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Littlewood-Paley functionals on graphs

Let Γ be a graph equipped with a Markov operator P . We introduce discrete fractional Littlewood-Paley square functionals and prove their L p -boundedness under various geometric assumptions on the graph Γ.

Introduction

This paper is devoted to the L p -boundedness of Littlewood-Paley type square functionals on graphs. The prototype of these functionals is the g-function in the Euclidean space, defined in the following way. If f is, say, in D(R n ) and u(x, t) denotes "the" harmonic extension of f , that is u(x, t) = P t * f (x) for all t > 0 and all x ∈ R n , where P t stands for the Poisson kernel, define

g 1 f (x) :=   +∞ 0   ∂u ∂t (x, t) 2 + 1≤i≤n ∂u ∂x i (x, t) 2   dt t   1/2
.

It is a well-known fact ([20, Chapter 4, Theorem 1]) that, for all p ∈ (1, +∞),

g 1 f L p (R n ) ∼ f L p (R n ) . (1.1)
This result was extended in various directions, and we only recall some of them. In the Euclidean framework, the harmonic extension can be replaced by e -tL , where L is a second order uniformly elliptic operator in divergence form. In this case, the range of p in (1.1) is related to the L p boundedness of e -tL or t∇e -tL (see [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]Chapter 7]).

If, in the functional g, one is only interested in the "horizontal" part, i.e. the derivative with respect to t, then the L p boundedness of the corresponding Littlewood-Paley functional holds in the much more general context of measured spaces endowed with appropriate Markov semigroups ([21, Corollaries 1 and 2]). Notice also that similar results can be proved when the derivative ∂ ∂t is replaced by a "fractional" derivative ( [START_REF] Coifman | Applications of transference: the L p version of von Neumann's inequality and the Littlewood-Paley-Stein theory[END_REF]). Littlewood-Paley functionals were also considered in the context of complete Riemannian manifolds. Let M be a complete Riemannian manifold, ∇ be the Riemannian gradient and ∆ the Laplace-Beltrami operator. Consider the "vertical" functionals Several L p -boundedness results for G and H are known. Let us recall here that, when 1 < p ≤ 2, G and H are L p (M )-bounded when M is an arbitrary complete Riemannian manifold ([9, Theorem 1.2]), while the L p (M )-boundedness of G and H for p > 2 holds under much stronger assumptions, expressed in terms of the domination of the gradient of the semigroup by the semigroup applied to the gradient ([8, Proposition 3.1]). Littlewood-Paley functionals on graphs were also considered. In [START_REF] Dungey | A Littlewood-Paley-Stein estimate on graphs and groups[END_REF], if ∆ is a Laplace operator on a graph Γ, a "vertical" Littlewood-Paley functional, involving the (continuous-time) semigroup generated by ∆, is proved to be L p (Γ)-bounded for all 1 < p ≤ 2 under very weak assumptions on Γ. In [START_REF] Badr | Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs[END_REF], "discrete time" Littlewood-Paley functionals are proved to be L p (Γ)-bounded under geometric assumptions on Γ (about the volume growth of balls, or L 2 Poincaré inequalities), while similar results are obtained for weighted L p -norms in [START_REF] Badr | Weighted norm inequalities on graphs[END_REF]. Note also that the L p -boundedness of discrete time Littlewood-Paley functionals in abstract settings was recently established in [START_REF] Arhancet | Dilation of Ritt operators on L p -spaces[END_REF]. The present paper is devoted to the proof of the L p -boundedness on graphs of some discrete time fractional Littlewood-Paley horizontal or vertical functionals. Before stating our results, let us present the graphs under consideration.

Presentation of the discrete framework

General setting

Let Γ be an infinite set and µ xy = µ yx ≥ 0 a symmetric weight on Γ × Γ. The couple (Γ, µ) induces a (weighted unoriented) graph structure if we define the set of edges by

E = {(x, y) ∈ Γ × Γ, µ xy > 0}.
We call then x and y neighbors (or x ∼ y) if (x, y) ∈ E.

We will assume that the graph is connected and locally uniformly finite. A graph is connected if for all x, y ∈ Γ, there exists a path x = x 0 , x 1 , . . . , x N = y such that for all 1 ≤ i ≤ N , x i-1 ∼ x i (the length of such path is then N ). A graph is said to be locally uniformly finite if there exists M 0 ∈ N such that for all x ∈ Γ, #{y ∈ Γ, y ∼ x} ≤ M 0 (i.e. the number of neighbors of a vertex is uniformly bounded).

The graph is endowed with its natural metric d, which is the shortest length of a path joining two points. For all x ∈ Γ and all r > 0, the ball of center x and radius r is defined as B(x, r) = {y ∈ Γ, d(x, y) < r}.

In the opposite way, the radius of a ball B is the only integer r such that B = B(x B , r) (with x B the center of B). Therefore, for all balls B = B(x, r) and all λ > 0, we set λB := B(x, λr) and define C j (B) = 2 j+1 B\2 j B for all j ≥ 2 and C 1 (B) = 4B. We define the weight m(x) of a vertex x ∈ Γ by m(x) = x∼y µ xy . More generally, the volume of a subset E ⊂ Γ is defined as m(E) := x∈E m(x). We use the notation V (x, r) for the volume of the ball B(x, r), and in the same way, V (B) represents the volume of a ball B.

We define now the L p (Γ) spaces. For all 1 ≤ p < +∞, we say that a function f on Γ belongs to L p (Γ, m) (or L p (Γ)) if

f p := x∈Γ |f (x)| p m(x) 1 p < +∞, while L ∞ (Γ) is the set of functions satisfying f ∞ := sup x∈Γ |f (x)| < +∞.
Let us define for all x, y ∈ Γ the discrete-time reversible Markov kernel p associated to the measure m by p(x, y) = µxy m(x)m(y) . The discrete kernel p l (x, y) is then defined recursively for all l ≥ 0 by

p 0 (x, y) = δ(x,y) m(y) p l+1 (x, y) = z∈Γ p(x, z)p l (z, y)m(z). (1.2)
Remark 1.1. Note that this definition of p l differs from the one of p l in [START_REF] Russ | Riesz tranforms on graphs for 1 ≤ p ≤ 2[END_REF], [START_REF] Badr | Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs[END_REF] or [START_REF] Delmotte | Parabolic Harnack inequality and estimates of Markov chains on graphs[END_REF], because of the m(y) factor. However, p l coincides with K l in [START_REF] Dungey | A note on time regularity for discrete time heat kernels[END_REF]. Remark that in the case of the Cayley graphs of finitely generated discrete groups, where m(x) = 1 for all x, the definitions coincide.

Notice that for all l ≥ 1, we have

p l (x, .) L 1 (Γ) = y∈Γ p l (x, y)m(y) = d(x,y)≤l p l (x, y)m(y) = 1 ∀x ∈ Γ, (1.3) 
and that the kernel is symmetric:

p l (x, y) = p l (y, x) ∀x, y ∈ Γ. (1.4)
For all functions f on Γ, we define P as the operator with kernel p, i.e.

P f (x) = y∈Γ p(x, y)f (y)m(y) ∀x ∈ Γ. (1.5)
It is easily checked that P l is the operator with kernel p l .

Remark 1.2. Even if the definition of p l is different from [START_REF] Russ | Riesz tranforms on graphs for 1 ≤ p ≤ 2[END_REF] or [START_REF] Badr | Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs[END_REF], P l is the same operator in both cases.

Since p(x, y) ≥ 0 and (1.

3) holds, one has, for all p ∈ [1, +∞] ,

P p→p ≤ 1. (1.6) Remark 1.3. Let 1 < p < +∞.
Since, for all l ≥ 0, P l p→p ≤ 1, the operators (I -P ) β and (I + P ) β are L p -bounded for all β > 0 (see [START_REF] Coulhon | Puissances d'un opérateur régularisant[END_REF], p. 423).

We define a nonnegative Laplacian on Γ by ∆ = I -P . One has then

< (I -P )f, f > L 2 (Γ) = x,y∈Γ p(x, y)(f (x) -f (y))f (x)m(x)m(y) = 1 2 x,y∈Γ p(x, y)|f (x) -f (y)| 2 m(x)m(y), (1.7) 
where we use (1.3) for the first equality and (1.4) for the second one. The last calculus proves that the following operator

∇f (x) =   1 2 y∈Γ p(x, y)|f (y) -f (x)| 2 m(y)   1 2
, called "length of the gradient" (and the definition of which is taken from [START_REF] Coulhon | Random walks on graphs with regular volume growth[END_REF]), satisfies

< (I -P )f, f > L 2 (Γ) = ∇f 2 L 2 (Γ) .
(1.8)

Geometric assumptions and estimates for the Markov operator

Under suitable geometric assumptions on Γ, the iterates of P satisfy various L p -L q estimates, which we now review. Our first assumption is: Even if (LB 2 ) plays a crucial role in some parabolic regularity estimates on graphs ( [START_REF] Delmotte | Parabolic Harnack inequality and estimates of Markov chains on graphs[END_REF]), it will play no role in our results.

Definition 1.
The second assumption is the following one: Definition 1.6 (Doubling property). The weighted graph (Γ, µ) satisfies the doubling property if there exists

C > 0 such that V (x, 2r) ≤ CV (x, r) ∀x ∈ Γ, ∀r > 0. (DV )
Recall that, under the assumption (DV ), there exists d > 0 such that

V (θx, r) θ d V (x, r) ∀r > 0, x ∈ Γ, θ ≥ 1.
(1.9)

In the sequel, a local version of (DV ) will also be needed:

Definition 1.7. Say that (Γ, µ) satisfies (LDV) if there exists c > 0 such that V (x, 2) ≤ cm(x) ∀x ∈ Γ. (LDV)
Let us also state the Poincaré inequalities needed in the sequel. 

V (x, r) y∈B(x,r) |f (y) -f B | s m(y) ≤ C r s V (x, 2r) y∈B(x,2r) |∇f (y)| s m(y), (P s )
where

f B = 1 V (B) x∈B f (x)m(x).
(1.10) Remark 1.9. It is a known fact that (P s1 ) implies (P s2 ) if s 1 ≤ s 2 (cf [START_REF] Hajlasz | Sobolev met Poincaré[END_REF]).

Let us now introduce some estimates on p l , which will be needed in the statement of our results.

Definition 1.10 (On diagonal upper estimate of p l ). We say that (Γ, µ) satisfies (DU E) if there exists C > 0 such that, for all x ∈ Γ and all l ∈ N * ,

p l (x, x) ≤ C V (x, √ l) . (DU E) Definition 1.11. Let p ∈ [1, +∞]. Say that a weighted graph (Γ, µ) verifies (GG p ) if ∇P l f L p ≤ C p √ l f L p ∀l ∈ N * , ∀f ∈ L p (Γ). (GG p )
Remark 1.12. Note that the assumption (GG ∞ ) holds when Γ is the Cayley graph of a finitely generated discrete group (as well as assumption (P 1 ), see [START_REF] Hajlasz | Sobolev met Poincaré[END_REF]). Indeed, in this case,

∇ x p l (x, y) 1 lV (x, √ l)V (y, √ l) 1 2 exp -c d 2 (x, y) l .

Main results

For all β > 0, all functions f on Γ and all x ∈ Γ, define

g β f (x) =   l≥1 l 2β-1 (I -P ) β P l-1 f (x) 2   1 2
.

For all β > -1 2 , all functions f on Γ and all x ∈ Γ, define

gβ f (x) =   l≥1 l 2β ∇(I -P ) β P l-1 f (x) 2   1 2
.

Here is our main result:

Theorem 1.13. Let (Γ, µ) be a weighted graph satisfying (DV ), (LB) and (DU E). Then 1. g β is of weak type (1, 1), which means that there exists C > 0 such that, for all λ > 0,

m ({x ∈ Γ; g β f (x) > λ}) ≤ C λ f L 1 (Γ) ,
and of strong type (p, p) for all 1 < p < +∞, i.e. there exists a constant C > 0 such that

g β f L p ≤ C f L p ∀f ∈ L p (Γ) ∩ L 2 (Γ).
2. gβ is of weak type (1, 1), and of strong type (p, p) for all 1 < p ≤ 2. Moreover, if (Γ, µ) satisfies (P 2 ) and (GG q ) for some q > 2, then gβ is of strong type (p, p) for p ∈ (2, q).

3. For all 1 < p < +∞,

f L p ≤ C g β f L p ∀f ∈ L p (Γ) ∩ L 2 (Γ), for all 2 ≤ p < +∞ f L p ≤ C gβ f L p ∀f ∈ L p (Γ) ∩ L 2 (Γ)
and if (P 2 ) and (GG q ) are true for some q > 2, then for all q ′ < p < 2 (with 1 q ′ + 1 q = 1),

f L p ≤ C gβ f L p ∀f ∈ L p (Γ) ∩ L 2 (Γ).
Our second result deals with the L p -boundedness of g0 , under very weak assumptions on Γ: 1. The L p -boundedness of g 1 was proved in [START_REF] Badr | Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs[END_REF]Theorem 1.16]. Theorem 1.13 extends this fact to a fractional version of g 1 . Moreover, we prove a similar estimate for the vertical Littlewood-Paley functional gβ and also establish converse inequalities.

2. The L p -boundedness of g β can be deduced from arguments in [START_REF] Arhancet | Dilation of Ritt operators on L p -spaces[END_REF]. Indeed, since g 1 is of strong type (p, p) for all p ∈ (1, +∞) by [START_REF] Badr | Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs[END_REF]Theorem 1.16], [START_REF] Arhancet | Dilation of Ritt operators on L p -spaces[END_REF]Theorem 3.1] yields that P is an R-Ritt operator, and the fact that g β is of strong type (p, p) for all p ∈ (1, +∞) follows from [START_REF] Arhancet | Dilation of Ritt operators on L p -spaces[END_REF]Theorem 3.3]. However, these arguments do not yield the fact that g β is of weak type [START_REF] Arhancet | Dilation of Ritt operators on L p -spaces[END_REF][START_REF] Arhancet | Dilation of Ritt operators on L p -spaces[END_REF]. Moreover, they do not provide any information about gβ .

Section 2 is devoted to the introduction of the tools used in the sequel. In particular, we state various off-diagonal estimates of the Markov kernel, which are proven in the Appendix A. Theorems 1.13 and 1.14 are respectively proven in Section 3 and 4.

Acknowledgements: the author would like to thank C. Le Merdy for pointing out reference [START_REF] Arhancet | Dilation of Ritt operators on L p -spaces[END_REF] to him.

Preliminary results

Estimates on the kernels

In this paragraph, we gather various estimates on p l which will be instrumental in our proofs. The conjunction of (LB), (DV ) and (DU E) provide us with further estimates on p l . First, one has ([11, Theorem 5.2, Theorem 6.1]): Proposition 2.1. Let (Γ, µ) be a weighted graph satisfying (DV ) and (LB). Then, assumption (DU E) is equivalent to the off-diagonal upper estimate:

p l (x, y) ≤ C 1 V (x, √ l)V (y, √ l) 1 2 exp -c d 2 (x, y) l ∀x, y ∈ Γ, ∀l ∈ N * . (U E) Remark 2.
2. An immediate consequence of (DV ) is that, for all x, y ∈ Γ and l ∈ N * ,

p l-1 (x, y) ≤ C 1 V (x, √ l)V (y, √ l) 1 2 exp -c d 2 (x, y) l .
Remark 2.3. Assume that Γ is a graph satisfying (DV ). It is easily checked that assumption (U E) is equivalent to

p l (x, y) ≤ C V (y, √ l) exp -c d 2 (x, y) l (2.1) or p l (x, y) ≤ C V (x, √ l) exp -c d 2 (x, y) l . ( 2.2) 
We will now state some "time regularity" estimates for higher order differences of p l (first proved for first order differences by Christ ([6]) but an easier proof was given by Dungey in [START_REF] Dungey | A note on time regularity for discrete time heat kernels[END_REF]). Theorem 2.4. Let (Γ, µ) be a weighted graph. Assume that Γ satisfies (DV ), (LB) and (DU E). We define D(r) as the following operator which acts on sequences

(D(r)u) l = u l -u l+r .
Then, for all j ≥ 0 there exist two constants C j , c j > 0 such that, for all l ≥ 1 and all x, y ∈ Γ,

|(D(1) j p) l (x, y)| ≤ C j l j V (x, √ l) exp -c j d 2 (x, y) l . (T D -U E)
Theorem 2.4 (actually a slightly more general version) will be established in Section A.1 in the appendix. From the previous estimates, we derive the following result, the proof of which will be given in Section A.2 in the appendix.

Theorem 2.5. Let (Γ, µ) be a weighted graph satisfying (DV ), (LB) and (DU E). The following Gaffney type inequalities hold: for all j ∈ N, there exist c, C > 0 such that for all sets E, F ⊂ Γ, all x 0 ∈ Γ, all l ∈ N * satisfying one of the following conditions

(i) sup {d(x 0 , y), y ∈ F } ≤ 3d(E, F ), (ii) sup {d(x 0 , y), y ∈ F } ≤ √ l, (iii) sup {d(x 0 , x), x ∈ E} ≤ 3d(E, F ), (iv) sup {d(x 0 , x), x ∈ E} ≤ √ l,
and all functions f supported in F , we have, for all j ∈ N,

(I -P ) j P l f L 2 (E) ≤ C l j 1 V (x 0 , √ l) 1 2 e -c d(E,F ) 2 l f L 1 (F ) (GT 2 )
and

∇(I -P ) j P l f L 2 (E) ≤ C l j+ 1 2 1 V (x 0 , √ l) 1 2 e -c d(E,F ) 2 l f L 1 (F ) ∇(I -P ) j P l f L 2 (E) ≤ C l j+ 1 2 e -c d(E,F ) 2 l f L 2 (F ) .
(GGT 2 )

Remark 2.6. The theorem above will be used for

(E, F ) ∈ {(B, C j (B)), B ball , j ≥ 2} ∪ {(C j (B), B), B ball , j ≥ 2}.

Results on the Hardy-Littlewood maximal function

Definition 2.7. Denote by M the Hardy-Littlewood maximal operator

Mf (x) = sup 1 V (B) y∈B |f (y)|m(y)
where the supremum is taken over the balls B of Γ containing x.

In the same way, for s ≥ 1, M s will denote

M s f = (M|f | s ) 1 s .
The following observation will turn to be useful: under the assumption (U E), for all k ≥ 1, all functions f on Γ and all x 0 , x ∈ Γ with d(x, x 0 ) ≤ √ k,

P k f (x) ≤ Mf (x 0 ). (2.3)
Indeed,

P k f (x) = y∈Γ p k (x, y)f (y)m(y) y∈Γ 1 V (x, √ k) exp -c d(x, y) 2 k |f (y)|m(y) 1 V (x, √ k) d(x,y)< √ k |f (y)|m(y) + j≥0 e -c2 2j V (x, √ k) 2 j √ k≤d(x,y)<2 j+1 √ k |f (y)|m(y) 1 V (x, √ k) d(x,y)< √ k |f (y)|m(y) j≥0 2 (j+1)d e -c2 2j V (x, 2 j+1 √ k) 2 j √ k≤d(x,y)<2 j+1 √ k |f (y)|m(y) ≤   1 + j≥0 2 (j+1)d e -c2 2j   Mf (x 0 ) Mf (x 0 ),
where we use for the fifth line the doubling property and the fact that

d 2 (x, x 0 ) ≤ k. Proposition 2.8. Let (Γ, µ) be a weighted graph satisfying (DV ). If (q, q 0 , β) ∈ (1, +∞] 2 × [0, 1) satisfy 1 q = 1 q0 -β, then M β is bounded from L q0 (Γ) to L q (Γ).
We also recall the Fefferman-Stein inequality. Theorem 2.9. Let (Γ, µ) be a weighted graph satisfying (DV ) and s ≥ 1. Then, if p, q ∈ (s, +∞), there exists C p,q > 0 such that for all sequences (f n ) n∈N of measurable functions defined on Γ,

+∞ n=0 (M s f n ) q 1 q p ≤ C p,q +∞ n=0 |f n | q 1 q p .
This result is proven in R d in [START_REF] Fefferman | Some maximal inequalities[END_REF] and the proof easily extends to spaces of homogeneous type.

L p boundedness for Calderón-Zygmund operators

We will make use of the following theorems about Calderón-Zygmund operators "without kernels", which can be found in [START_REF] Badr | Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs[END_REF], Theorem 1.14 and Theorem 1.17. See also [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF], Theorem 1.1 and 1.2. Before stating these results, recall (see Theorem 1.13) that a sublinear operator T is of weak type (p, p) (1 ≤ p < +∞) if there exists C > 0 such that, for all λ > 0 and all f ∈ L p (Γ),

m ({x ∈ Γ; |T f (x)| > λ}) ≤ C λ p f p L p (Γ) .
Furthermore, T is said to be of strong type (p, p) if there exists C > 0 such that, for all f ∈ L p (Γ),

T f L p (Γ) ≤ C f L p (Γ) .
Theorem 2.10. Let p 0 ∈ (2, +∞]. Assume that Γ satisfies the doubling property (DV ) and let T be a sublinear operator of strong type (2, 2) defined on Γ. For all balls B, let A B be a linear operator acting on L 2 (Γ). Assume that there exists a constant C > 0 such that, for all f ∈ L 2 (Γ), all x ∈ Γ and all balls B ∋ x, 1

V (B) 1 2 T (I -A B )f L 2 (B) ≤ CM 2 f (x) (2.4)
and 1

V (B)

1 p 0 T A B f L p 0 (B) ≤ CM 2 |T f |(x). (2.5)
Then, for all p ∈ (2, p 0 ), T is of strong type (p, p).

Theorem 2.11. Let p 0 ∈ [START_REF] Arhancet | Dilation of Ritt operators on L p -spaces[END_REF][START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]. Assume that Γ satisfies the doubling property (DV ) and let T be a sublinear operator of strong type [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF][START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]. For all balls B, let A B be a linear operator acting on L 2 (Γ).

Assume that, for all j ≥ 1, there exists ϕ(j) > 0 such that, for all B ⊂ Γ and all functions supported in B and all j ≥ 2, 1

V (2 j+1 B) 1 2 T (I -A B )f L 2 (Cj (B)) ≤ ϕ(j) 1 V (B) 1 p 0 f L p 0 (2.6)
and for all j ≥ 1 1

V (2 j+1 B) 1 p 0 A B f L 2 (Cj(B)) ≤ ϕ(j) 1 V (B) 1 p 0 f L p 0 . (2.7) If j≥1 ϕ(j)2 jd < +∞,
where d is given by Proposition 1.9, then T is of weak type (p 0 , p 0 ), and therefore of strong type (p, p) for all p 0 < p < 2.

3 Littlewood-Paley functionals

3.1 L 2 (Γ)-boundedness of g 2 β
In order to prove Theorem 1.13, let us introduce an extra functional.

Lemma 3.1. Let (Γ, µ) be a weighted graph. Let P be the operator defined by (1.5).

Define, for all β > 0 and all functions f ∈ L 2 (Γ), g 2 β f by

g 2 β f (x) =   l≥1 b l (I -P 2 ) β P l-1 f (x) 2   1 2
where l≥1 b l z l-1 is the Taylor series of the function z

→ (1 -z) -2β . Then g 2 β is L 2 (Γ) bounded. More precisely, g 2 β is an isometry on L 2 (Γ), which means that, for all f ∈ L 2 (Γ), g 2 β f L 2 (Γ) = f L 2 (Γ)
. Proof. Since P 2 ≤ 1, by spectral theory, P can be written as

P = 1 -1 λdE(λ).
It follows that for all l ≥ 1, one has

(I -P 2 ) β P l-1 = 1 -1 (1 -λ 2 ) β λ l-1 dE(λ) so that, for all f ∈ L 2 (Γ) and l ≥ 1, (I -P 2 ) β P l-1 f 2 L 2 = 1 -1 (1 -λ 2 ) 2β λ 2(l-1) dE f,f (λ).
The L 2 -norm of g 2 β f can be now computed as

g 2 β f 2 L 2 = l≥1 b l (I -P 2 ) β P l-1 f 2 L 2 = 1 -1 (1 -λ 2 ) 2β l≥1 b l λ 2(l-1) dE f,f (λ) = 1 -1 dE f,f (λ) = f 2 L 2
where the third line is a consequence of the definition of b l .

Lemma 3.2. Let (Γ, µ) be a weighted graph satisfying (LB).

Then g β and gβ are L 2 (Γ)-bounded.

Proof. Since Γ satisfies (LB), -1 is not in the L 2 spectrum of P (see for instance Lemma 1.3 in [START_REF] Dungey | A note on time regularity for discrete time heat kernels[END_REF]). Therefore there exists a > -1 such that

P = 1 a λdE(λ).
Proceeding as in the proof of the Lemma 3.1, we obtain

g β f 2 L 2 = 1 a (1 -λ) 2β l≥1 l 2β-1 λ 2(l-1) dE f,f (λ) 1 a (1 -λ) 2β 1 (1 -λ 2 ) 2β dE f,f (λ) = 1 a 1 (1 + λ) 2β dE f,f (λ) f 2 L 2
where, for the second line, we use Lemma B.1. For gβ , just notice that, by definition of ∇,

gβ f L 2 = g β+ 1 2 f L 2 . 3.2 L p (Γ)-boundedness of g β , 2 < p < +∞
The proof of the L p -boundedness of g β for p > 2 is based on the following Lemma and Theorem 2.10. The idea of the proof comes from Theorem 1.16 in [START_REF] Badr | Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs[END_REF].

Lemma 3.3. Let (Γ, µ) be a weighted graph satisfying (DV ), (LB) and (DU E). For all n ∈ N * , there exists a constant C n > 0 such that, for all balls B = B(x 0 , r) of Γ, all j ≥ 2 and all f supported in C j (B), one has

g β (I -P r 2 ) n f L 2 (B) ≤ C n 2 j( d 2 -2n) V (B) V (2 j B) 1 2 f L 2
Proof. First fix n ∈ N * . Denote by η the only integer such that η + 1 ≥ β > η ≥ 0. We use the fact that

(I -P ) β-1-η = k≥0 a k P k where a k z k is the Taylor series of the function (1 -z) β-η-1 .
Note that the equality holds on L 2 (Γ) by spectral theory and (1.6). Moreover, notice that if β is an integer, then a k = δ 0 (k).

By the generalized Minkowski inequality, we get

g β (I -P r 2 ) n f L 2 (B) ≤ k≥0 a k   l≥1 l 2β-1 (I -P ) 1+η P k+l-1 (I -P r 2 ) n f 2 L 2 (B)   1 2
.

We divide the sequel of the proof in 3 steps.

1-Estimate of the inner term

Notice that I -P r 2 = (I -P ) r 2 -1 s=0 P s . Then, we get

(I -P ) 1+η P k+l-1 (I -P r 2 ) n f L 2 (B) ≤ r 2n sup s∈[[0,nr 2 ]] (I -P ) 1+η+n P k+l+s-1 f L 2 (B)
We now estimate the terms (I -P ) 1+η P k+l+s-1 f L 2 (B) . For 0 ≤ s ≤ nr 2 , since f is supported in C j (B) and by Remark 2.2, one has,

(I -P ) 1+n+η P k+l-1+s f L 2 (B) 1 (l + k + s) 1+η+n exp -c (2 j -1) 2 r 2 l + k + s f L 2 (Cj (B)) 1 (l + k + s) 1+η+n exp -c 4 j r 2 l + k + s f L 2 (Cj (B)) 2 jd 2 V (B) V (2 j B) 1 2 1 (l + k + s) 1+η+n exp -c 4 j r 2 l + k + s f L 2
where the first line follows from (GT 2 ) and Cauchy-Schwarz and the third one from (DV ).

Consequently, we obtain

(I -P ) 1+η P k+l-1 (I -P r 2 ) n f L 2 (B)
r 2n 2 jd 2 sup s∈[[0,nr 2 ]]   exp -c (4 j r 2 l+k+s (l + k + s) (1+η+n)   V (B) V (2 j B) 1 2 f L 2 ≤ r 2n l -η 2 jd 2 sup s∈[[0,nr 2 ]]   exp -c 4 j r 2 l+k+s (l + k + s) 1+n   V (B) V (2 j B) 1 2 f L 2 .
(3.1)

2-Reverse Hölder estimates

According to Proposition C.2 below , the set of sequences {A k,r,j l , k ∈ N, r ∈ N * , j ≥ 2}, where

A k,r,j l = l β-η sup s∈[[0,nr 2 ]]    exp -c 4 j r 2 l+k+s (l + k + s) 1+n    , is included in E M = (a l ) l≥1 , ∀l ∈ N * , 0 ≤ a l ≤ M k∈N * 1 k a k
for some M > 0. Therefore, Lemma C.1 below yields

V (B) -1 2 g β (I -P r 2 ) n f L 2 (B) r 2n 2 jd 2 V (2 j B) -1 2 f L 2 k≥0 a k   l≥1 1 l (A k,r,j l ) 2   1 2 r 2n 2 jd 2 V (2 j B) -1 2 f L 2 k≥0 a k l≥1 1 l A k,r,j l .

3-End of the calculus

Note, thanks to Lemma B.1, that, when β is not an integer,

m-1 k=0 a k (m -k) β-1-η 1 + m-1 k=1 k η-β (m -k) β-η-1 = 1 + 1 m m-1 k=1 k m η-β 1 - k m β-1-η -----→ m→+∞ 1 + 1 0 t η-β (1 -t) β-1-η dt < +∞.
The integral converges since ηβ > -1 and

β -1 -η > -1. It follows that m-1 k=0 a k (m -k) β-η-1 1. (3.2)
Since a k = δ 0 (k) and β -1η = 0 when β is an integer, the result above holds for all β > 0.

Using the expression of A k,r,j l , we have

V (B) -1 2 g β (I -P r 2 ) n f L 2 (B) V (2 j B) -1 2 r 2n 2 jd 2 f L 2 +∞ m=1 sup s∈[[0,nr 2 ]]    exp -c 4 j r 2 m+s (m + s) 1+n    But, for some c ′ ∈ (0, c), +∞ m=1 sup s∈[[0,nr 2 ]]    exp -c 4 j r 2 m+s (m + s) 1+n    = 1 (4 j r 2 ) 1+n +∞ m=1 sup s∈[[0,nr 2 ]] exp -c 4 j r 2 m + s 4 j r 2 m + s 1+n 1 (4 j r 2 ) 1+n 4 j r 2 m=1 exp -c ′ 4 j r 2 m + nr 2 + 1 (4 j r 2 ) 1+n +∞ m=4 j r 2 +1 4 j r 2 m 1+n 4 -jn r -2n .
The proof of Lemma 3.3 is now complete.

Proof. The proof of the L p -boundedness of g β for p > 2 is analogous to the one found in [START_REF] Badr | Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs[END_REF], Theorem 1.16, when 2 < p < +∞. Let us give the argument for the completeness. We are aiming to use Theorem 2.10. It is enough to verify the validity of the assumptions (2.4) and (2.5). We choose A B = I -(I -P r 2 ) n , where r is the radius of B and n > d 4 .

Proof of (2.4)

We need to check that, for all f ∈ L 2 , for all x 0 ∈ Γ and all balls B ∋ x 0 , one has 1

V (B) 1 2 g β (I -P r 2 ) n f L 2 (B) M|f | 2 1 2 (x 0 ). We can decompose f = j≥1 f 1l Cj(B) =: j≥1 f j .
First, since g β and I -A B = (I -P r 2 ) n are L 2 (Γ)-bounded and by the doubling property, 1

V (B) 1 2 g β (I -P r 2 ) n f 1 L 2 (B) 1 
V (B) 1 2 f L 2 (4B) M|f | 2 1 2 (x 0 ).
For j ≥ 2, Lemma 3.3 provides:

1

V (B) 1 2 g β (I -P r 2 ) n f j L 2 (B) 2 j( d 2 -2n) 1 V (2 j B) 1 2 f j L 2 2 j( d 2 -2n) (M|f | 2 ) 1 2 (x 0 ).
Since n > d 4 , we can sum in j ≥ 1, which gives the result.

Proof of (2.5)

What we have to show is that, for all m ∈ [ [1, n]], all f ∈ L 2 (Γ) ∩ L ∞ (Γ), all x 0 ∈ Γ and all balls B ∋ x 0 , one has,

g β P mr 2 f L ∞ (B) (M|g β f | 2 ) 1 2 (x 0 ).
First, since y∈G p(x, y)m(y) = 1, and by the use of Cauchy-Schwarz inequality, we obtain, for all x ∈ Γ and h ∈ L 2 (Γ),

P mr 2 h(x) ≤ P mr 2 |h| 2 (x) 1 2 .
Hence, it follows that for all l ≥ 1

P mr 2 (I -P ) β P l-1 f (x) 2 ≤ P mr 2 |(I -P ) β P l-1 f | 2 (x),
so that, summing up in l,

(g β P mr 2 f )(x) 2 = l≥1 l 2β-1 |P mr 2 (I -P ) β P l-1 f (x)| 2 ≤ P mr 2   l≥1 l 2β-1 |(I -P ) β P l-1 f | 2   (x) = P mr 2 |g β f | 2 (x) M |g β f | 2 (x 0 ),
where the last line is due to (2.3). Here ends the proof of (2.5), and the one of the L p -boundedness of g β for p ∈ (2, +∞). For all n ∈ N * , there exists a constant C n such that, for all balls B = B(x 0 , r) of Γ, all j ≥ 2 and all f supported in C j (B) = 2 j+1 B\2 j B, we get

L

gβ (I -P r 2 ) n f L 2 (B) ≤ C n 2 j( d 2 -2n) V (B) V (2 j B) 1 2 f L 2 . Proof. (Lemma 3.4)
The proof is analogous to the one of Lemma 3.3, and we only indicates the main differences. Define η as in the proof of Lemma 3.3. By the use of the generalized Minkowski inequality, we get

gβ (I -P r 2 ) n f L 2 (B) ≤ k≥0 a k   l≥1 l 2β ∇(I -P ) 1+η P k+l-1 (I -P r 2 ) n f 2 L 2 (B)   1 2
.

We now distinguish the cases β > 0 ( i.e. η ∈ N) and -1 2 < β ≤ 0 ( i.e. η = -1). First case: β > 0. In this case, the proof is analogous to the one in Lemma 3.3, using (GGT 2 ) instead of (GT 2 ).

Second case:

-1 2 < β ≤ 0. 1. By (GGT 2 ), ∇P k+l-1 (I -P r 2 ) n f L 2 (B) 2 jd 2 r 2n sup s∈[[0,nr 2 ]]   exp -c 4 j r 2 l+k+s (l + k + s) n+ 1 2   V (B) V (2 j B) 1 2 f L 2 (C j (B)) .
2. Define now B k,r,j l by

B k,r,j l = l β+ 1 2 sup s∈[[0,nr 2 ]]    exp -c 4 j r 2 l+k+s (l + k + s) n+ 1 2    Remark C.5 below therefore shows V (B) -1 2 gβ (I -P r 2 ) n f L 2 (B) 2 jd 2 V (2 j B) -1 2 f L 2 r 2n k≥0 a k   l≥1 1 l (B k,r,j l ) 2   1 2 2 jd 2 V (2 j B) -1 2 f L 2 r 2n k≥0 a k l≥1 1 l B k,r,j l . (3.3) 3. Thanks to Lemma B.1, one has m-1 k=0 a k (m -k) β-1 2 m β-1 2 + m-1 k=1 k -β-1 (m -k) β-1 2 1 √ m 1 0 t -β-1 (1 -t) β-1 2 dt, if β ∈ (-1 2 , 0). If β = 0, we have a k = δ 0 (k), so that, in both cases, m-1 k=0 a k (m -k) β-1 2 1 √ m . ( 3.4) 
Using (3.3) and (3.4), one obtains

V (B) -1 2 g β (I -P r 2 ) n f L 2 (B) 2 jd 2 V (2 j B) -1 2 f L 2 r 2n +∞ m=1 sup s∈[[0,nr 2 ]]    exp -c 4 j r 2 m+s √ m(m + s) n+ 1 2    .
However, one has,

+∞ m=1 sup s∈[[0,nr 2 ]]    exp -c 4 j r 2 m+s √ m(m + s) n+ 1 2    = 1 (4 j r 2 ) n+1 +∞ m=1 2 j r √ m sup s∈[[0,nr 2 ]] 4 j r 2 m + s n+ 1 2 exp -c 4 j r 2 m + s 1 (4 j r 2 ) n+1 4 j r 2 m=1 2 j r √ m + 1 (4 j r 2 ) n+1 +∞ m=4 j r 2 +1 4 j r 2 m n+1 4 -jn r -2n .
It yields the desired result

V (B) -1 2 g β (I -P r 2 ) n f L 2 (B) 2 j( d 2 -2n) V (2 j B) -1 2 f L 2
Proof. ( L p -boundedness of gβ for 2 < p < p 0 ) We use Theorem 2.10 as well. The proof of (2.4) for gβ is analogous to the corresponding one for g β , by use of Lemma 3.4. Let us now check (2.5). We argue as in [START_REF] Auscher | Riesz transform on manifolds and heat kernel regularity[END_REF] pp 932-936, using (P 2 ) and (GG p0 ).

We want to prove that, for all 2 < p < p 0 , there exists C n such that for all balls B ⊂ Γ of radius r, all m ∈ [[0, n]], all functions f on Γ and x ∈ B,

1 V 1 p (B) gβ P 2mr 2 f L p (B) ≤ C n M(|g β f | 2 ) 1 2 (x). (3.5)
Let f ∈ L 2 (Γ). Since P l 1 ≡ 1 for all l ∈ N, we may write, if g l = (I -P ) β P l-1 f ,

∇P mr 2 (I -P ) β P l-1 f = ∇P mr 2 g l -g l 4B .
Write g lg l 4B = i≥1 g l i with g l i = g lg l 4B 1l Ci(B) . For i = 1, Lemma 4.2 in [START_REF] Badr | Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs[END_REF] and (P 2 ) yield

  l≥1 l 2β 1 V 1 p (B) ∇P mr 2 g l 1 L p (B) 2   1 2 1 rV (4B) 1 2   l≥1 l 2β g l 1 2 L 2 (4B)   1 2   1 V (8B) l≥1 l 2β y∈8B |∇g l 1 (y)| 2 m(y)   1 2 M 2 (g β f ) (x).
For i ≥ 2, Lemma 4.2 in [START_REF] Badr | Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs[END_REF] shows that

  l≥1 l 2β 1 V 1 p (B) ∇P mr 2 g l i 2   1 2 e -c4 i r   1 V (2 i+1 B) l≥1 l 2β g l i 2 L 2 (Ci(B))   1 2
.

But for all l ≥ 1,

g l i L 2 (Ci(B)) ≤ g l -g l 4B L 2 (2 i+1 B) ≤ g l -g l 2 i+1 B L 2 (2 i+1 B) + V (2 i+1 B) 1 2 i j=2 | g l 2 j B -g l 2 j+1 B |. For all j ∈ [[2, i]], (P 2 ) implies | g l 2 j B -g l 2 j+1 B | 1 V (2 j+1 B) 1 2 g l -g l 2 j+1 B L 2 (2 j+1 B) 2 j+1 r 1 V (2 j+1 B) 1 2 ∇g l L 2 (2 j+1 B) , while g l -g l 2 i+1 B L 2 (2 i+1 B) 2 i+1 r ∇g l L 2 (2 i+1 B) , so that g l i L 2 (Ci(B)) i j=2 2 j r V (2 i+1 B) 1 2 V (2 j+1 B) 1 2 ∇g l L 2 (2 j+1 B) .
As a consequence, by the Minkowski inequality,

1 V (2 i+1 B) l≥1 l 2β g l i 2 L 2 (C i (B)) 1 2 i j=2 2 j r 1 V (2 j+1 B) 1 2 l≥1 l 2β ∇g l 2 L 2 (2 j+2 B) 1 2 i j=2 2 j rM2g β f (x) 2 i rM2g β f (x).

3.4

L p -boundedness of g β and gβ , 1 < p ≤ 2

The proof of the L p -boundedness of g β for 1 < p < 2 relies on Theorem 2.11, via the following lemma: Lemma 3.5. Let (Γ, µ) be a weighted graph satisfying (DV ), (LB) and (DU E). For all n ∈ N * , there exists a constant C n such that, for all balls B = B(x 0 , r) of Γ, all j ≥ 2 and all f ∈ L 1 (Γ) supported in B, we get

g β (I -P r 2 ) n f L 2 (Cj (B)) ≤ C n 2 -2jn V (2 j B) 1 2 V (B) f L 1 .
Proof. The proof of Lemma 3.5 is very similar to the one of Lemma 3.3, and we will therefore by sketchy. First, we still have

g β (I -P r 2 ) n f L 2 (C j (B)) ≤ k≥0 a k l≥1 l 2β-1 (I -P ) 1+η P k+l-1 (I -P r 2 ) n f 2 L 2 (C j (B)) 1 2
where a k is defined as in the proof of 3.3.

1-Estimate of the inner term

Let B = B(x 0 , r). As in Lemma 3.3 and using (GT 2 ),

(I -P ) 1+η P k+l-1 (I -P r 2 ) n f L 2 (Cj(B)) l -η f L 1 (B) sup s∈[[0,nr 2 ]]   1 V (x 0 , √ l + k + s) 1 2 exp -c 4 j r 2 l+k+s (l + k + s) 1+n   l -η V (2 j B) 1 2 V (B) f L 1 sup s∈[[0,nr 2 ]]   exp -c 4 j r 2 l+k+s (l + k + s) 1+n   (3.6)
where we use for the second line the following fact, consequence of (DV )

V (B) V (x 0 , √ l + k + s) r 2 l + k + s d 2 exp -c 4 j r 2 l + k + s .

2/3-Conclusion

The proof is then the same (with obvious modifications) as the proof of Lemma 3.3, using the same sequence A k,r,j l as in the proof of Lemma 3.3.

We can now conclude for the L p -boundedness of g β and gβ for 1 < p < 2.

Proof. ( L p -boundedness and weak (1, 1) type of g β for 1 < p < 2 )

We apply Theorem 2.11. It is enough to check (2.6) and (2.7) with g(j) = 2 -j . We take A B = P r 2 where r is the radius of B. The inequality (2.6) is then a consequence of Lemma 3.5 for n = 1. For the estimate (2.7), it suffices to prove that, for all balls B of Γ, all j ≥ 1, and all f supported in B,

P r 2 f L 2 (Cj(B)) V (2 j+1 B) 1 2 V (B) e -c4 j f L 1 (B) .
The case j ≥ 2 is a consequence of (GT 2 ) and (DV ), while the case j = 1 follows from (U E) and (A.10).

Proof. ( L p -boundedness and weak (1, 1) type of gβ ) For β > 0, the proof is the analogous to the one of the L p -boundedness of g β , using (GGT 2 ) instead of (GT 2 ). The case β ∈ -1 2 , 0 is analogous, with minor changes identical to the corresponding case in the proof of L p -boundedness of gβ for p > 2.

Reverse L p inequalities for g β and gβ

Let us now end up the proof of Theorem 1.13. What remains to be proved is: Theorem 3.6. Let (Γ, µ) be a weighted graph satisfying (DV ), (LB) and (DU E). For all 1 < p < +∞ and β > 0, there exist three constants

C 1 , C 2 , C 3 > 0 such that f L p ≤ C 1 g β f L p ≤ C 2 g 2 β f L p ≤ C 3 f L p ∀f ∈ L p (Γ) ∩ L 2 (Γ).
Remark 3.7. Notice that Theorem 3.6 implies Theorem 1.13 for g β . A statement analogous to Theorem 3.6 holds with gβ , with the same proof, which ends the proof of Theorem 1.13.

Proof. By Lemma B.1, we get

g 2 β f (x) ≃ g β (I + P ) β f (x) ∀f ∈ L p (Γ) ∩ L 2 (Γ), ∀x ∈ Γ.
As a consequence of this fact and Remark 1.3, for all p ∈ (1, +∞), we have the inequalities

g 2 β f L p g β (I + P ) β f L p (I + P ) β f L p f L p . (3.7)
The proof will then be complete if we establish, for all 1 < p < +∞,

f L p ≤ g 2 β f L p ∀f ∈ L p (Γ). (3.8)
Indeed, assume that (3.8) is established. The conjunction of (3.7) and (3.8) provide the equivalences

g 2 β f L p ≃ f L p ∀f ∈ L p (Γ) ∩ L 2 (Γ)
and

g β f L p ≃ f L p ∀f ∈ A = {(I + P ) β g, g ∈ L p ∩ L 2 }
and it is therefore enough to check that A is dense in L p (Γ).

To that purpose, notice that (3.7) and (3.8) also provide the equivalence (

I + P ) β f L p (Γ) ≃ f L p (Γ) for all f ∈ L 2 (Γ) ∩ L p (Γ)
, then for all f ∈ L p (Γ) by the L p -boundedness of (I + P ) β and since L 2 (Γ) ∩ L p (Γ) is dense in L p (Γ). This entails that (I + P ) β is one-to-one on L p ′ (Γ) (with 1 p + 1 p ′ = 1), which implies that A is dense in L p (Γ). The inequality (3.8) can be proven by duality. Actually, for all f, h ∈ L 2 (Γ), Lemma 3.1 shows that

4 < f, h > = f + h 2 2 -f -h 2 2 = g 2 β (f + h) 2 2 -g 2 β (f -h) 2 2 ≤ g 2 β f + g 2 β h 2 2 -g 2 β f -g 2 β h 2 2 = 4 < g 2 β f, g 2 β h > . For the third line, notice that g 2 β f -g 2 β h ≤ g 2 β (f -h),
and interverting the roles of f and h, we obtain

g 2 β f -g 2 β h ≤ g 2 β (f -h), so that g 2 β f -g 2 β h L 2 ≤ g 2 β (f -h) L 2 . Thus, if 1 p + 1 p ′ = 1, we have for all f ∈ L p (Γ) ∩ L 2 (Γ), 1 < p < +∞, f L p (Γ) = sup h∈L 2 ∩L p ′ h L p ′ ≤1 < f, h > ≤ sup h∈L 2 ∩L p ′ h L p ′ ≤1 < g 2 β f, g 2 β h > ≤ g 2 β f L p sup h∈L 2 ∩L p ′ h L p ′ ≤1 g 2 β h L p ′ g 2 β f L p sup h∈L 2 ∩L p ′ h L p ′ ≤1 h L p ′ = g 2 β f L p
where the third line is a consequence of Hölder inequality and the fourth one follows from the boundedness of g 2 β on L p ′ (Γ). We obtain the desired result

f L p g 2 β f L p . 4 L p -boundedness of g0 , 1 < p < 2
Define, for all q ∈ (1, 2] and all functions f on Γ,

Ñq f := qf ∆f -f 2-q ∆f q
and, for all functions u n : N × Γ → R,

N q u n := qu n [∂ n + ∆]u n -u 2-q n [∂ n + ∆]u q n = Ñq u n + qu n ∂ n u n -u 2-q n ∂ n u q n .
Here and after, ∂ n u n = u n+1u n for all n ∈ N.

Remark 4.1.

• Dungey proved in [START_REF] Dungey | A Littlewood-Paley-Stein estimate on graphs and groups[END_REF] that 0 ≤ Ñq (f ) ≤ q 2 |∇f | 2 . • The Young inequality shows at once that

∂ n u q n ≥ qu q-1 n ∂ n u n , (4.1)
and then N q (u n ) ≤ Ñq (u n ).

• As will be shown in Proposition 4.7 below, N q (P n f ) ≥ 0 for all nonnegative functions f and all n ∈ N.

We also introduce the functional

g0,q f (x) =   n≥0 N q (P n f )(x)   1 2
. Theorem 4.2. If q ∈ (1, 2], then there exists a constant c > 0 such that g0,q f q ≤ c f q for all nonnegative functions f ∈ L 1 ∩ L ∞ .

Corollary 4.3. Let (Γ, µ) be a graph satisfying (LB) and (LDV) and let q ∈ (1, 2] Then there exists c q > 0 such that

∇P n f q ≤ c q √ n f q Remark 4.4.
In [START_REF] Dungey | A Littlewood-Paley-Stein estimate on graphs and groups[END_REF], using semigroup arguments, Dungey proved the conclusion of Corollary 4.3 under the weaker assumption that -1 does not belong to the L 2 spectrum of P .

Proof of Theorem 4.2

The proof of this result is based on Stein's argument in [START_REF] Stein | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF], Chapter II, also used in Riemannian manifolds in [START_REF] Coulhon | Littlewood-Paley-Stein functions on complete Riemannian manifolds for 1 ≤ p ≤ 2[END_REF] and on graphs with continuous time functionals in [START_REF] Dungey | A Littlewood-Paley-Stein estimate on graphs and groups[END_REF]. Let us first state the maximal ergodic theorem for Markov kernels ( see [START_REF] Stein | On the Maximal Ergodic Theorem[END_REF], see also [START_REF] Stein | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF], Chapter IV, Theorems 6 and 9 ): Lemma 4.5. Let (X, m) be a measurable space. Assume that P is a linear operator simultaneously defined and bounded from L 1 (X) to itself and from L ∞ (X) to itself that satisfies

i. P is self adjoint, ii. P L 1 →L 1 ≤ 1. Let f * (x) = sup n≥0 |P n f (x)|.
Then there exists a constant c q > 0 such that f * q ≤ c q f q for all q ∈ (1, +∞].

We can now turn to the proof of Theorem 4.2. If u n = P n-1 f , then [∂ n + ∆]u n = 0 and, as will be proved in Proposition 4.7 below, one has

N q u n = -u 2-q n [∂ n + ∆]u q n ≥ 0. Consequently, we have g0,q f (x) 2 = n≥0 N q (P n f )(x) = - n≥0 [P n f (x)] 2-q [∂ n + ∆]([P n f (x)] q ) ≤ -f * (x) 2-q n≥0 [∂ n + ∆]([P n f (x)] q ). It follows, with J(x) = -n≥0 [∂ n + ∆]([P n f (x)] q ) ≥ 0, g0,q f q q ≤ x∈Γ f * (x) (2-q)q 2 J(x) q 2 m(x) ≤ x∈Γ f * (x) q m(x) 2-q 2 x∈Γ J(x)m(x) q 2 . (4.2)
Yet, by Lemma 4.5,

x∈Γ f * (x) q m(x) f q q (4.3)
and since

x∈Γ ∆g(x)m(x) = 0 for all g ∈ L 1 (Γ), x∈Γ J(x)m(x) = - x∈Γ m(x) n≥0 ∂ n [P n f (x)] q ≤ x∈Γ f (x) q m(x) = f q q .
(4.4)

The inequality in the last line is due to the fact that, for all N ∈ N,

N n=0 ∂ n x∈Γ [P n f (x)] q m(x) = f q q -P N +1 f q q .
Using (4.2), (4.3) and (4.4), we thus obtain the conclusion of Theorem 4.2.

Proof of Theorem 1.14

Recall some facts proved by Dungey in [START_REF] Dungey | A Littlewood-Paley-Stein estimate on graphs and groups[END_REF]. Define the "averaging" operator A by setting

(Af )(x) = y∈B(x,2) f (y) = y∼x f (y)
for x ∈ Γ and functions f : Γ → R.

Proposition 4.6. Suppose that (Γ, µ) satisfies property (LDV), and let q ∈ (1, 2]. There exists

c q > 0 such that |∇f | 2 (x) ≤ c q A( Ñq f )(x)
for all x ∈ Γ and all nonnegative functions f ∈ L ∞ . Moreover, there exists c ′ q > 0 such that

AF q 2 ≤ c ′ q F q 2 (4.5)
for all nonnegative functions F on Γ.

Note that q 2 ≤ 1 in (4.5), and that we use the notation

F r := x∈Γ m(x)|F (x)| r 1 r for r ∈ (0, 1].
In order to prove Theorem 1.14, we need the following result.

Proposition 4.7. Let (Γ, µ) be a weighted graph and let q ∈ (1, 2]. Then N q (P n f ) ≥ 0 for all functions 0 ≤ f ∈ L ∞ . Moreover, if (Γ, µ) satisfies (LB), there exists a constant c q > 0 such that 0 ≤ Ñq (P n f ) ≤ c q N q (P n f ).

Proof. (Theorem 1.14) Proposition 4.6 yields the pointwise estimate

|∇P n f | 2 A( Ñq (P n f ))
for 0 ≤ f ∈ L ∞ , so that, by Proposition 4.7,

(g 0 f ) 2 = n≥0 |∇P n f | 2 n≥0 A(N q (P n f )) = A   n≥0 N q (P n f )   = A (g 0,q f ) 2 .
Theorem 4.2 and (4.5) provide the conclusion of Theorem 1.14 for all nonnegative functions f . We obtain then L q -boundedness of g0 by subadditivity of g0 .

It remains to prove Proposition 4.7.

Proof. (Proposition 4.7)

Taylor expansion of the function t → t q , q ∈ (1, 2], gives t qs q = qs q-1 (ts) + q(q -1)

t s τ q-2 (t -τ )dτ = qs q-1 (t -s) + q(q -1)(t -s) 2 1 0 (1 -u)du ((1 -u)s + ut) 2-q (4.6)
for t, s ≥ 0 with s = t. From this expansion, one has, for q ∈ (1, 2], 0 ≤ g ∈ L ∞ and x ∈ Γ,

Ñq(g)(x) = y∈Γ p(x, y)m(y) qg(x)(g(x) -g(y)) -g(x) 2-q (g(x) q -g(y) q ) = q(q -1) y: g(y) =g(x) p(x, y)m(y)(g(x) -g(y)) 2 1 0 (1 -t)g(x) 2-q ((1 -t)g(x) + tg(y)) 2-q dt = q(q -1)g(x) 2-q 1 0 (1 -t) y: g(y) =g(x) p(x, y)m(y) (g(x) -g(y)) 2 ((g(x) + t(g(y) -g(x)) 2-q dt. (4.7) Let 0 ≤ f ∈ L ∞ and n ∈ N. Define g := P n f and notice 0 ≤ g ∈ L ∞ . Therefore, ∂ n (P n f )(x) = (P -I)g(x) = y∼x p(x, y)m(y)(g(y) -g(x))
and with (4.6), one has

∂ n (P n f (x)) q -q(P n f (x)) q-1 ∂ n (P n f ) = q(q -1)((P -I)g(x)) 2 1 0 (1 -t)dt (g(x) + t(P -I)g(x)) 2-q so that [ Ñq -N q ]g(x) = g(x) 2-q ∂ n (P n f (x)) q -qg(x)∂ n (P n f ) = q(q -1)g(x) 2-q 1 0 (1 -t) ((P -I)g(x)) 2 (g(x) + t(P -I)g(x)) 2-q dt
If g(x) = 0, then N q (g)(x) = [ Ñq -N q ]g(x) = 0, therefore the conclusion of Proposition 4.7 holds at x. Assume now that g(x) = 0. Define, for all y ∈ Γ, h(y) = g(y)-g(x) g(x)

≥ -1 and, for all t ∈ (0, 1) and all s ∈ [-1, +∞),

F t (s) = s 2 (1 + ts) 2-q . One has Ñq (g)(x) = q(q -1)g(x) 2-q 1 0 (1 -t) y: g(y) =g(x) p(x, y)m(y)F t (h(y))dt and [ Ñq -N q ]g(x) = q(q -1)g(x) 2-q 1 0 (1 -t)F t   y: g(y) =g(x) p(x, y)m(y)h(y)   dt.
Assume for a while that it is known that F t is convex on [-1, +∞) for all t ∈ (0, 1), and let us conclude the proof of Proposition 4.7. One has Ñq (g)(x) ≥ [ Ñq -N q ]g(x), which means that N q (g)(x) ≥ 0. Moreover, since p(x, x) > ǫ, then y: g(y) =g(x)

p(x,y)m(y) 1-ǫ ≤ 1, so that y: g(y) =g(x) p(x, y)m(y) 1 -ǫ F t (h(y)) ≥ F t   y: g(y) =g(x) p(x, y)m(y) 1 -ǫ h(y)   ≥ (1 -ǫ) -q F t   y: g(y) =g(x) p(x, y)m(y)h(y)   ,
where the first inequality is due to the convexity of F t and the last one to the definition of

F t . We deduce [ Ñq -N q ]g(x) ≤ (1 -ǫ) q-1 Ñq (g)(x), which means Ñq (g)(x) ≤ 1 1 -(1 -ǫ) q-1 N q (g)(x).
It remains to prove the following lemma Lemma 4.8. The function F t is convex on [-1, +∞) for all t ∈ (0, 1).

Proof. Let F (x) = x 2 (1+x) 2-q . Easy computations show that F is convex on (-1, +∞). Since, for all t ∈ (0, 1), F t = 1 t 2 F (tx), F t is convex on (-1 t , +∞) ⊃ [-1, +∞).

Proof of Corollary 4.3

First we will prove the following result.

If q ∈ (1, 2], n ∈ N * with n ≥ 1 and 0 ≤ f ∈ L 1 ∩ L ∞ , one has N 1 2 q (P n f ) q ≤ c q √ n f q (4.8) Let u n = P n f and J n := -(∂ n + ∆)(u q n ). Then N 1 2 q (P n f ) q q = x∈Γ m(x)N q/2 q (u n )(x) = x∈Γ m(x)u q(2-q) 2 n J n (x) q/2 ≤ x∈Γ m(x)u n (x) q 2-q 2 x∈Γ J n (x)m(x) q 2 (4.9)
where the last step follows from Hölde inequality. Yet,

x∈Γ m(x)u n (x) q = P n f q q ≤ f q q and x∈Γ J n (x)m(x) = - x∈Γ ∂ n (u q n )(x)m(x) ≤ -q x∈Γ m(x)u q-1 n (x)∂ n u n (x) ≤ q u n q/q ′ q ∂ n u n q
where the first line holds because x∈Γ ∆g(x)m(x) = 0 if g ∈ L 1 , the second line follows from (4.1), and the third one from Hölder inequality again (with 1 q + 1 q ′ = 1). Here u n q ≤ f q while ∂ n u n q = ∆u n q 1 n f q by the analyticity of P on L q . Thus

x∈Γ J n (x)m(x) 1 n f q q
Substitution of the last two estimates in (4.9) gives

N 1 2 q (P n f ) q 1 √ n f q ,
which ends the proof of (4.8). Now just use Propositions 4.6 and 4.7 to get Corollary 4.3.

A Further estimates for Markov chains A.1 Time regularity estimates

The theorem we prove here is slightly more general than (and clearly implies) Theorem 2.4.

Theorem A.1. Let (Γ, µ) be a weighted graph satisfying (LB), (DV ) and (DU E). Then, for all j ≥ 0, there exist two constants C j , c j > 0 such that, for all (r 1 , . . . , r j ) ∈ N * j for all l ≥ max i≤j r i and all x, y ∈ Γ,

|(D(r 1 ) . . . D(r j )p) l (x, y)| ≤ C j r 1 . . . r j l j V (x, √ l) 1 2 V (y, √ l) 1 2 exp -c j d 2 (x, y) l .
We first recall the following result (Lemma 2.1 in [START_REF] Dungey | A note on time regularity for discrete time heat kernels[END_REF]).

Lemma A.2. Let P be a power bounded and analytic operator in a Banach space X. For each j ∈ N and p ∈ (1, +∞), there exists a constant c j > 0 such that (I -P r1 )(I -P r2 ) . . . (I -P rj )P l p→p ≤ c j r 1 . . . r j l -j for all j 1 , . . . , j k ∈ N, all (r 1 , . . . , r j ) ∈ N j and all l ∈ N * .

Proof. let us now establish Theorem A.1. We follow closely the proof of Theorem 1.1 of [START_REF] Dungey | A note on time regularity for discrete time heat kernels[END_REF], arguing by induction on j.

The case j = 0 is obvious since the result is the assumption. The case j = 1 and r 1 = 1 is the one proven by Dungey in [START_REF] Dungey | A note on time regularity for discrete time heat kernels[END_REF] and we will just here verify that the proof for j = 1 can be extended to all j ∈ N.

Assume now that, for some j ∈ N, the kernel p l satisfies for all (r 1 , . . . , r j ) ∈ N * j and all l ≥ max i r i |D(r j ) . . . D(r 1 )p l (x, y)| ≤ C j r 1 . . . r j l j V (x, √ l)

1 2 V (y, √ l) 1 2 exp -c j d 2 (x, y) l (A.1)
where the constant C j depends only of the graph Γ and j.

Let (r 1 , . . . , r j+1 ) ∈ N * (j+1) . We then use the abstract identity (which can easily be proved by induction on k) for all linear operators A and all k ∈ N:

I -A = 2 -(k+1) (I -A 2 k+1 ) + k i=0 2 -(i+1) (I -A 2 i ) 2 (A.2)
where I denotes the identity operator. Hence we have, applying (A.2) with (Au) l = u l+rj+1 ,

D(r j+1 ) = 2 -(k+1) D(2 k+1 r j+1 ) + k i=0 2 -(i+1) D(2 i r j+1 ) 2
and if we apply this formula to (D(r j ) . . . D(r 1 )p) l , we obtain, for all l ∈ N, k ∈ N and x, y ∈ Γ, 

|D
≤ C j r 1 . . . r j l j V (x, √ l) 1 2 V (y, √ l) 1 2
exp -c j d 2 (x, y) 3l .

(A.4)

Besides, observe that

|D(n) 2 D(r j ) . . . D(r 1 )p l (x, y)| = (I -P n ) 2 (I -P rj ) . . . (I -P r1 )P l L 1 ({y})→L ∞ ({x}) ≤ P l1 L 2 →L ∞ ({x}) (I -P n ) 2 (I -P rj ) . . . (I -P r1 )P l2 2→2 P l3 L 1 ({y})→L 2 .
(A.5) whenever l = l 1 + l 2 + l 3 . Moreover, let us notice that for all l 0 ∈ N * and all z ∈ Γ, (DU E) provides

P l0 L 2 →L ∞ ({x}) = P l0 L 1 ({x})→L 2 =   y∈Γ [p l0 (x, y)] 2 m(y)   1 2 = p 2l0 (x, x) 1 2 ≤ C V (x, √ l 0 ) 1 2 
.

(A.6)

The two last results ((A.5) and (A.6)) combined with Lemma A.2 and the doubling property (DV ) give, with

l 1 , l 2 , l 3 ∼ l 3 |D(n) 2 D(r j ) . . . D(r 1 )p l (x, y)| ≤ C ′ j n 2 r 1 . . . r j l j+2 V (x, √ l) 1 2 V (y, √ l) 1 2 . (A.7)
Collecting estimates (A.3), (A.4) and (A.7) and using that

k i=0 2 i-1 ≤ 2 k , we obtain |D(r j+1 ) . . . D(r 1 )p l (x, y)| 2 -(k+1) r 1 . . . r j l j V (x, √ l) 1 2 V (y, √ l) 1 2 exp -c j d 2 (x, y) 3l + k i=0 2 -(i+1) 2 2i r 2 j+1 r j . . . r 1 l j+2 V (x, √ l) 1 2 V (y, √ l) 1 2 2 -(k+1) r 1 . . . r j l j V (x, √ l) 1 2 V (y, √ l) 1 2 exp -c j d 2 (x, y) 3l + 2 k r 1 . . . r j r 2 j+1 l j+2 V (x, √ l)
for all l ≥ 1, k ∈ N with 2 k r j+1 ≤ l.

We will now choose k to obtain the desired inequality. If l, j, x, y satisfy

l exp -c j d 2 (x, y) 4l ≥ r j+1 .
We choose k such that

2 k r j+1 ≤ l exp -c j d 2 (x, y) 4l < 2 k+1 r j+1
which gives

|D(r j+1 ) . . . D(r 1 )p l (x, y)| r 1 . . . r j+1 l j+1 V (x, √ l) 1 2 V (y, √ l) 1 2
exp -c j 12

d 2 (x, y) l .
In the other case, i.e. l exp -c j d 2 (x,y) 4l

≤ r j+1 , observe that by (A.1)

|D(r j+1 ) . . . D(r 1 )p l (x, y)| ≤ |D(r j ) . . . D(r 1 )p l (x, y)| + |D(r j ) . . . D(r 1 )p l+rj+1 (x, y)| ≤ C j r 1 . . . r j l j V (x, √ l) 1 2 V (y, √ l) 1 2 exp -c j d 2 (x, y) l + r j+1 ≤ C j r 1 . . . r j l j V (x, √ l) 1 2 V (y, √ l) 1 2 exp - c j 2 d 2 (x, y) l ≤ C j r 1 . . . r j+1 l j+1 V (x, √ l) 1 2 V (y, √ l) 1 2 exp - c j 4 d 2 (x, y) l
where the third line holds because l ≥ r j+1 .

A.2 Gaffney-type inequalities

This paragraph is devoted to the proof of Theorem 2.5. Actually, we establish more general versions in Theorem A.3 and Corollary A.4.

Theorem A.3. Let (Γ, µ) be a weighted graph. Assume (LB), (DV ) and (DU E). Then, for all j ∈ N, there exist c, C > 0 such that for all (r 1 , . . . , r j ) ∈ N j , for all sets E, F ⊂ Γ and x 0 ∈ Γ such that sup {d(x 0 , y), y ∈ F } ≤ 3d(E, F ) and all functions f supported in F , (i) (I -P r1 ) . . .

(I -P rj )P l f L 2 (E) ≤ C r 1 . . . r j l j 1 V (x 0 , √ l) 1 2 e -c d(E,F ) 2 l f L 1 (F ) ,
for all (r 1 , . . . r j ) ∈ N * and all l ≥ max i≤j r i .

(ii) ∇(I -P r1 ) . . .

(I -P rj )P l f L 2 (E) ≤ C r 1 . . . r j l j+ 1 2 1 V (x 0 , √ l) 1 2 e -c d(E,F ) 2 l f L 1 (F ) ,
for all (r 1 , . . . r j ) ∈ N * and all l ≥ max i≤j r i .

(iii) ∇(I -P r1 ) . . .

(I -P rj )P l f L 2 (E) ≤ C r 1 . . . r j l j+ 1 2 e -c d(E,F ) 2 l f L 2 (F ) ,
for all (r 1 , . . . r j ) ∈ N * and all l ≥ max i≤j r i .

Corollary A.4. Let (Γ, µ) be a weighted graph satisfying (LB), (DV ) and (DU E). The conclusions of Theorem A.3 still hold under any of the following assumptions on E, F, x 0 and l:

1. sup {d(x 0 , y), y ∈ F } ≤ √ l, 2. sup {d(x 0 , x), x ∈ E} ≤ 3d(E, F ), 3. sup {d(x 0 , x), x ∈ E} ≤ √ l.
The proof of Theorem A.3 relies on:

Lemma A.5. Let (Γ, µ) be a weighted graph satisfying (DV ), (LB) and (DU E), then we have the following estimates: for all j ∈ N, there exist C j , c j > 0 such that for all (r 1 , . . . r j ) ∈ N * j and all l ≥ max i≤j r i y∈Γ

| (D(r j ) . . . D(r 1 )p) l (y, x)| 2 e cj d(x,y) 2 l m(y) ≤ C j r 2 1 . . . r 2 j l 2j V (x, √ l) (A.8) and y∈Γ |∇ y (D(r j ) . . . D(r 1 )p) l (y, x)| 2 e cj d(x,y) 2 l m(y) ≤ C j r 2 1 . . . r 2 j l 2j+1 V (x, √ l) . (A.9)
The proof of this Lemma is analogous to Lemmas 4 and 7 in [START_REF] Russ | Riesz tranforms on graphs for 1 ≤ p ≤ 2[END_REF], where we use the estimates in Theorem A.1 instead of the estimate (U E).

Proof. (Theorem A.3) (i) We can assume without loss of generality that

f L 1 = 1. Then (I -P r1 ) . . . (I -P rj )P l f 2 L 2 (E) = x∈E m(x) z∈F (D(r j ) . . . D(r 1 )p) l (x, z)f (z)m(z) 2 ≤ x∈E m(x) z∈F | (D(r j ) . . . D(r 1 )p) l (x, z)| 2 |f (z)|m(z) ≤ exp -c d(E, F ) 2 l z∈F |f (z)|m(z) x∈E m(x)|D(r j ) . . . D(r 1 )p l (x, z)| 2 exp c d(x, z) 2 l r 2 1 . . . r 2 j l 2j exp -c d(E, F ) 2 l z∈F |f (z)|m(z) 1 V (z, √ l) r 2 1 . . . r 2 j l 2j V (x 0 , √ l) exp -c d(E, F ) 2 l
where, for the 4 th line, we use the estimate (A.8) and, for the last line, the doubling property shows

V (x 0 , √ l) V (z, √ l) ≤ V (z, √ l + 3d(E, F )) V (z, √ l) 1 + 3d(E, F ) √ l d exp c 2 d(E, F ) 2 l (A.10)
which leads to the result (with a different value of c).

(ii) Similar to (i) using (A.9) instead of (A.8).

(iii) This result is a consequence of (i). In fact,

∇(I -P r1 ) . . . (I -P rj )P l f L 2 (E) r 1 . . . r j l j+ 1 2 1 V (x 0 , √ l) 1 2 e -c d(E,F ) 2 l f L 1 (F ) ≤ r 1 . . . r j l j+ 1 2 m(F ) V (x 0 , √ l) 1 2 e -c d(E,F ) 2 l f L 2 (F ) r 1 . . . r j l j+ 1 2 e -c d(E,F ) 2 l f L 2 (F )
where, for the last line, the doubling property yields

m(F ) V (x 0 , √ l) ≤ V (x 0 , 3d(E, F )) V (x 0 , √ l) 1 + 3d(E, F ) √ l d exp c 2 d(E, F ) 2 l . (A.11)
Proof. (of Corollary A.4)

1. Under this assumption, the proof is analogous to the one of Theorem A.3, replacing (A.10) by

V (x 0 , √ l) V (z, √ l) 1 ∀z ∈ F,
which is provided by (DV ) and (A.11) by m(F )

V (x 0 , √ l) ≤ 1,
which is due to the fact that F ⊂ B(x 0 , √ l).

2. Decompose F = i≥0 F i , with

F i = F ∩ {y ∈ Γ, 3 i d(E, F ) ≤ d(y, E) < 3 i+1 d(E, F )}. Remark that, if F i = ∅, sup y∈Fi d(x 0 , y) ≤ (3 + 3 i+1 )d(E, F ) ≤ (3 + 3 1-i )d(E, F i ) ≤ 6d(E, F i ).
Let T be one of the operators involved in the left-hand sides in Theorem A.3. Let c T > 0 be such that, for all ( Ẽ, F ) such that sup y∈ F d(x 0 , y) ≤ 6d( Ẽ, F ) and all f supported in F , we have

T f L 2 ( Ẽ) ≤ c T e -c d( Ẽ, F ) 2 l f L 1 ( F ) .
(Remember that Theorem A.3 can be proven with constant 6 instead of 3.) Then, one has

T f L 2 (E) ≤ +∞ i=0 T (f 1l Fi ) L 2 (E) ≤ c T +∞ i=0 e -c d(E,F i ) 2 l f L 1 (Fi) ≤ c T e -c d(E,F ) 2 l f L 1 (F ) ,
which proves the second point of the corollary (note that the above sum can be restricted to the indexes i such that F i = ∅).

Let

R = sup x∈E d(x, x 0 ). Decompose F = i≥1 F i with F 1 = F ∩ B(x 0 , 4R) and if i ≥ 2 F i = F ∩ {y ∈ Γ, 2 i R < d(y, x 0 ) ≤ 2 i+1 R}. Write T f L 2 (E) ≤ +∞ i=1 T (f 1l Fi ) L 2 (E)
(where T is one of the sublinear operators of Theorem A.3 and f is supported in F ). We want to estimate each T (f 1l Fi ) L 2 (E) . First, notice that sup

x∈F 1 {d(x, x 0 )} ≤ 4R ≤ 4 √ l. Use then point 1 of Corollary A.4 to obtain T (f 1l F1 ) L 2 (E) ≤ c T e -c d(E,F 1 ) 2 l f L 1 (F1) ≤ c T e -c d(E,F ) 2 l f L 1 (F1) .
Next, remark that, if i ≥ 2 and since d(E, F i ) ≥ (2 i -1)R,

sup x∈Fi {d(x, x 0 )} ≤ 2 i+1 R ≤ 2 i+1 2 i -1 d(E, F i ) ≤ 3d(E, F i ).
Hence, using Theorem A.3, one has

T (f 1l Fi ) L 2 (E) ≤ c T e -c d(E,F i ) 2 l f L 1 (Fi) ≤ c T e -c d(E,F ) 2 l f L 1 (Fi) .
Summing up over i yields the desired conclusion. A consequence of this result is

l≥0 l γ z l ≃ z (1 -z) γ+1
∀z ∈ [0, 1).

Proof. For |z| < 1, the holomorphic function From the last result, and since the convergence radius of the series under consideration are 1, we deduce

l≥1 l γ z l ≃ l≥1 l i=1 1 + γ i z l ∀z ∈ [0, 1) = 1 (1 -z) γ+1 -1 = 1 -(1 -z) γ+1 (1 -z) γ+1 ≃ z (1 -z) γ+1 .

C Reverse Hölder estimates for sequences

For all M > 0, define the following sets of sequences In order to prove Proposition C.2, we will need the following Lemmata:

E M = (a n ) n≥1 , ∀n, 0 ≤ a n ≤ M k∈N *
Lemma C. 

Lemma 3 . 4 .

 34 p -boundedness of gβ , 2 ≤ p < p 0 Let (Γ, µ) be a weighted graph satisfying (DV ), (LB) and (DU E).

i=0 2 -

 2 (r j+1 ) . . . D(r 1 )p l (x, y)| ≤ 2 -(k+1) |D(2 k+1 r j+1 )D(r j ) . . . D(r 1 )p l (x, y)| + k (i+1) |D(2 i r j+1 ) 2 D(r j ) . . . D(r 1 )p l (x, y)|. (A.3) Suppose that 0 < 2 k r j+1 ≤ l, hence l + 2 k+1r j+1 ≤ 3l and (A.1) provides the estimate |D(2 k+1 r j+1 )D(r j ) . . . D(r 1 )p l (x, y)| ≤ |D(r j ) . . . D(r 1 )p l (x, y)| + |D(r j ) . . . D(r 1 )p l+2 k+1 rj+1 (x, y)|

BLemma B. 1 . 1 ( 1

 111 Estimates for the Taylor coefficients of (1z) -β Let γ > -1. Let l≥1 a l z l be the Taylor series of the function -z) γ+1 . We have a l ≃ l γ ∀l ∈ N * .

1 ( 1

 11 -z) γ+1 is equal to its Taylor series, l + O(1), which yields (B.1) by applying the exponential map.

.Proposition C. 2 .

 2 ) n≥1 , ∀n, 0 ≤ a n ≤ M n ) n ∈ E M . Let A = {(A k,r,j l ) l∈N * , k ∈ N, r ∈ N * , j ≥ 2}, where A k,r,j l = l β-η sup s∈[[0,nr 2 ]]    exp -c 4 j r 2 l+k+s (l + k + s) 1+n   The parameters β and η are chosen as in section 3 and therefore βη ∈ (0, 1]. There exists M > 0 such that A ⊂ E M .

Remark C. 5 .= l β+ 1 2 supexp -c 4 j r 2 l+k+s

 522 [START_REF] Badr | Weighted norm inequalities on graphs[END_REF], we only need to prove that A α c . Indeed, once we proved A 0 ⊂ A α c , Lemma C.4 implies that there exists M > 0 such that A 0 ⊂ ẼM . The use of Lemma C.3(iii) with λ l = l β-η yields, since βη ∈ (0, 1],A 1 := k∈N (ρ λ ) k (A 0 ) = N * , k ∈ N, j ≥ 2    ⊂ ẼM . Lemma C.3(ii) thus provides that A ⊂ ẼM and Lemma C.3(i) that A ⊂ E M . It remains to prove that A 0 ⊂ A α c .The result is a consequence of the following facts. For γ ∈ [0, 1] and n ≥ 1, the functionF : t ∈ R + → t γ exp -d t t n+1 satisfies • F (0) = 0 and lim t→+∞ F (t) = 0, • F reaches its unique maximum at t 0 = d n+1-γ , • e γ-n-1 t n+1-γ ≤ F (t) ≤ 1 t n+1-γ for all t ≥ t 0 . If β ∈ -1 2 , 0 and B k,r,j l s∈[[0,nr 2 ]] (l + k + s) inspection of the proof of Proposition C.2 shows that the conclusion of Proposition C.2 also holds for B k,r,j l .

Remark 1.16.

  The range β > -1 2 for the L p -boundedness of gβ is related to the presence of ∇ in gβ .

	Theorem 1.14. Let (Γ, µ) be a graph satisfying (LB) and (LDV). Then g0 is L p -bounded for all
	p ∈ (1, 2].
	Remark 1.15.

  Then, if (λ n ) n is non decreasing and λ n n n is non increasing, ẼM is stable by ρ λ . Proof. (i) and (ii) are easy to prove. Let us check (iii). Since (a n ) n ∈ ẼM , we have for all n ∈ N * {(a n ) n∈N * , ∃n 0 ∈ N * such that ∀n < n 0 , a n ≤ a n+1 and ∀n ≥ n 0 , ca n0 n 0 n For all (a n ) n ∈ A α c and all n ≥ n 0 (where n 0 is given by the def of A α c ), In particular, there exists M (only depending on α and c) such that A α c ⊂ ẼM . Proof. One has if (a n ) n ∈ A α c and n ≥ n 0 , We are now ready for the proof of Proposition C.2. Proof. (of Proposition C.2) According to Lemma C.3 and Lemma C.

	Define for c, α > 0,				
	A α c = α	≤ a n ≤	1 c	a n0	n 0 n
				a n ≃	k≥n	1 k	a k .
	k≥n	1 k	a k ≃ a n0 n α 0	k≥n	1 k α+1
						≃ a n0	n 0 n
						λ n λ n+1	a n+1 .
	[ρ λ (a)] n =	λ n λ n+1	a n+1
	≤ M	λ n λ n+1 k≥n+1	1 k	a k
		= M	λ n λ n+1 k≥n	1 k + 1	a k+1
		= M	λ n λ n+1 k≥n	1 k	kλ k+1 (k + 1)λ k	[ρ λ (a)] k
	≤ M			

3. One has the next three results: i. ẼM ⊂ E M , ii. if M > 0 and {(a p n ) n , p ∈ I} is a set of sequences such that for all p ∈ I, (a p n ) n ∈ ẼM , then sup p∈I a p n n ∈ ẼM , iii. For a positive sequence λ, we define, for all sequences a ∈ R N , ρ λ (a) by [ρ λ (a)] n = k≥n 1 k [ρ λ (a)] k because λ k k k is non increasing and (λ n ) n is non decreasing.

α . Lemma C.4. α ≃ a n .
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