ℓ2j,t

max{∑t−1
s=1 ℓ

2
j,s, E

√

log(M)}
− 1





≤ E2

√

log(M)
− 1 +

1

2

n
∑

t=2

ℓ2j,t

max{∑t−1
s=1 ℓ

2
j,s, E

√

log(M)}
.
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Then we use similar arguments than in the proof of Theorem 5 of [11]; We denote by T
the first time that

∑t
s=1 ℓ

2
j,s > E2. Because η2j,T ≤ E2 we obtain

n
∑

t=2

ℓ2j,t

max{∑t−1
s=1 ℓ

2
j,s, E

√

log(M)}
≤ 2E

√

log(M)
+

n
∑

t=T+1

ℓ2j,t
∑t−1

s=1 ℓ
2
j,s

.

We use the Lemma 14 of [15] with ai = ℓ2j,T+i/E
2, i ≥ 1, a0 =

∑T
s=1 ℓ

2
j,s/E

2 > 1 and
f(x) = 1/x. We obtain

n
∑

t=T+1

ℓ2j,t
∑t−1

s=1 ℓ
2
j,s

≤ 1 + log
(

n
∑

t=1

ℓ2j,t/E
2
)

+
≤ 1 + log n.

We conclude the proof of Theorem similarly than the conclusion of the proof of Theorem
5 in [11].

3.4 The adaptive BOA procedure when the range is unknown

When the effective range of the linearized error is not known, we have to estimate it.
To adapt the reasoning of [11], we consider the same kind of estimator Et of the range:
Et = 2k where k ∈ N is the smallest integer such that max1≤s≤tmax1≤j≤M |ℓj,t| ≤ 2k.
Then we define the learning rates as

ηj,t = min

{

1

Et
,

√

logM
∑t

s=1 ℓ
2
j,s

}

, t ≥ 0. (15)

This rule for updating learning rates is similar than the one in [11] except that it depends
on j and that Et ≥ 1.

Theorem 3.4. If |ℓj,t| ≤ E with E ≥ 1, 1 ≤ t ≤ n + 1, 1 ≤ J ≤ M (M > 1) and
the learning rates are tuned as in (15) then the adaptive BOA procedure achieves, for all
n ≥ 1,

R(f̂) ≤ min
π

{

R(fπ) + 2Eπ

[

√

Vj,n+1

] (

√
2 logM√
2− 1

+
B̃n,E√
logM

)}

+ 4E(logM + B̃n,E + 1),

where Vj,n+1 =
∑n

t=0 ℓ
2
j,t+1 and B̃n,E = log

(

1 + E(E+1)

e
√
logM

+ logn
2e

)

+ logE.

Proof. With no loss of generality, we can assume that max1≤j≤M |ηnℓj,n+1| ≤ 1. Then we
can apply the same reasoning than in the proof of Theorem 3.2 and we have to estimate

the term log
(

∑M
j=1 π̃j,n

)

≤ B̃n,E. We have to distinguish two cases.

First, we consider the set of indices that T = {t1, . . . tR} such that Etr−1 < Etr . Then,
we use the identity (13) to derive, as ηj,t−1 ≥ ηj,t, the inequality

M
∑

j=1

π̃j,t
πj,0

≤
M
∑

j=1

exp(−2−1ηj,tℓj,t − η2j,tℓ
2
j,t) exp(−2−1ηj,tL̃j,t−1).
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Then we apply Theorem 2.3 with λ = 2−1, P ({j}) ∝ exp(−2−1ηj,tL̃j,t−1) and X = ηj,tℓj,t
that is bounded by 1 but not centered to estimate the upper bound by

exp(2−1
EP [ηj,tℓj,t])

M
∑

j=1

exp(−2−1ηj,tL̃j,t−1).

But ηj,tℓj,t ≤ 1 and thus for t ∈ T , following the same reasoning than in the proof of
Theorem 3.2, we obtain

M
∑

j=1

π̃j,t ≤
√
e
(

M
∑

j=1

π̃j,t−1 +
1

e

(

M
∑

j=1

ηj,t−1

ηj,t
πj,0 − 1

))

(16)

Second, we consider the the set of the indices t that do not belong to T and such that

Et = Etr+1
and max

1≤j≤M
|ηt−1ℓj,t| ≤ 1, t /∈ T . (17)

Then the same reasoning than in the proof of Theorem 2.3 apply and the recursive formula
(12) holds.

To conclude, we apply recursive formulas (12) and (12) and we obtain the upper bound

M
∑

j=1

π̃j,n ≤ eR/2
(

1 +

n
∑

t=1

1

e

(

M
∑

j=1

ηj,t−1

ηj,t
πj,0 − 1

))

.

Thus, the logarithm log(
∑M

j=1 π̃j,n) is bounded Bn,E and an additional term smaller than

R/2 ≤ ⌈(log2E)+⌉/2 ≤ logE and the Theorem is proved replacing Bn,E with B̃n,E and
using similar arguments than in the proof of Theorem 6 in [11].

The second order estimates provided in Theorem 3.4 is optimal in the sense that we
solve the impossible tuning problem described in [15]. The advantage of the adaptive
BOA procedure compared with the procedures studied in [15] s that it also adapts to the
unknown range E ≥ 1 of the linearized loss.

The bound on the regret obtained in Theorem 3.4 provides a confident interval for the
excess loss in term of a proxy of the variance

Vj,n+1 ≤
n+1
∑

t=1

Eπ[Eπt[(ℓ
′(Yt, fj,t−1(Xt)))

2(fj,t−1(Xt)− fj′,t−1(Xt))
2]].

Let us give an example where this proxy is small and where . For the square loss
ℓ(y, f(x)) = (y − f(x))2, we have ℓ′(y, f(x))2 ≤ 4ℓ(y, f(x)) and thus if |fj,t−1(Xt) −
f̂t−1(Xt)| ≤ b for b > 0 and any 1 ≤ j ≤ M and 1 ≤ t ≤ n+ 1, using the notation of (10),
we have

Vj,n+1 ≤ 4b2Eπ̂[R(fj)].
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Thus, abusively considering log log n as a constant, it exists a constant C > 0 such that

0 ≤
n+1
∑

t=1

ℓj,t + 2b
√

CEπ̂[R(fj)] logM + CE logM,

≤
n+1
∑

t=1

ℓj,t + ηEπ̂[R(fj)] +
Cb2 logM

η
+CE logM,

for any η > 0. Then, the minimum in j of
∑n+1

t=1 ℓj,t coincides with the minimum in π of
Eπ[

∑n+1
t=1 ℓj,t]. By the sub-gradient trick Eπ̂[R(fj)]−R(fπ) ≤ −Eπ[

∑n+1
t=1 ℓj,t] we obtain

(1− η)Eπ̂[R(fj)] ≤ min
π

R(fπ) +
Cb2 logM

η
+ CE logM.

Now we remark that as ℓ is the quadratic loss we have the decomposition

Eπ̂[R(fj)] = R(fπ̂) +
n
∑

t=0

Eπt[(fj,t(Xt)− f̂t(Xt))
2].

As the Young inequality holds for any η > 0, if

min
π

R(fπ) ≤ (1− η∗) min
1≤j≤M

R(fj) +

n
∑

t=0

Eπt[(fj,t(Xt)− f̂t(Xt))
2]

for sufficiently small η∗, we obtain the regret bound

R(f̂) ≤ Eπ̂[R(fj)] ≤ min
1≤j≤M

R(fj) +
C log(M)

1− η∗

(

E +
b2

η∗

)

.

The rate is optimal [16] but the constant (not explicit here) are certainly not, see [28].
Notice that the stabilization term in the BOA procedure can be avoided as the simpler
Exponential Averaging algorithm of [23] satisfies the inequality with a better constant in
situation of exp-concavity. It is natural as the regret is not defined as the expectation
of the loss. Only the accuracy of the learner predictions are taken into account by the
regret criterion. The exp-concavity of the square loss on compact sets is enough to assert
optimal procedure without any second order bounds. However, the BOA procedure does
not depend on the exp-concavity properties of the quadratic loss and thus is adaptive to
the unknown range which is not the case of the EA algorithm of [28, 23].

4 Optimality of the BOA procedure in a stochastic environ-

ment

4.1 Confidence interval on the cumulative predictive risk

We now turn to a stochastic setting where (Xt, Yt) are random elements observed recur-
sively with 1 ≤ t ≤ n. The main motivation the introduction the BOA procedure the
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presence of a proxy of the quadratic variation that is calibrated to extend the second order
bounds on the cumulative error to the cumulative predictive risk. We are now ready to
state the main result of the paper:

Theorem 4.1. If |ℓj,t| ≤ E with E ≥ 1, 1 ≤ t ≤ n + 1, 1 ≤ j ≤ M (M > 1) and the
learning rates are tuned as in (15) then the adaptive BOA procedure achieves, for all n ≥ 1
and with probability 1− e−x,

Rn(f̂) ≤ min
π

{

Rn(fπ) +
2Eπ[

√

Vj,n+1]

n+ 1

(

(
√
2 + 1)2

√

logM

+
B̃n,E + x√

logM

)}

+
4E(logM + B̃n,E + 3 + x)

n+ 1
,

where Vj,n+1 =
∑n

t=0 ℓ
2
j,t+1 and B̃n,E = log

(

1 + E(E+1)

e
√

log(M)
+ logn

2e

)

+ logE and π is any

aggregative procedure that does not depend on the observations Fn.

Proof. We analyze the concentration of the conditional excess of predictive risk Et[ℓj,t+1],
where Et denotes the expectation EPt where Pt is the law of (Xt+1, Yt+1) conditionally
on Ft. For t /∈ T , we apply the transport inequality (6) to −ηj,t−1ℓj,t for Pt−1 and any
measure Qt−1 defined conditionally on Ft−1. For η = 4 in (6), we obtain

Et−1[−ℓj,t] ≤ EQt−1
[−ℓj,t] + 2ηj,t−1EQt−1

[ℓ2j,t] +
2

ηj,t−1
K(Qt−1, Pt−1)

≤ EQt−1
[−ℓj,t] + 2ηj,t−1EQt−1

[ℓ2j,t] +
2

ηj,n
K(Qt−1, Pt−1).

Here we use the fact that the ηj,t−1s are Ft−1-measurable and constitute a non increasing
sequence. For t ∈ T , we simply use that Et−1[−ℓj,t] ≤ Et. Summing up for t = 1, . . . , n+1,
integrating with respect to Q and using that

∑

t∈T Et ≤ 4E we obtain

EQ

[

n
∑

t=0

Et[−ℓj,t+1]
]

≤ EQ

[

n
∑

t=0

−ℓj,t+1 + 2ηj,tℓ
2
j,t+1 +

2

ηj,n

n
∑

t=0

K(Qt, Pt) + 4E
]

. (18)

Now we use the bound on
∑n

t=0 ℓj,t+1 obtained in the core of the proof of Theorem 3.2:

−
n
∑

t=0

ℓj,t+1 ≤ 2

n
∑

t=0

ηj,tℓ
2
j,t+1 +

2

ηj,n

(

log(π−1
j,0 ) + log

(

1 +

n
∑

t=1

M
∑

j=1

πj,0
e

(ηj,t−1

ηj,t
− 1

)))

.

We integrate it with respect to Q and we use the arguments in the proof of Theorem 3.4
to obtain for any 1 ≤ j ≤ M

0 ≤ EQ

[

n
∑

t=0

Et[ℓj,t+1] + 4

n
∑

t=0

ηj,tℓ
2
j,t+1+

2

ηj,n

(

logM + B̃n,E +

n
∑

t=0

K(Qt, Pt)
)

+4E
]

. (19)
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Considering Q as the restriction of P to the event

A =
{ηj,n

2

(

n
∑

t=0

Et[ℓj,t+1] + 4

n
∑

t=0

ηj,tℓ
2
j,t+1 + 4E

)

+ logM + B̃n,E ≤ −x
}

we obtain EQ[
∑n

t=0K(Qt, Pt)] = K(Q,P ) = log(1/P (A)) ≥ x and the desired result follows
using the computations in the proof of Theorem 3.4 and the sub-gradient trick applied to
the cumulative predictive risk: Rn(f)−Rn(fπ) ≤ Eπ[

∑n
t=0 Et[ℓj,t+1]]/(n + 1).

In the stochastic context, a proxy of the variance in the upper bound of any predictive
risk is not avoidable for fast rates of convergence in n. It always appears during the online
to batch conversion through the necessary Bernstein inequality, see [22]. Here we prefer
to use the empirical Bernstein inequality for martingales given in Theorem 1.1 because it
provides a confidence interval that is easily approximated. As an illustration, considering
log log n constant, for some C > 0 we have

Rn(f̂) ≤ min
π

Rn(fπ) +
C
√
logM

n+ 1
max

1≤j≤M

√

Vj,n+1 +
CE logM

n+ 1

As the term max1≤j≤M Vj,n+1 can be estimated by max1≤j≤M
∑n

t=1 ℓ
2
j,t, it is a natural

candidate to assert the complexity of the problem of aggregation; the more the Vj,n+1 are
uniformly small and the more one can aggregate the elements of the dictionary optimally.

Notice that the generality of the result is remarkable; we do not assume any depen-
dent structure nor boundedness on the observations. Indeed, in Theorem 4.1, E is not
necessarily deterministic and can always be taken as equal to

E = max
1≤t≤n+1

max
1≤j≤M

|ℓj,t|.

The range of the prediction E is also a good candidate to assert the complexity of the prob-
lem of aggregation. It is almost observable (one can estimate it by max1≤t≤n max1≤j≤M |ℓj,t|)
and is small for stationary ((ℓj,t)1≤j≤M)t∈Z with light margin tails.

The complexity of the aggregation problem depends on the range and the proxy of the
quadratic variation Vj,n+1. We will detail below the very restrictive context of bounded iid
variables with strongly convex losses where the range and the proxy of the quadratic vari-
ation can be estimated easily. In more general contexts, as max1≤t≤n max1≤j≤M |ℓj,t| and
∑n

t=1 ℓ
2
j,t are observable, it is interesting to develop a parsimonious strategy that will only

aggregate the elements of the dictionary with small complexity terms max1≤t≤n max1≤j≤M |ℓj,t|
and

∑n
t=1 ℓ

2
j,t. Estimating E, Vj,n+1 and M , the upper bound in 4.1 can be controlled at

the price to restrict the dictionary and thus the corresponding best deterministic aggre-
gation strategy minπ Rn(fπ). Such extensions of the present work will be developed in
future researches.
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4.2 Optimal learning in the iid case

As there is no warranty of the optimality of the general result given in Theorem 4.1, we
restrict our study to the context of Lipschitz strongly convex losses with iid observations.
in the iid framework where (Xt, Yt) are iid copies of (X,Y ), for any fixed constant f we
have Rn(f) = R(f) = E[ℓ(Y, f(X))]. Thus it is always preferable to convert any online
learner f̂ to a batch learner by averaging

f̄ =
1

n+ 1

n
∑

t=0

f̂t

as an application of Jensen inequality gives R(f̄) ≤ Rn(f̂). We have the following notion
of optimality due to [27]:

Definition 4.1. The batch learner f̃ is optimal if it exists some constant c > 0 such that

R(f̄) ≤ min
f∈F

R(f) + c
logM + x

n+ 1

with probability 1− e−x, x > 0.

This optimality is called in deviation as it holds with high probability and by com-
paraison of the weakest notion of optimality in expectation where

EP [R(f̄)] ≤ min
f∈F

R(f) + c
logM

n+ 1
.

Such fast rates cannot be obtained without regularity assumption on the loss ℓ, see [19, 6].
In the sequel ℓ : R

2 → R is a loss function satisfying the following assumption called
(LIST) after [22]

(LIST) the loss function ℓ is Cℓ-smooth and Cb-Lipschitz continuous in its second coor-
dinate on a convex set C ⊂ R.

Recall that a function g is c strongly convex on C ⊂ R if there exists a constant c > 0 such
that

g(αa + (1− α)a′ ≤ αg(a) + (1− α)g(a′)− c

2
α(1− α)(a − a′)2,

for any a, a′ ∈ C, 0 < α < 1. Under the condition (LIST), few algorithms are known to
be optimal in expectation, see [5, 20, 21]. One of the most popular one is the Progressive
Mixture Rule studied in detail in [8]. However PRM cannot be optimal in deviation, see
[5].

Notice that Assumption (LIST) is restrictive and can hold only locally; on a compact
set C, the minimizer f(y)∗ of f(y) ∈ R → ℓ(y, f(y)) exists and verifies, by strong convexity,

ℓ(y, f(y)) ≥ ℓ(y, f(y)∗) +
Cℓ

2
(f(y)− f(y)∗)2.
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Moreover, by Lipschitz continuity, ℓ(y, f(y)) ≤ ℓ(y, f(y)∗) + Cb|f(y)− f(y)∗|. Thus, nec-
essarily the diameter D of C is finite CℓD ≤ 2Cb. Then we deduce that the linearized loss
is bounded by a deterministic constant E = CbD:

max
1≤t≤n+1

max
1≤j≤M

|ℓj,t| ≤ CbD.

Theorem 4.2. In the iid setting, under condition (LIST), with probability 1 − e−x we
have

R(f̃) ≤ min
1≤j≤M

R(fj) +
C1 + C2 logM + C3(log(1 + log n) + 3 log(1 + E)) + C4x+ C5x

2

n+ 1

with C1 = 12CbD + 144C2
b /Cℓ, C2 = 6CbD + 2016C2

b /Cℓ, C3 = 6CbD + 216C2
b /Cℓ,

C4 = 7CbD and C5 = 216C2
b /Cℓ.

Proof. We denote by P the measure of (X,Y ) independent of Fn. As we consider the
batch version of BOA, we have the identities

1

n+ 1

n+1
∑

t=1

Eπt[R(fj,t)] = Eπ̃[R(fj)] and
1

n+ 1

n+1
∑

t=1

EP[ℓ
2
j,t] = Eπ̃[EP[ℓ

2
j ]].

We start with the inequality (19) and we estimate the upper bound by its expectation;
the second term in the sum of (19) can be bounded using Young’s inequality

4

n
∑

t=0

ηj,tℓ
2
j,t+1 ≤

4
√
2√

2− 1

√

Vj,n+1 logM + 8E ≤ 2

η

n+1
∑

t=1

ℓ2j,t
E2

+ 20ηE2 logM + 8E, η > 0.

The third term in the sum of (19), where
∑n

t=0 K(Qt, Pt) = K(Q,P), is bounded with

2

ηj,n
(logM + B̃n,E +K(Q,P)) ≤4E(logM + B̃n,E +K(Q,P)) +

2

η

n+1
∑

t=1

ℓ2j,t
E2

+
3

2
ηE2

(

1 +
B̃n,E

logM
+

K(Q,P)2

logM

)

.

Now we use the boundedness of Eπ[ℓ
2
j,t]/E

2 ≤ 1 for any measure π on {1, . . . ,M} and the
classical Bernstein inequality for (X,Y ); via the variational form of the entropy (4), we
have for any measure Q on (X,Y )

EQ

[

Eπ

[

n+1
∑

t=1

ℓ2j,t
E2

]]

≤ EP

[

Eπ

[

n+1
∑

t=1

ℓ2j,t
E2

]]

+ EP

[

Eπ

[

n+1
∑

t=1

ℓ4j,t
E4

]]

+K(Q,P)

≤ 2EP

[

Eπ

[

n+1
∑

t=1

ℓ2j,t
E2

]]

+K(Q,P). (20)
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Collecting all those identities and bounds in (19) we obtain

EQ[Eπ̃[R(fj)]] ≤ EQ

[

R(fπ)+
8

ηE2
Eπ[Eπ̃[EP[ℓ

2
j ]]]

]

+
Bn,E(η)

n+ 1
+4

(

E+
1

η

)K(Q,P)

n+ 1
+
3ηE2K(Q,P)2

2 logM(n + 1)
(21)

where Q is now any measure on Fn and

Bn,E(η) = 4E(2 + logM + B̃n,E) + ηE2
(3

2
+ 20 logM +

3B̃n,E

2 logM

)

.

We estimate the proxy of the quadratic variation using the Cb-Lipschitz continuity of ℓ:

Eπ[Eπ̃[EP[ℓ
2
j ]]] ≤ C2

bEπ[Eπ̃[EP[(fj,t − fj′,t)
2]]] ≤ C2

b (V (π) + V (π̃) + EP[(f̃(X)− fπ(X))2])

where V (π) = Eπ[EP[(fj(Xt) − fπ(Xt))
2]]. Then, we use as in [21] the convexity of the

function H: π → R(fπ) + 8C2
bV (π)/(ηE2) when η > 16C2

b /(CℓE
2). Moreover, if one

denotes π∗ a minimizer of H, we have

R(fπ) +
8C2

b V (π)

ηE2
−R(fπ∗)− 8C2

bV (π∗)

ηE2
≥

(Cℓ

2
− 8C2

b

ηE2

)

EP[(f̃(X)− fπ(X))2]

Now, using Cℓ-strong convexity as in Proposition 2 of [21], we have

R(fπ) ≤ Eπ[R(fj)]−
CℓV (π)

2
.

Applying these inequalities to π̃, we obtain

(Cℓ

2
−16C2

b

ηE2

)

EP[(f̃(X)−fπ(X))2] ≤ Eπ̃[R(fj)]−R(fπ)+
(16C2

b

ηE2
−Cℓ

2

)

V (π̃)− 8

ηE2
Eπ[Eπ̃[EP[ℓ

2
j ]]].

Choosing η∗ = 64C2
b /(E

2Cℓ), integrating with respect to Q and using the estimate in (21)
we derive that

EQ[EP[(f̃(X)−fπ(X))2]+V (π̃)] ≤ 4

Cℓ

(

Bn,E(η
∗)+4

(

E+
1

η∗

)K(Q,P)

n+ 1
+

3η∗E2K(Q,P)2

2 logM(n+ 1)

)

.

Plugging in this estimate into (21) we obtain

EQ[Eπ̃[R(fj)]] ≤ EQ

[

R(fπ)+
Cℓ

4
V (π)

]

+
3

2

(

Bn,E(η
∗)+4

(

E+
1

η∗

)K(Q,P)

n+ 1
+
3η∗E2K(Q,P)2

2 logM(n+ 1)

)

.

We conclude by a crude estimate on the last term, noticing that

B̃n,E ≤ log(1 + log n) + 3 log(1 + E),

choosing Q similarly than at the end of the proof of Theorems 1.1 and 4.1 and noticing
that infπ{R(fπ) + CℓV (π)/4} ≤ min1≤j≤M R(fj).
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The result in Theorem 4.2 is a direct consequence of Theorem 4.1 obtained by a rough
estimate of the confident interval obtained there. Thus, the result in Theorem 4.1 is always
more precise than the one in Theorem 4.2. The interest of Theorem 4.2 is that it is an
online to batch conversion that expresses the condiment interval on the cumulative risk as
an oracle inequality. This framework is very classical in mathematical statistics and lower
bounds are given in [27]. The main advantage of the approach of the individual sequences
consisting in

The awful constants and the log log n terms seem to be the price to pay for adaptiv-
ity, i.e. the whole procedure does not depend on any constants involved in Assumption
(LIST). Moreover, the batch version of BOA is explicitly computed here with linear
complexity O(Mn). It is a real advantage of the BOA procedure compared with the Q-
aggregation procedure given in [21]. We obtain much better constants for the batch version
of the non-adaptive BOA procedure:

Theorem 4.3. In the iid setting, under condition (LIST), for any initial weights π0 and
any learning rate η = γ/(CbD)2 with 0 < γ < Cℓ/(24C

2
b ), with probability 1− e−x we have

R(f̃) ≤ min
1≤j≤M

{

R(fj) +
Cγ

n+ 1

(2(CbD)2K(π−1
j,0 )

γ
+

(((CbD)2

γ
+ 2γ

)

x
)}

where Cγ = 1 + 6γ
(CbD)2(Cℓ/2−12C2

b
γ)
.

Proof. The proof follows from the result in Theorem 3.2 and an application of the varia-
tional form of the Bernstein’s inequality of [14] on ℓj,t (instead of the empirical one used
in the proof of Theorem 4.1):

EQ[Eπ̂[R(fj)]] ≤ EQ[R(fπ)]+2γ

n
∑

t=0

EQ[Eπ[ℓ
2
j,t+1] + EP[Eπ[ℓ

2
j,t+1]]]

E2(n+ 1)
+
E2(2K(π, π0) +K(Q,P))

γ(n+ 1)
.

Then we use the variational form of the Bernstein’s inequality on Eπ[ℓ
2
j,t]/E

2 as in (20) to
obtain

EQ[Eπ̂[Rn(fj)]] ≤ EQ

[

Rn(fπ) +
6γEP[Eπ[ℓ

2
j ]]

E2

]

+
2E2K(π, π0)

γ(n + 1)
+

(E2

γ
+ 2γ

)K(Q,P)

n+ 1
.

Following the same reasoning than in the proof of Theorem 4.2, we obtain

EQ[EP [Eπ[ℓ
2
j ]]] ≤ V (π) +

1

Cℓ/2− 12C2
b γ

(2E2K(π, π0)

γ(n + 1)
+

(E2

γ
+ 2γ

)K(Q,P)

n+ 1

)

.

We conclude the proof using that E = CbD and choosing Q similarly than at the end of
the proof of Theorems 1.1 and 4.1.

The BOA procedure is here non adaptive, in the sense that it depends on the assump-
tion (LIST) but it is still independent of the observations (except of their range E). For
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instance, if we choose the square loss and we restrict us on the interval [−1/2; 1/2] then
we can choose γ = η = 1/13 ≤ 1/12, πj,0 = M−1 and we obtain, with probability 1− e−x,

R(f̃) ≤ min
1≤j≤M

R(fj) +
14(13 logM + 7x)

n+ 1
.

The constant in front of logM is twice as large than in the result in [21] in the same
context but we do not assume here that |Y | ≤ 1/2 and we do not have an extra parameter
to calibrate, as it is always the case for Q-aggregation, see [12] for practical issues.
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