
HAL Id: hal-00973747
https://hal.science/hal-00973747v1

Submitted on 4 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Omniscient Garbage Collector : a Resource Analysis
Framework

Aurélien Deharbe, Frédéric Peschanski

To cite this version:
Aurélien Deharbe, Frédéric Peschanski. The Omniscient Garbage Collector : a Resource Analysis
Framework. ACSD 2014 - 14th International Conference on Application of Concurrency to System
Design, Jun 2014, La Marsa, Tunisia. pp.102-111, �10.1109/ACSD.2014.18�. �hal-00973747�

https://hal.science/hal-00973747v1
https://hal.archives-ouvertes.fr

The Omniscient Garbage Collector:

a Resource Analysis Framework (extended abstract)

Aurélien Deharbe and Frédéric Peschanski

University Pierre et Marie Curie - Paris 6 - LIP6

Email: firstname.lastname@lip6.fr

Abstract—The notion of resource plays a central role in
concurrent systems. In its purest form a resource is simply a
unique identity one can create, use and ultimately destruct. In
this paper we propose a simple yet effective characterization of
resource usages and develop for it a complete analysis frame-
work. We address qualitative issues such as the classification of
resources and whether two systems exhibit similar patterns of
resource usages – namely equivalent resource profiles. From the
quantitative point of view, we develop the omniscient garbage
collector (OGC), which decides precisely when a resource can
be reclaimed or reused. This allows to bound precisely the
number of resources consumed by a given system. To illustrate the
approach, we study experimentally the resource consumption of
pi-calculus processes using a prototype analysis tool. We propose
two different resource abstractions for pi-processes: one based
on the labelled transitions for open systems, and another one
for closed systems. The latter notably provides a refined view of
behaviors, less opaque than reductions. Beyond this experiment,
the proposed framework is quite generic and can apply to many
different formalisms and situations.

I. INTRODUCTION

The notion of resource plays a central role in the study
of computational systems, and even more critically in the
realm of concurrency. If we abstract from its internal structure,
a resource becomes a pure name [1], i.e. an object with a
globally unique and testable identity. This is the specialty of
nominal calculi in general, and the π-calculus [2] in particular.
Despite their lack of structure, the pure names display the
primordial life-cycle of resources: (1) dynamic allocation,
(2) arbitrary usage orderings, and (3) non-trivial garbage
collection semantics, the latter point being central in our study.

Our work begins with a very simple graphical characteri-
zation of resource usages. To analyze these so-called resource
graphs, we develop a recursive computation principle upon
which most of our algorithms are built, together with an induc-
tive principle to reason about their properties and a modular
characterization of their complexity. Beyond the algorithmic
contingency, our principal means of abstraction is a formal
language – namely the resource profile – that can be roughly
seen as a “regular-language up-to α-conversion” over resource
usages. Testing resource profile equivalence reveals, we think,
much about the internal behavior of the compared systems.
This comes at the price of PSPACE-hardness in terms of
computational complexity.

Resource consumption represents the quantitative facet of
our study. An interesting indicator is the resource bound which
confines the number of resources required for the correct
execution of a given system. Ultimately, the least of such
bounds – namely the resource index – represents a profound

semantic characteristic of the behavior under study. In practice,
the objective is to design an allocator for resources which is
able to reuse as much locations as possible, while maintaining
a strong invariant of conflict-freedom. Computing the resource
index requires an omniscient garbage collector, a NP-complete
problem tightly connected to the perfect coloring of so-called
conflict graphs.

Beyond the complexity results, we aim at the development
of practical tools for the analysis of resource usage in concur-
rent systems. Using an early prototype, we propose a couple
of experiments of resource consumption in the realm of the
π-calculus. To illustrate the versatility of the approach, we
propose two different resource abstractions for π-processes:
one based on the labelled transitions for open systems, and
another one for closed systems. The latter notably provides
a refined view of behaviors, less opaque than reductions.
For this we introduce “slice-π”, a rather standard π-calculus
extended with an alternative restriction operator that allows to
“slice” the behaviors so that a flexible notion of environment is
reintroduced. In all the experiments we observe the same phe-
nomenon – which reinforces a strong belief – that the apparent
intractability of some of the proposed algorithms, especially
the computation of the resource index, is largely compensated
by the small size of the objects on which they apply. Indeed,
most of the examples we explored (especially the “classical”
π-calculus benchmarks), yield very small conflict graphs in
comparison to the state space of the analyzed processes: in
the order of at most a few dozen nodes for systems with
more that 100 000 states! Moreover, it seems rather improbable
that highly irregular conflict graphs can be easily constructed
except on purpose. Complementarily, less tight but still low
resource bounds can be computed very efficiently.

The outline of the paper is as follows. In Section II we
establish the resource model that forms the theoretical basis of
our analysis framework. The latter is developed in Section III
in three steps: (1) a procedure of lattice completion resulting in
generic recursive computation and inductive reasoning princi-
ples, (2) the omniscient garbage collector for the computation
of resource bounds and index, and (3) an algorithmic approach
to the resource equivalence problem. Our experimental study
with the π-calculus is described in Section IV. A panorama of
related work is given in Section V.

In this extended abstract the justification of mathematical
statements is most of the time omitted or discussed informally.
The complete proofs are detailed in a dedicated appendix.

II. RESOURCE MODEL

The purpose of a resource model is to abstract the manip-
ulation of dynamic resources from concrete system behaviors,
so that we can reason about them in isolation.

Definition 1 (resource graph): Let R be a countably infi-
nite set of resource variables ranging over X, Y, Z, . . . A re-
source graph G is a connected directed graph 〈R, V,E, α, γ, δ〉
with :

• R ⊆ R a finite1 set of resource variables, also denoted
by vars(G).

• V a finite set of vertices, and E ⊆ V × V a finite
set of edges, such that there is a unique root v⊥ ∈ V
s.t. ∀v ∈ V, (v, v⊥) /∈ E and a unique tail v⊤ s.t.
∀v ∈ V, (v⊤, v) /∈ E.

• α(resp. γ, δ) : V → 2R an allocation (resp. usage,
delete) function(s) such that: α(v⊥)∪α(v⊤)∪γ(v⊥)∪
γ(v⊤) ∪ δ(v⊥) ∪ δ(v⊤) = ∅.

�

An example of a resource graph is depicted on the left
part of Fig.1. It has eight resource variables A . . .H (the
emphasized vertices and dashed edges will be explained later)
and is sufficiently non-trivial so that it exhibits most of the
“corner cases” of the model.

The properties of resource graphs we are interested in can
be characterized as properties about finite paths, falling in two
categories: complete paths and lassos.

Definition 2 (complete path and lasso): A complete path
of a resource graph G with edge set E is of the form
ρ = v⊥ → · · · → v⊤ with pairwise distinct vertices. A
lasso is a finite path ρ̂ = v1 → · · · → vn such that
v1 = v⊥ and ∀i, j, 1 ≤ i < j ≤ n, vi 6= vj and
∃e, 1 < e ≤ n, vn → ve ∈ E. The vertex ve is called the
entry of the lasso and vn its exit. �

There are only two complete paths in the graph of Fig.1:
v⊥ → v1 → vk → . . . → v6 → v8 → v11 → v⊤ with
vk = v2 or vk = v3. There are six lassos, an example being
v⊥ → v1 → v3 → v4 → . . . → v6 → v8 with entry v4.

We impose only minimal constraints on the nature and
usage of resources in resource graphs, although some usage
patterns must be enforced.

Definition 3: A resource graph G has correct resource
usage iff for each resource X ∈ vars(G) it has at most
one vertex v such that X ∈ α(v), and for each finite path
ρ = v1 → · · · → vn of G there is at most one vertex v
in ρ such that X ∈ δ(v). Moreover, if ∃j, 1 ≤ j ≤ n s.t.
X ∈ γ(vj) then ∃i, 1 ≤ i ≤ j s.t. X ∈ α(vi) and:

• if ρ is a complete path then:

∃k, j ≤ k ≤ n s.t. X ∈ δ(vk)

• if ρ is a lasso with entry ve then:

1The consideration of infinite resource graphs is an interesting generaliza-
tion of our theoretical framework. However, the whole algorithmic approach
would not apply anymore. On the contrary, the class of infinite systems with
finite resource graphs is particularly inspiring.

◦ (dynamic) ∃k, j ≤ k ≤ n s.t. X ∈ δ(vk)
if i ≥ e or ∀l, e ≤ l ≤ n, X /∈ γ(vl)

◦ (static) ∀k, 1 ≤ k ≤ n, X /∈ δ(vk) otherwise.

The reasons behind most constraints are obvious, i.e. any
resource is allocated only once globally, and deleted at most
once in each path. For a resource used in a given path, a
basic principle is that it must be preceded by an allocation
and followed by a deletion. However, some subtlety arise
because of the cyclic nature of the lassos. Suppose a resource
X allocated at some vertex vi and used at vj (j ≥ i) in a lasso
with entry ve. There are two cases to consider depending on
whether X should “survive” the cycle or not. In the dynamic
case X must be deleted at some vertex vk with k ≥ j. This
corresponds to two possible situations: (1) the allocation is
performed after the lasso entry (thus, within the cycle), or
(2) the resource is not used within the cycle. Considering
the lasso v⊥ → v1 → v3 → v4 → . . . → v6 → v8
with entry v4 in Fig.1, then situation (1) applies to resources
A and B and situation (2) applies to resource H which
is allocated before the entry but not used within the cycle.
Complementarily, if the allocation of X is performed before
the entry and it is used within the cycle, then X must “survive”
the cycle and is thus said a static resource. For the lasso
v⊥ → v1 → v3 → . . . → v11 with entry v3 the resources
E (allocated at v1 and used at v3) and G (allocated at v3 and
used at v5) are static resources.

This leads to a fundamental classification between inactive
(i.e. unused), static, and otherwise dynamic resources.

Definition 4 (resource classification): Let G a resource
graph with vertex set V .

inactive(G)
def

= {X | ∀v ∈ V, X /∈ γ(v)}

static(G)
def

= {X | X is static in a lasso of G}

dynamic(G)
def

= vars(G) \ (static(G) ∪ inactive(G))

In our example the sets are static(G) = {E,G},
inactive(G) = {F} and dynamic(G) = {A,B,C,D,H}.

Our principal means to abstract from the relatively low-
level resource graphs is to characterize resource usage as a
formal language.

Definition 5 (resource profile): Let G a resource graph. Its
resource profile is the language based on alphabet 2vars(G)

defined as follows:

RG
def

=

{
⊙1≤i≤nuse(vi) · [⊙e≤j≤nuse(vj)]

∗

| v1 → · · · → ve → · · · → vn a lasso of G

}

∪

{
⊙1≤i≤nuse(vi)
| v1 → · · · → vn a complete path of G

}

with use(v)
def

= {X̂ | X ∈ γ(v) ∩ static(G)}
∪ (γ(v) ∩ dynamic(G))

For example, for the lasso v⊥ → v1 → v3 → v4 → v5 →
v6 → v8 with entry v4, the generated word is:

{}.{H}.{Ê}.{A}.{Ĝ}.{A}.{B}.
[
{A}.{Ĝ}.{A}.{B}

]∗

It is important to understand the principal intuitive char-
acteristics of the abstraction. First, we abstract away from the

v⊥

α{E,H},γ{H},δ{H}

v1

γ{E}

v2

α{G},γ{E}

v3

α{A,B},γ{A}

v4

α{C},γ{G}

v5

α{F},γ{A},δ{A}

v6

α{D},γ{D},δ{G}

v7

γ{B},δ{B,C,F}

v8

γ{B},δ{B,F}

v9

γ{C,D},δ{C,D}

v10

δ{G}

v11 v⊤

H 1(1) G 1(1)

A2(2)

B2(2)

C1(2)

D 3(1)

E

4(3)

Fig. 1. Example of a resource graph (left) and the associated conflict graph with first fit (resp. perfect) coloring (right).

allocation and deletion events. The reason is that they funda-
mentally only play a role for the static/dynamic distinction.
This explains why the static resources are explicitly recorded
otherwise the information would be lost. Moreover, we only
exploit language union, concatenation and Kleene star, i.e.
regular language constructors. This is to abstract away from the
branching structure of the graph, which play only an indirect
role wrt. resource usage. Note however that the language RG

is not itself regular since the names of resource variables are
purely symbolic and subject to a form of α-conversion. This
is in fact a crucial aspect of the model to enforce the purity
of resource names.

The resource profile also record a fundamental information
for our further analyzes: the resource conflicts. A conflict
happens when a resource Y is used between (at least) two
uses of another resource X . This means that X cannot be
garbage collected at the time Y is used. This information is
easily characterized in the resource graphs.

Definition 6 (conflict relation): Let X,Y ∈ vars(G) be
two distinct resources and ρ a path of G. A conflict between
X and Y occurs in ρ, denoted by X♯ρY , if:

• ρ = v⊥ →+ vi →
∗ vj →∗ vk → · · · and either X ∈

γ(vi) ∩ γ(vk) and Y ∈ γ(vj), or Y ∈ γ(vi) ∩ γ(vk)
and X ∈ γ(vj).

• Moreover, if ρ is a lasso v1 → · · · → ve → · · · → vn
and X is static in ρ̂, a conflict between X and Y
occurs if there exists i such that e ≤ i ≤ n and Y ∈
γ(vi).

If there is a path ρ such that X♯ρY then X and Y are said in
conflict, which is denoted X♯Y . �

The conflict graph obtained for our illustrative example is
depicted on the right part of Fig. 1 (for the moment, we ignore
the numeric annotations of the nodes). For example we have a
conflict B♯D generated by the sub-path v7 → v9 → v10 since
D ∈ γ(v7), B ∈ γ(v9) and D ∈ γ(v10). This corresponds to
the first case of the definition. For the second case, a conflict
such as A♯G comes from the fact that A ∈ γ(v4) and G ∈
γ(v5) with v5 occurring in a lasso after its entry v4 and before
its exit (in this case v8).

An obvious but fundamental property is that the resource
conflicts are preserved by the resource profile abstraction.

Proposition 1: A resource conflict X♯Y occurs in G iff
there is a word of the form w1.a.w2.b.w3.c.w4 in RG with
X ∈ a, Y ∈ b, X ∈ c or Y ∈ a, X ∈ b, Y ∈ c.

Most importantly, resource variables can be unified if they
are not in conflict, which leads to the following notion.

Definition 7 (conflict-free equivalence): An equivalence
relation E over a set of resource variables is said conflict-free
if (X,Y) ∈ E =⇒ ¬(X♯Y). �

From this we can finally define a proper notion of equiva-
lence for resource profiles.

Definition 8 (resource profile equivalence): Let G and H
be resource graphs. Their profiles RG and RH are equivalent,
denoted by RG ≈ RH , iff either RG = RH or vars(G) ∩
vars(H) = ∅ and there exists a conflict-free equivalence E
over vars(G) ∪ vars(H) such that RG

/
E = RH

/
E . �

The quotient RG
/
E corresponds to the renaming of each

use X by its equivalence class in E , i.e. [X]E . Hence, re-
source profiles are equivalent up-to conflict-free renamings.
The condition vars(G) ∩ vars(H) = ∅ may appear as a strong
constraint, but it is necessary to emphasize the arbitrary role
played by the names of resource variables. If we allowed the
same variable X to occur on both sides of the equivalence, then
we would artificially equate the corresponding resources with
no other criterion than their name ! Thankfully, we can always
perform a kind of α-conversion to satisfy the disjointedness
requirement.

Proposition 2: Let σ be a bijective renaming of the re-
source variables of a given graph G such that dom(σ) ∩
ran(σ) = ∅. Then we have RG ≈ RGσ with Gσ

def

=
〈Rσ, V,E, ασ, γσ, δσ〉 the image of G by σ.

Beyond resource profile equivalence, we are interested in
quantitative aspects of resource usages. These rely on the
notion of resource bounds and resource index.

Definition 9 (resource bound and index): A graph G has
resource bound k ∈ N iff there exists a total renaming σ
of vars(G) onto ran(σ) with dom(σ) ∩ ran(σ) = ∅ and
card(ran(σ)) = k, and such that RG ≈ RGσ . The resource
index of G is the smallest χ ∈ N such that G has bound χ.

Suppose for example a graph with 3 variables and resource
bound k = 2. This means at least 2 of the variables can

be unified without contradicting the conflict graph. This is
witnessed by the following proposition.

Proposition 3: Let k a resource bound for a graph G
witnessed by a renaming σk. Then Eσk

def

= {X = σk(X) |
X ∈ vars(G)} is a conflict-free equivalence denoting k distinct
equivalence classes.

The resource index – the lowest resource bound – is a
very accurate quantitative witness of resource consumption,
although in practice finding less tight but still decent upper
bounds is also pertinent.

III. RESOURCE ANALYSIS

Based on the simple yet operative resource model defined
in the previous Section, we now begin the elaboration of our
practical resource analysis framework.

A. Lattice completion and graph recursor

Our starting point is a slight modification of the resource
graphs, providing us: (1) a generic computation principle, (2)
a corresponding reasoning principle for establishing the cor-
rectness of the algorithms, and (3) a modular characterization
of their worst-case complexity. For the sake of concision, we
only detail a few of the many analyzes that can be described
this way, some other examples are discussed more informally.

Definition 10 (lattice completion): Let G =
〈R, V,E, α, γ, δ〉 be a resource graph. Define

L̂
def

= {ρ̂e,n | ρ̂e,n = v1 → · · · → ve → · · · →
vn is a lasso of G with entry ve}. The lattice-completed

resource graph is G̃
def

= 〈R, V, Ẽ,Ω, α, γ, δ〉 with:
[

Ẽ
def

=
(
E \ {vn → ve | ρ̂e,n ∈ L̂}

)
∪ {vn → v⊤ | ρ̂e,n ∈ L̂}

Ω
def

= {vn → ve | ρ̂e,n ∈ L̂}

In the example of Fig. 1 the highlighted vertices v2, v3
and v4 are the lasso entries of the graph. In the completion
procedure, the edges (with dashed arrows) that point to these
entries are cut from the graph and redirected towards v⊤ (this
redirection is not depicted). The Ω component contains the
edges that generate the cycles in the graph, which we of
course need to remember for deciding certain properties (such
as whether a given vertex is an entry of some lasso).

The completion procedure corresponds, algorithmically
speaking, to a graph decomposition into nested strongly con-
nected components (SCCs). The algorithm has quadratic worst-
case complexity and produces an acyclic graph with interesting
ordering properties.

Proposition 4: Let G̃ a completed resource graph with

vertices V and edges E. Then (V, Ê) is a complete lattice

with Ê the reflexive and transitive closure of E.

From now on we will assume that resource graphs are

properly completed, and will denote by G its completion G̃.

Definition 11 (graph recursor): Let G be a resource graph
with vertex set V . The graph recursor for f : Y × V → X

(vertex function) and g : 2X → Y (edge function) at v ∈ V is:

recvG(f, g)
def

= f(g
(
{recv

′

G (f, g)} | v′ → v in G}
)
, v)

We abbreviate recv⊤

G (f, g) as recG(f, g).

The recursor can be implemented by a simple topological
sort traversal of the completed graph, starting from v⊥ and
ending at the desired termination vertex v (trivially, termination
occurs at worst at v⊤, the top-element of the ordering).
Each edge is visited at most once so the traversal has linear
complexity. Consequently, the recursor has a naturally modular
worst-case complexity.

Proposition 5: Let G a resource graph with vertex set V
and edge set E. The worst-case complexity of a graph recur-
sor recvG(f, g) is O (card(V)× Cf + card(E)× Cg) where Cf

(resp. Cg) is the worst-case complexity of f (resp. g).

Because these depend on the concrete data-structures em-
ployed, we do not detail the operands Cf and Cg of the com-
plexity calculations. However, all the recursive computations
described below are efficient polytime algorithms. Beyond
computation, most of our correctness proofs rely on a simple
yet effective inductive principle.

Lemma 1 (graph inductor): Let P : V → {true, false} be
a predicate and G a resource graph with vertex set V . Then
∀v ∈ V, P(v) if and only if:

P(v⊥) and ∀v′ → v in G, P(v′) =⇒ P(v).

A global graph property PG then corresponds to proving
the local property PG(v⊤) using the inductor principle.

We now illustrate the recursor/inductor framework by com-
puting the sets of live variables (allocated, used and not freed)
and active variables (allocated and used, possibly freed) at a
given vertex.

Definition 12 (live and active variables): Let G a re-
source graph. We define the live and active variables at vertex
v by the following recursors:

[
livev(G)

def

= recvG (λx, v.(x ∪ γ(v)) \ δ(v),∪)

activev(G)
def

= recvG (λx, v.x ∪ γ(v),∪)

To illustrate the inductor principle, we will use it to
demonstrate the following property.

Proposition 6: P(v)
def

= X ∈ activev(G) iff ∃u, u →∗

v s.t. X ∈ γ(v).

Proof: The recursor we consider is:

activev(G) = recvG(f,
⋃
) with f(x, v)

def

= x ∪ γ(v).

• (base case) We must prove P(v⊥). The left-hand
side of the iff is false since we have activev(G) =
f(
⋃
∅, v⊥) = γ(v⊥) = ∅. This is because v⊥ has no

predecessor and γ(v⊥) = ∅ by definition. The right-
hand side is also trivially false for the same reason.
Hence P(v⊥) is true.

• (inductive case) The hypothesis of induction is that
P(v′) holds for any predecessor v′ of v. We have
to consider two sub-cases. First, we suppose that
X ∈ activew(G) for some predecessor w of v.
Now, if we write activev(G) = f(

⋃
W, v) then

clearly activew(G) ⊆ W and thus activew(G) ⊆

activev(G) = (
⋃
W) ∪ γ(v), hence X ∈ activev(G).

Moreover, by hypothesis of induction ∃u, u →∗

w s.t. X ∈ γ(u) and from u →∗ w → v we
conclude P(v) is true. The second sub-case is if
X /∈ activev′(G) for any (direct) predecessor v′ of v.
By hypothesis of induction this means X /∈ γ(w) for
any (direct or indirect) predecessor w of v. In this case
it is a trivial fact that X ∈ activev(G) iff X ∈ γ(v)
and thus P(v) is also true in this case.

Applying Lemma 1 we conclude that the property P(v) is
true for any vertex v of G.

We can generalize such local property by considering them
at the tail v⊤. For instance, the resources that are still live in
v⊤ have been used and not freed, hence because the graph has
correct usage they are exactly the static resources. Similarly
we can compute the set of inactive variables.

Proposition 7:
[

static(G) = livev⊤
(G)

inactive(G) = vars(G) \ activev⊤
(G)

A relatively simple recursor can also be defined for the
algorithmic construction of an automaton recognizing the
language of a given resource profile.

Lemma 2: RG is recognized by the finite automaton:

AG
def

= 〈Q, qv⊥
, δ, F 〉 s.t. (Q, δ, F) = recv⊤G (f,

⋃
) with:

f(x, v)
def

=

({qv⊥
}, {}, {qv⊥

}) if x = {}

(Q ∪ {qv}, δ
′, {q}) if x = {(Q, δ, F)},

with δ′
def

= δ ∪ {q
use(v)
−−−−→ qv | q ∈ F} ∪

{qv
use(v′)
−−−−→ qv′ | v → v′ ∈ ΩG}

For our running example the resulting automaton (equiva-
lent but slightly simplified so that it fits the page) is depicted
on Fig.2. Note that the only accepting state is the one generated
for v⊤. Moreover if the construction yields an automaton that
has roughly the shape of the initial resource graph, in practice
many factorizations can be performed on-the-fly.

For the computation of the resource conflicts, we have two
complementary algorithmic approaches: (1) define a dedicated
recursor for the task (as implemented in our toolset, cf. Sec-
tion IV), or (2) detect the conflicts directly on the automaton
AG. The latter is possible since as explained previously the
language RG encodes the conflict graph of G. For example
the conflict B♯D can be found by the sequence of states
q6, q7, q8, q9. For the conflict A♯G we can follow e.g. the loop
q5, q6, q2, q3, q4, q5.

B. The Omniscient Garbage Collector

The α-convertibility of the variables in resource profiles is
the principal obstacle to the development of efficient analysis
algorithms. Our approach of the problem is inspired by the
memory allocation metaphor. We want to assign unambigu-
ously unique locations to the resource variables. Of course,
we should use as few locations as possible, which underlies
an important notion of garbage collection.

Definition 13 (allocator): Let L be an ordered set of loca-
tions [ℓ1, . . . , ℓn] such that n ≤ card(vars(G)). An allocator µ
is a mapping from variables to locations. It is a safe allocator
iff, whenever X♯Y then µ(X) 6= µ(Y). An omniscient
allocator is a safe allocator that minimizes n.

Conflict-freedom is the only and fundamental requirement
of the allocation problem. Indeed, we can use less resources
(i.e. reuse resource locations) as long as this does not creates
a contradiction in the conflict graph. This intuition can be
characterized formally.

Lemma 3: Let µ be a safe allocator for a resource graph G.
Then µ is a renaming such that RG ≈ RGµ and card(ran(µ))
is a resource bound for G.

The effective computation of resource bounds naturally
relates to the algorithmics of graph coloring [3].

Proposition 8: Let ♯ be the conflicts of a given resource
graph G, and let µ♯ be a proper coloring of ♯. Then µ♯ is a
safe allocator for G.

The simplest of all (imperfect) coloring algorithms: first-fit
coloring provides us with an interesting resource bound that
can be computed quite efficiently.

Proposition 9: Let G be a resource graph with conflict

graph ♯. Then G has resource bound dG + 1 where dG
def

=
maxX∈vars(G){Y | X♯Y }. Moreover, dG can be computed in
linear time in the size of ♯.

In the right part of Fig. 1, the numbered labels of the nodes
correspond to colorings of the conflict graph. The numbers on
the left (before the open parenthesis) correspond to first fit
coloring using the node ordering H,G,A,B,C,D,E. First,
H can be colored by (location) 1 and so is G since it is not
connected to H . Next, A and B must use color 2 since they are
connected to G. The color 1 can be reused for C since it is not
yet connected to a colored node. The node D is connected to C
(color 1) and B (color 2) and thus must be colored 3. Finally,
E is connected to nodes colored up-to 3 and thus has color 4.
The resource bound found is 4 and is less than dG + 1 = 6.

For the resource index we need an omniscient allocator,
which essentially corresponds to the perfect coloring of the
conflict graph.

Proposition 10: Let µ̃♯ be the safe allocator corresponding
to the perfect coloring of the conflicts ♯ of a resource graph
G. Then µ̃♯ is an omniscient allocator for G. Moreover,
card(ran(µ̃♯)) is the resource index of G.

For our example the resource index χ is 3, it is also the
chromatic number of the conflict graph. The associated perfect
coloring is shown in Fig. 1 by the numbers within parentheses.
The strategy here is to use the color 2 for both B and C. This
way D can reuse color 1 and thus E has color 3 instead of 4.

This leads to our first prominent complexity result.

Theorem 1: Computing the resource index χ of a resource
graph is NP-complete.

This can be seen as a somewhat negative result, although
we remark that the perfect coloring algorithm only applies to
the conflict graph and not the complete resource graph. In
most practical cases the former should be much smaller than

q⊥start q1

q2

q3 q4 q5 q6 q⊤

q7q8q9

{H}

{Ê}

{Ê}

{Ê}

{A} {Ĝ} {A} {B}

{B}

{D}
{B}

{B}{C,D}{Ê}

Fig. 2. An automaton recognizing the profile of the resource graph of Fig.1.

the latter. Furthermore, interesting properties of separability
can often be exploited.

Proposition 11: Let ♯ be a conflict graph. If ♯ =
⊎

i ♯i
then µ̃♯ =

⋃
i µ̃♯i . Moreover if for some resource X we have

∀Y ∈ ♯, X = Y ∨X♯Y then χ♯ = 1 + χ♯\{X}.

These are basic properties of graph coloring. First, dis-
connected components of the conflict graphs can be colored
separately. In our example conflict graph this is the case of the
sub-graph with node H and the one consisting of all the other
resources. The second property is also useful in practice. In
our example, the vertex E is connected to all the other vertices
of the conflict graph (except H). The subgraph without E has
chromatic number 2 and the second property tells us that the
chromatic number of the complete graph is 3.

C. Algorithmic resource profile equivalence

We approach the resource profile equivalence problem in
three successive algorithmic steps. In the first step, we compute
omniscient allocators for the two resource graphs to compare.

Proposition 12: Let µ̃G and µ̃H be omniscient allocators
for respective resource graphs G and H . Then RG ≈ RH iff
RGµ̃G

≈ RHµ̃H
.

We now face a new intermediate problem, which is to find
a bijection between the (allocated) resource variables of G
and H that can be lifted to a conflict-free equivalence. This
exactly corresponds to finding an isomorphism between the
conflict graphs of G and H .

Lemma 4: Let µ̃G and µ̃H be omniscient allocators for
respective resource graphs G and H . Moreover, let γ be an
isomorphism between the conflicts of the profiles RGµ̃G

and

RHµ̃H
, and Eγ

def

= {X = Y | X ∈ dom(γ) ∧ Y = γ(X)}.

Then RG ≈ RH iff RGµ̃G

/
Eγ = RHµ̃H

/
Eγ .

We remind the reader that graph isomorphism defines the
GI complexity class (in NP). Now, since RG and RH are
composed only of regular constructors and α-conversion does
not apply anymore, we finally reduced the resource equivalence
problem to the well-studied problem of equating regular lan-
guages, which is notoriously a PSPACE-complete problem. We
might question whether a better algorithm could be found for

Definition D(x̃)
def

= P

Process P,Q ::= 0 (inert)
| new(x) P (observable)
| local(x) P (inobservable)
| α.P (prefix)
| P | Q (parallel)
| D[ã] (call)

Action α ::= τ (silent)
| ab (output)
| a(x) (input)

Fig. 3. The syntax of the π-calculus (with slices).

the resource profile equivalence problem. The answer is no and
the reason is that ultimately, regular language equivalence can
be reduced polynomially to the resource equivalence problem
(considering the reflexive case of ≈).

Hence our second fundamental complexity result.

Theorem 2: Resource profile equivalence is PSPACE-hard.

IV. APPLICATION: RESOURCE ANALYSIS OF

π-CALCULUS PROCESSES

In this section we describe the experimental application of
our framework for the analysis of resource consumption in π-
calculus processes. By lack of space, the presentation remains
mostly informal.

A. A π-calculus refresher

The syntax of the variant of the π-calculus we cover in
the experiment2 is given in Fig. 3. The semantics of the
language for most constructors can be found in many sources
(e.g. [2]). Informally, the process 0 has no transition. The scope
of a name x can be restricted by either new(x) or local(x)
and for the labelled transition semantics the two constructs
are assumed synonymous (this will be different in reduction
semantics). A prefixed process α.P denotes a transition with a

2For the sake of concision, we omit the constructs of non-deterministic
choice and match/mismatch. Note that our prototype tool has support for both.

label corresponding to the action α and continuing as process
P . There are four kinds of labels depending on the action α:

• a label τ is generated by a silent action τ .

• a label ab is generated by an input action a(x) for
any name b received along channel a and bound to
the variable x (in early semantics).

• a label ab is generated by an output action ab of datum
b along channel a, under the provision that a and b are
not restricted (i.e. in the scope of a new or a local).

• a label aνb is a bound output generated by an output
action ab where b is restricted, unlike a.

The construct P | Q expresses the parallel composition
(in terms of interleaving) of the sub-processes P and Q.
These cover the independent evolution of the processes, or
alternatively the synchronization for a composition of the form
ab.P | a(x).Q. The latter generates a transition with label
τ and a continuation of the form: P | Q{a/x}. Finally, the
language has tail calls that corresponds to possibly recursive
unfoldings of process definitions.

B. Abstracting transition labels

The first step of our experiment is to generate a resource
graph that reflects the behavior of a π-calculus process in
terms of resource usage. A natural interpretation consists in
interpreting almost directly the labelled transition system (LTS)
as a resource graph. Under this interpretation, each transition

P
µ
−→ Q is associated to three vertices vP , vµ and vQ and

the edges (vP , vµ) and (vµ, vQ). The resource usage is then
specified by the values associated to α(vµ), γ(vµ) and δ(vµ).
Schematically, we have:

• any transition P
aνb
−−→ Q creates a resource Xb and is

interpreted as:
vP α{Xb},γ{Xb},δ{} vQ

• any transition P
ab
−→ Q such that there is a resource

Xb for b is interpreted as:
vP α{},γ{Xb},δ{} vQ

• any other transition P
µ
−→ Q is interpreted as:

vP α{},γ{},δ{} vQ

In this first abstraction, the rationale is: every data sent
to the environment count as resource uses. Hence, any bound
output counts as the creation of a fresh resource as well as a
use, and each output of a name associated to a resource counts
as a simple use. There are possible variations, such as counting
the channel itself as a use (e.g. recording a use with ba in case
b is associated to a resource Xb), or also taking input into
consideration. It is then possible to distinguish between input
or output resource uses. In all these possible interpretations,
the leitmotiv is that resource profile equivalence should be a
necessary (although insufficient) condition for bisimilarity3.
We also require the destruction of resources through δ’s. A

3We do not provide in this paper a formal proof that “bisimilarity implies
resource profile equivalence” but this is rather trivial since resource profiles,
under the labelled abstraction, encode partial trace sets of behaviors.

simple and effective heuristic is to insert a δ{Xb} when there
is no further free occurrence of the name b in the process. This
simple form of garbage collection is implemented by all the
analysis tools for the pi-calculus that we are aware of.

Let us consider as a first example the following process:

P
def

= new(c) ac.bc.P

This is a special case of a common pattern for generating
fresh names. Here, the restricted name c is sent first along a
and then b towards the environment. The whole process is then
iterated, leading to the following derivations:

P
aνc
−−→ bc.P

bc
−→ P → · · ·

The first output along a corresponds to a bound output
since c is restricted but the further output is not bound
anymore. Given a resource variable Xc representing the name
c once required fresh, we obtain the following resource graph:

v⊥

α{Xc},γ{Xc}

v1

γ{Xc},δ{Xc}

v2
v⊤

A theoretically acceptable alternative would to have an
infinite system generating an infinite number of resources.
Although the version with the least fixpoint shows that exactly
one resource is required for this behavior, the resource index is
invariantly 1 because there can be no conflict for this process
in any acceptable interpretation.

A minimal conflict can be generated by e.g.:

new(a) new(b) ca.cb.ca.0

A slightly complexified variant of this process is as follows:

[
Q

def

= new(a) new(b) ca.cb.da.d(x).cx.0

C[X]
def

= new(d) [Q | X]

The resource graph corresponding to C[d(y).dy.0] is4:

v⊥

α{Xa},γ{Xa}

v1

α{Xb},γ{Xb}

v2

v3

v4

γ{Xa},δ{Xa}

v5v⊤

4A single-hole process context C[X] is a function from process expression
extended by a single occurrence of a variable X to process expressions, such
that C[P] = C[X]{P/X} for a standard notion of substitution of variables

by processes. Here for example C[d(y).dy.0] = new(d)
[

Q | d(y).dy.0
]

.

Model LTS Res. graph Res. index

heap
4

700 86 3

heap
5

8476 303 4

heap
6

126125 1094 5

buffer4 596 339 4

buffer5 7173 3621 5

buffer6 106878 49246 6

GSM 489 56 3

GSMbuff 164 56 3

GSMfull 2183 56 3

TABLE I. EXPERIMENTAL RESULTS FOR THE RESOURCE

ABSTRACTION ON LABELLED TRANSITIONS.

This maintains the conflict Xa♯Xb and thus the resource
index of the system is 2, whereas if we consider the variant
C[d(y).dc.0] then the resource graph becomes:

v⊥

α{Xa},γ{Xa}

v1

α{Xb},γ{Xb},δ{Xb}

v2

δ{Xa}

v3

v4v5v⊤

The conflict Xa♯Xb is no more and hence the resource
index is 1 in this case. This illustrates the profoundly seman-
tic nature of the proposed resource abstraction. Indeed, the
behavior of X within the context C[X] can be as complex as
required so that in the general case (beyond finite control) one
cannot decide whether the conflict should take place or not.

This abstraction has been implemented in a prototype
tool and we analyzed several examples from the HAL envi-
ronment [4]. At present, the tool only support finite control
processes and the construction of the resource graph is purely
semantic. Since we do not need to preserve the whole branch-
ing structure, we can apply a few heuristics to reduce the size
of the resource graphs, but in the worst case it can be as
large as (but no larger than) the full LTS e.g. as produced by
HAL. The problem of producing the smallest possible resource
graph is open and we conjecture that its complexity is high.
Table I gives the figures we obtain for the examples that are
particularly interesting for the considered abstraction.

For each example, we give the size of the LTS produced by
HAL and we compare it with the size of the resource graph
we obtain. This measure is not really significant but it still
emphasizes the fact that there is an important potential of
abstraction when constructing the resource graphs. A metric
much more significant is the resource index that we obtain
using our omniscient garbage collector.

The heap example models a set of interacting memory
cells. Each cell is a process with an input and an output
channel and stores a single datum. The cells are composed
in parallel, which induces a large LTS resulting from the
interleaving of many internal synchronizations. Since most
branching is created by pure interleaving and τ transitions,
the resource graphs we obtain are rather small in comparison.
The resource index for heapn is n−1 is all cases, which is an
invariant in the general case. This in fact counts the number
of competing cells in the system, with a single non-conflicting
case (the two “entry” cells are not competing with each other).

The buffer example is a variant of the heap but with less
internal synchronizations and in proportion more exchanges
with the environment. Hence, we observe more resources to
take into account. In consequence, the size of the resource
graph is not reduced in large proportions anymore. However,
the resource index is still very small, with a suggested invariant
of a resource index n for buffern, all cells being in competition.
These two examples exhibit a rather low amount of conflicts
if compared to the size of their state-space. This means that
perfect coloring, despite its high computational complexity, is
not a difficult problem in these particular cases. We firmly
believe that this is the case in many realistic examples,
although this remains to be confirmed experimentally.

Another interesting example is the GSM and its variants
that model a simplified form of the handover protocol for gsm
mobile networks. These examples show rather complex name
exchanges but are quite small in term of control. What we find
particularly interesting is that the different variants all result in
the same resource graph (up-to resource variable renamings)
and of course the same resource index. This confirms, rather
surprisingly (we expected at best the same resource profiles),
that in terms of resource usage the three examples are basically
the same.

C. Refining reductions

Abstracting from the labelled transitions is quite natural
but requires a very powerful observer. In comparison, the
reduction semantics are much less demanding. However, they
only apply on closed systems. An intermediate approach is to
model part of the observer within the system. For this we allow
a process behavior to be sliced from the point of view of the
environment. A process of the form local(x) P considers x
as a “normal” π-calculus restriction but explicitly decorated
by a tag “inobservable”. In comparison, in new(x) P the
name x is tagged “observable”. Names can also be assigned
the tag “observed” although not in their initial state. Now, a
standard reduction P → Q of the π-calculus is refined so that it

produces a “labelled” reduction of the form Λ ⊢ P
µ
−→ Λ′ ⊢ Q

in the slice-π variant. The component Λ is a set of names
tagged as observable. A name a with the observable tag is
such that either a ∈ Λ if lacks the observed tag, and otherwise
we have a ∈ Λ. Of course, it might not be the case that
{a, a} ⊆ Λ. The inobservable names are simply absent from
Λ.

For each reduction P → Q we have either:

• an open reduction of the form:

Λ ⊢ P
〈b〉
−−→ (Λ\{b})∪{b} ⊢ Q when the reduction is a

synchronization passing an observable or inobservable
but not yet observed name b along an observable
channel a. As a side-effect, the name b is tagged as
observable and also as observed.

• a transparent reduction of the form:

Λ ⊢ P
b
−→ Λ ⊢ Q when the reduction is a synchroniza-

tion passing an observed name b (i.e. b ∈ Λ) along an
observable channel (i.e. a ∈ Λ).

• an opaque reduction of the form:

Λ ⊢ P
•
−→ Λ ⊢ Q in any other case.

{} ⊢ new(a) new(b) S(a, b)
〈x1〉
−−−→ {a, b, x1} ⊢ P (a) | Q′(a, b) | Q(a, b) | R(b)
〈x2〉
−−−→ {a, b, x1, x2} ⊢ P (a) | Q′(a, b) | Q′(a, b) | R(b)
x1−→ {a, b, x1, x2} ⊢ P (a) | Q(a, b) | Q′(a, b) | R(b)
x2−→ {a, b, x1, x2} ⊢ S(a, b)
. . .

{} ⊢ local(a) new(b) S(a, b)
•
−→ {b, x1} ⊢ P (a) | Q′(a, b) | Q(a, b) | R(b)
•
−→ {b, x1, x2} ⊢ P (a) | Q′(a, b) | Q′(a, b) | R(b)
〈x1〉
−−−→ {b, x1, x2} ⊢ P (a) | Q(a, b) | Q′(a, b) | R(b)
〈x2〉
−−−→ {b, x1, x2} ⊢ S(a, b)
. . .

Fig. 4. Reductions of slice-π processes with a observable (left) or inobservable (right).

The complete semantics of this “slice-π” variant is pro-
vided in appendix. The main interest of this refinement is that
(not unlike barbs [2]) it opens up some part of the behavior of
the processes, and still maintains a one-to-one correspondence
with the standard reductions.

In terms of resource graphs, the interpretation is now quite
similar to the labelled abstraction:

• any reduction Λ ⊢ P
〈b〉
−−→ Λ′ ⊢ Q creates a resource

Xb and is interpreted as:
vΛ⊢P α{Xb},γ{Xb},δ{} vΛ′⊢Q

• any reduction Λ ⊢ P
b
−→ Λ ⊢ Q such that there is a

resource Xb for b is interpreted as:
vΛ⊢P α{},γ{Xb},δ{} vΛ⊢Q

• any other reduction Λ ⊢ P
•
−→ Λ ⊢ Q is interpreted

as:
vΛ⊢P α{},γ{},δ{} vΛ⊢Q

To illustrate the abstraction, we consider the processes
new(a) new(b) S(a, b) vs. local(a) new(b) S(a, b) with:

P (a)
def

= new(x) ax.P (a)

Q(a, b)
def

= a(y).Q′(a, b, y)

Q′(a, b, y)
def

= by.Q(a, b)

R(b)
def

= b(z).R(b)

S(a, b)
def

= P (a) | Q(a, b) | Q(a, b) | R(b)

Fig. 4 shows representative reductions of the first process with
a observable (on the left) and a inobservable (on the right).
In the observable case the names a and b are recorded in
the first reduction as observable (i.e. put explicitly in the Λ
component of the state). In the same reduction, the name
x generated by P is opened (i.e. marked observed) by the
synchronization with the leftmost process Q. A “second” x is
opened in the next reduction by the synchronization between
P and the rightmost Q. The “two” x’s must be alpha-converted
hence the introduction of x1 and x2 in the reductions. The Λ
component of the transition contains {x1, x2} because these
two observable names are actually observed. If we compare
this behavior with the one of the right-hand side, a is there
tagged inobservable since it is introduced by the local con-
struct. This means it is not a member of the component Λ of
the state, unlike b. This means that the names x1 and x2 are
now introduced as observable but not yet observed because
they are transmitted along a. In terms of resources graphs,
the left-hand side reductions yield a conflict Xx1

♯Xx2
that is

absent in the rightmost process. The processes have indeed
distinct resource indices: respectively 2 and 1. We thus obtain

Model # Procs. Reds. Res. graph Res. index

philos
2

7 133 20 1

philos
3

10 2992 136 1

philos
4

13 98245 4148 2

TABLE II. EXPERIMENTAL RESULTS FOR THE RESOURCE

ABSTRACTION ON REDUCTIONS.

a level of flexibility that is quite comparable to the labelled
abstraction, but without the need for an idealistically powerful
observer.

Based on this abstraction, we designed a simple example
inspired by the infamous dining philosophers. The idea is that
the environment is modeled as a process that acknowledges
through an observable channel eat the fact that a philosopher
actually starts eating. All the other channels (ending points
for the philosophers, the forks, etc.) are created inobservables
(hence restricted with local instead of new). The resource
conflicts occur when distinct philosophers eat at the same time
on the table, by transmitting the philosopher channel along the
environment observable eat. As a side effect, the philosophers,
initially inobservable, inherit both the observable and observed
tags in a dynamic way.

The results for some instances of the philon examples
are listed in Table II. The size of the reduction graph grows
exponentially since we modelled various sub-processes run-
ning in parallel (e.g. 13 processes for philo4). The resource
graphs we obtain using similar heuristics as in the labelled
case are much smaller but in a similar order of magnitude in
terms of growth. The resource index (and hence the maximum
conflict) is quite reassuring in that the number of philosophers
who actually competing for food remain below the number of
fork pairs, ensuring the correctness of the protocol. Although
simpler analyzes are of course possible for this example, the
experiment emphasizes the fact that the resource index captures
a deep semantic information, tightly related to the chosen
resource abstraction.

Last but not least, none of our experiments (except those
made on purpose) expose a large resource index. In fact, the
perfect coloring of the conflict graphs was almost immediate in
all the examples, despite the high complexity of the algorithm.
In the current version of the tool we use a simple and rather
slow CSP-solver for the task. This largely covers our current
needs but state-of-the art SAT solvers could be used for more
demanding scenarios. In cases perfect coloring would become
unfeasible, we can still compute less tight but still interesting
resource bounds very efficiently, using e.g. first-fit coloring.

By lack of time, we could not experiment the second
abstraction on more significant examples. And at the time of

writing, the tool – in a very early stage of development – still
lacks support for computing resource equivalence problems.

V. RELATED WORK

Resource control and analysis is a vast topic of research.
Considered in their purest form, resources are pure names
naturally leading to nominal calculi [1] in general, and in
particular the π-calculus [2] and its numerous variants. This
is a rather abstract and open-ended setting, thus not a very
prolific source of effective analysis algorithms. One approach
is to enrich the semantics, as e.g. in [5] where a resource bound
analysis is proposed for a reactive synchronous variant of the
π-calculus. For more classical (and abstract) variants, related
studies address decidability issues often in connection with
Petri nets, such as e.g. [6], [7] and [8]. The latter introduces
the name-bounded processes, a significant class of infinite-
state systems for which the boundedness question is answered
positively. It is particularly remarkable that reachability is
also decidable for this class. In comparison, we assume the
finiteness of resource graphs, and deliberately de-emphasize
the means by which they are obtained practically. Indeed, a
key feature of our framework is its independence from any
particular formalism. Furthermore, for a given formalism mul-
tiple resource abstractions can be experimented as illustrated
in Section IV. The abstraction of active restrictions proposed
in [8] only applies on reductions for closed systems. It is
also different from the resource model we propose around the
slice-π calculus, and to illustrate this aspect we consider the
following process:

P (a)
def

= new(x) [ax.0 | a(y).P (y)] | τ.new(z) za.0

In the abstraction we propose, the resource index of
new(a) P (a) is 1 because the processes new(z) za are
deadlocked after the initial τ . However, since the name a is
always free in these deadlocked processes the whole process
has an infinite number of active restrictions. This particular
example can be of course optimized but the deadlocked process
can be complexified at will. Hence, we discuss a finer-grained
abstraction that cannot be decided locally. Relying on an
essentially semantic abstraction is not without consequences.
For instance, our current implementation only works with
finite control π-calculus processes. It is a very intriguing and
open question wether interesting sub-classes of infinite systems
with finite resource graphs could be determined, probably
starting with variants of the name-bounded class itself. Another
related abstraction is that of barbed semantics [2] that also
refine reductions but considering in this case the non-restricted
channels as observables. This is to ultimately characterize an
adequate notion of process equivalence – namely strong barbed
congruence – when the reductions with observables are closed
under context. While we could observe the channels instead of
(or together with) the data, we require our refinement to remain
in one-to-one correspondence with the plain reductions. Also
particularly notable in [8] is the prominent role played by the
notion of garbage collection something already observed in
e.g. the history-dependent-automata [4] or in the π-graphs [9].
This is a side note but to our knowledge, HD-Automata
Laboratory (HAL) is the only tool allowing the generation
of early labelled transition system from (finitary) π-calculus
processes. Indeed, the generation of the early LTS is not trivial
especially because it requires the determination of the active

names [10], a notion tightly connected to the live variables of
resource graphs.

Graph coloring relates to the very well-known problem of
register allocation in compiler back-ends [11]. However, the
behavior of registers is quite specific. For example, one can
always choose not to allocate a register, or release it prema-
turely and defer to the central memory. Hence, the coloring
can be both partial and imperfect, allowing many optimization
heuristics that do not apply at all in our case. This still naturally
connects our study with the well-studied notion of register
automata and related formalisms e.g. variable automata [12].
One major difference is that we map the resource variables to
a finite (and hopefully least) number of locations. Hence, our
automata are “quasi-regular” only introducing a (non-trivial)
notion of α-conversion. This is enough as long as we address
pure nominal questions, however if we look “into” resources
then a connection with the above-mentioned frameworks seems
highly probable. This is especially the case if we address
resource control issues such as in e.g. [13] (automata-based
approach) or [14] (typechecking-based approach).

REFERENCES

[1] A. D. Gordon, “Notes on nominal calculi for security and mobility,” in
FOSAD, ser. LNCS, vol. 2171. Springer, 2000, pp. 262–330.

[2] D. Sangiori and D. Walker, The π-calculus: a Theory of Mobile

Processes. Cambridge University Press, 2001.

[3] T. Jensen and B. Toft, Graph coloring problems. Wiley, 2011.

[4] G. L. Ferrari, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori,
“Verifying mobile processes in the hal environment,” in CAV, ser.
LNCS, vol. 1427. Springer, 1998, pp. 511–515.

[5] R. M. Amadio and S. Dal-Zilio, “Resource control for synchronous
cooperative threads,” Theor. Comput. Sci., vol. 358, no. 2-3, pp. 229–
254, 2006.

[6] R. M. Amadio and C. Meyssonnier, “On decidability of the control
reachability problem in the asynchronous pi-calculus,” Nord. J. Com-

put., vol. 9, no. 1, pp. 70–101, 2002.

[7] F. Rosa-Velardo and D. de Frutos-Escrig, “Decidability problems in
petri nets with names and replication,” Fundam. Inform., vol. 105, no. 3,
pp. 291–317, 2010.

[8] R. Hüchting, R. Majumdar, and R. Meyer, “A theory of name bounded-
ness,” in CONCUR, ser. LNCS, vol. 8052. Springer, 2013, pp. 182–196.

[9] F. Peschanski, H. Klaudel, and R. R. Devillers, “A petri net interpre-
tation of open reconfigurable systems,” Fundam. Inform., vol. 122, no.
1-2, pp. 85–117, 2013.

[10] U. Montanari and M. Pistore, “Checking bisimilarity for finitary pi-
calculus,” in CONCUR, ser. LNCS, vol. 962. Springer, 1995, pp.
42–56.

[11] G. J. Chaitin, “Register allocation and spilling via graph coloring (with
retrospective),” in Best of PLDI. ACM, 2004, pp. 66–74.

[12] O. Grumberg, O. Kupferman, and S. Sheinvald, “Variable automata over
infinite alphabets,” in LATA, ser. LNCS, vol. 6031. Springer, 2010,
pp. 561–572.

[13] P. Degano, G. L. Ferrari, and G. Mezzetti, “Nominal automata for
resource usage control,” in CIAA, ser. LNCS, vol. 7381. Springer,
2012, pp. 125–137.

[14] N. Kobayashi, K. Suenaga, and L. Wischik, “Resource usage analysis
for the pi-calculus,” Logical Methods in Computer Science, vol. 2, no. 3,
2006.

APPENDIX 1: PROOF DETAILS

A. Resource model

Proof: (of Proposition 1)

if case: Suppose X♯Y in a given resource graph G. According to Definition 6 there is a path ρ = v1 → · · · → vn such
that X♯ρY with 3 possible causes. First, if ρ is a complete path then there exist i, j, k, 1 < i ≤ j ≤ k < n such that
X ∈ γ(vi), Y ∈ γ(vj), X ∈ γ(vk) or Y ∈ γ(vi), X ∈ γ(vj), Y ∈ γ(vk). We suppose the former, the latter being symmetric.
Moreover we suppose X dynamic and Y static, the other cases being similar. Let wρ =

⊙n
i=1 use(vi) by the word generated

in RG by ρ. Now define a
def

= use(vi), b
def

= use(vj) and c
def

= use(vj). We thus have X ∈ a, Ŷ ∈ b and X ∈ c. Moreover, by
Definition 5 wρ = w1.a.w2.b.w3.c.w4 for some (possibly empty) words w1, . . . , w4, hence the property.

If ρ is a lasso with entry ve, 1 < e ≤ n then we have two sub-cases to consider. The first sub-case is identical to the previous
one, the second sub-case corresponding to a cyclic conflict (second case of Definition 6). If we suppose that X is static and Y
dynamic (the other cases being symmetric), the we have some i, j, 1 < i < e ≤ j ≤ n such that X̂ ∈ use(vi) (by Definition 3
supposing G has correct usage) and Y ∈ use(vj). Hence in RG the cycle is unfolded once thus if we let a = c = use(vi) and
b = use(vj) then wρ is of the expected form wρ = w1.a.w2.b.w3.c.w4.

only-if case: We suppose in a resource profile RG there is a word w = w1.a.w2.b.w3.c.w4 such that X̂ ∈ a, Y ∈ b and

X̂ ∈ c (the other cases are similar). By Definition 5 we know that w is generated by either a finite path ρ = v1 → · · · → vn that

is either a complete path or a lasso of G. If it is a complete path then w is of the form w1.{X̂, a′}.w2.{Y, b}.w3.{X̂, c′}.w4

and in the path ρ we have i, j, k such that X ∈ γ(vi), Y ∈ γ(vj), X ∈ γ(vk) and thus X♯ρY . If ρ is a lasso there we have
either the same situation as previously (a succession of X,Y,X in the path) or w corresponds to the unfolding of a word of the
form w′.(w′′)∗ and w′′ = w′′

1 .a.w
′′
2 .b.w

′′
3 and thus c = a and in consequence X♯ρY .

Proof: (of Proposition 2)

We trivially have vars(Gσ) = Rσ = vars(G)σ. From the hypothesis dom(σ) ∩ ran(σ) = ∅, we thus obtain vars(G) ∩
vars(Gσ) = ∅. Now let Eσ

def

= {X = σ(X) | X ∈ vars(G)} the equivalence relation associated σ. Now suppose (Z,Z ′) ∈ Eσ
such that Z♯Z ′. Since σ is a bijection we have Z ∈ vars(G) and Z ′ = σ(Z1) ∈ vars(Gσ) or the converse (since Eσ is symmetric).
Moreover since the resource graph is not modified beyond variable renaming, Z♯Z ′ iff Z♯σ−1Z ′ ⇐⇒ Z♯Z. This contradicts
Definition 6 which imposes the conflict relation to be irreflexive, hence ¬(Z♯Z ′) as required.

Proof: (of Proposition 3)

Following definition 9 it is easy to obtain RG
/
Eσk

= RGσ
/
Eσk

. Hence since vars(G) ∩ vars(Gσ) = ∅ by definition 8 it

must be the case that Eσk
is a conflict-free equivalence as required. Moreover since card(ran(σk)) = k and σ is total and onto,

it follows naturally that πk
def

= {C | ∀X,Y ∈ C, [X]Eσk
= [Y]Eσk

} has cardinality k.

B. Lattice completion and graph recursor

Proof: (of Proposition 4)

A standard result of lattice theory is that if a finite ordered set S has a greatest (resp. a least) element and every pair of
elements has a meet (resp. a join), then S is a lattice. Moreover, every finite lattice is a complete lattice.

Let G̃
def

= 〈R, V, Ẽ,Ω, α, γ, δ〉 be a complete resource graph. We interpret G̃ has a partial ordering considering V as the
carrier set and the reflexive and transitive closure of E as the ordering relation. This is indeed an proper partial ordering since
the completion procedures removes and cycles, and thus the graph structure is that of a directed acyclic graph (DAG). Moreover,
by definition we have v⊤ (resp. v⊥) is a greatest (resp. least) element of the ordering.

Now, let v and v′ be two vertices of G̃. Suppose (v, v′) has no meet, which means that (1) either they have no lower bound

or (2) that the set M
def

= {M ⊆ V | m ∈ W, m →∗ v ∧ m →∗ v′} has no maximal element. Case (1) would contradict the
existence of v⊥. For case (2) the contradiction originates from the connectivity of the resource graph. Hence the meet of (v, v′)
does exist. In conclusion, G̃ is a complete lattice.

Proof: (of Lemma 1)

The existence and constructibility of the least fixed point is justified by Knaster-Tarski’s fixed point theorem for complete
lattices (standard proof as found in many textbooks).

Proof: (of Proposition 7)

According to definition 3, a resource is static means it is used (and thus allocated) at some point, and not deleted in at least
one path of the resource graph. This suggests the following local property.

P(v)
def

= X ∈ livev(G) implies ∃u, u →∗ v s.t. X ∈ γ(u) and ∀w, w →+ v then X /∈ δ(w)

For the base case, we have livev⊤(G) = ∅ hence P(v⊥) is vacuously true.

For the inductive case we suppose P(v′) to hold for any vertex v′ such that there is an edge v′ → v. We now proceed by
contraction, supposing that P(v) does not hold, which means X ∈ livev(G) but the right-hand side of the implication is false.
Now the two main sub-cases is whether X ∈ livev′(G) or not, for v′ a direct predecessor of v. If X is live at v′ then the only
way contradict the right-hand side of the implication is to have X ∈ delta(v) but by definition of livev(G) this may not be the
case. Now if livev′(G) is false, then it must be the case that X ∈ gamma(v) \ delta(v) for X ∈ livev(G) to be true, which
automatically makes the right-hand side true because the graph is assumed to have correct usage.

By Lemma 1 we thus conclude that P(v) holds for any vertex v. Now, since the resource graph G is assumed with correct

usage, a variable X that is used but not deleted must be static, and according to properties P and Q we have X ∈ livev⊤G hence
the result.

Proof: (of Lemma 2).

For a given vertex v ∈ V , recvG(f,
⋃
) defines an automaton Av

G and we have AG = Av⊤
G by definition.

There is a trivial isomorphism between the graph G and its corresponding automaton AG. Here the graph G is interpreted
as the original resource graph before the completion procedure. Each vertex has a corresponding state qv and the resource usage
at v is reflected by a transition from each state q of a predecessor v′ of v with destination qv . Note also that at the end of step
v the only final state is qv . Of course, before reaching the vertex v⊤ the automaton only reflects a part of the graph that we
denote by Gv such that Gv⊤ = G. Because Gv lacks a top element, we simply add v → v⊤ except if v⊤ is already a vertex
of Gv (which means that v = v⊤ anyway). At v we must also add the deletions for the active variables appearing in complete
paths. This modifications required for the graph to be with correct usage is not difficult and will not be detailed.

By induction we can prove that RGv is recognized by the finite state automaton AGv . For the base case at v⊥, recv⊥

G (f,
⋃
)

yields an automat that recognizes only the empty language, as required. For the inductive case we suppose that for each predecessor

of v, the automaton Av′

G recognizes the language RGv′ . For each complete path in one of the RGv′ ’s there are two possibilies.
Either v closes the path so that it becomes the entry of a lasso, and in this case RGv recognizes, from an “old” word w1.w2 a

“new” word of the form w1.w2.use(v)(w2.use(v))
∗. In Av

G a new transition qv
use(v)
−−−−→ qv′ is inserted, which exactly corresponds

to the “switch” from the old to the new word. Otherwise, if only a complete path is uncovered, then the recognized word w
becomes w.use(v) and a corresponding transition is built in Av

G. Since the words on the one side and the states/transitions on
the other side are both assembled with set union, the automaton Av

G recognizes the whole RRv
G

.

Following the inductive principle of Lemma 1 the proof is completed.

C. Omniscient garbage collector

Proof: (of Lemma 3)

That Eµ is a conflict-free equivalence is by the safety condition in Definition 13. We now define E′ def

= {X = [X]Eµ
|

X ∈ vars(G)}, which is also trivially a conflict-free equivalence. It is a simple fact that RG
/
E′ =

(
RG

/
Eµ

)/
E′ and thus

RG ≈ RG
/
Eµ

as required.

Moreover, µ is by definition total on vars(G) and is onto ran(µ). It is also the case that vars(G)∩ran(µ) = ∅, hence following
definition 9 we can conclude card(ran(µ)) is a resource bound for G.

Proof: (of Proposition 8)

The proper coloring of a graph is such that no two adjacent vertices possess the same color. Hence, if µ♯ is a proper coloring
of a conflict graph over vars(G) then X♯Y (i.e. X and Y are adjacent in the conflict graph) implies µ♯(X) 6= µ♯(Y) for any
X,Y ∈ vars(G), hence µ♯ is a safe allocator for G.

Proof: (of Proposition 9)

This is a standard result of graph coloring.

Proof: (of Proposition 10)

Let µ̃ be a perfect coloring of the conflicts ♯ of a resource graph G. By Proposition 8 we know that it is already a safe
allocator and according to Lemma 3 G has resource bound k = card(ran(µ̃)). The existence of a proper coloring – hence a safe
allocator – µ such that card(ran(µ)) < k would contradict the fact that µ̃ is perfect, i.e. that it minimizes the number of colors
used to decorate the conflict vertices.

The number k – the chromatic number of ♯ – is thus a minimal resource bound, i.e. the resource index of G.

Proof: (of Theorem 1)

For the NP-hardness part of the proof, the objective is to start with an arbitrary graph ♯ that must be perfectly colored. It is
simpler to consider the nodes of ♯ to be a set of resources variables in R and to consider a natural ordering ≤ on R. To reduce
the problem in terms of the resource index computation, we must construct a resource graph G such that its conflict graph is ♯
itself. The construction does not require much creativity so we only sketch it. First we construct a sequence C containing the
edges of ♯ following a lexicographic ordering on variable pairs, and we remove all the symmetric pairs. This ordering is required
so that no interference is created among the conflicts. Now, we take each conflict X♯Y in order and we simply create a sub-path
u → v → w such that X ∈ γ(u)∩γ(w) and Y ∈ γ(v). At the first occurrence of a variable X we add a resource creation event,
and we similarly add a deletion even at the last occurrence. Finally we add the root and tail vertices. The length of the resulting
path is a function linear in card(C) and thus also in the number of edges in the graph ♯. It is a simple fact to then demonstrate
that the path exhibit the conflicts in ♯. Now finding an omniscient allocator solves the initial perfect coloring problem.

For the completeness part we know that the conflict graph can be implemented by a polynomial graph recursor. Then perfecct
graph coloring is exactly what remains to be performed.

Proof: (of Proposition 11

These are basic properties of graph coloring algorithms.

D. Resource profile equivalence

Proof: (of Proposition 12)

By Lemma 3 we know that RG ≈ RGµ̃G
and RH ≈ RGµ̃H

.

The result thus follows trivially by symmetry and transitivity arguments.

Proof: (of Lemma 4)

if case: The hypothesis is RG ≈ RH and since µ̃G and µ̃H are safe allocators, we have RGµ̃G
≈ RHµ̃H

by Lemma 3.

This implies the existence of a conflict-free equivalence E such that RGµ̃G

/
E = RHµ̃H

/
E by definition of ≈.

Now, let γE
def

= {X 7→ Y | X ∈ vars(Gµ̃G), Y ∈ vars(Hµ̃H), (X,Y) ∈ E}.

We remark that card(dom(γE)) = card(ran(γE)) by a simple consideration of language equivalence (the alphabets must be
the same on both sides of language equality) and moreover γE ◦ γ−1

E = id since E is symmetric. In consequence γE is an
isomorphism, which is enough to conclude the proof.

only-if case: We suppose RGµ̃G

/
Eγ = RHµ̃H

/
Eγ for a given isomorphism γ. According to the definition of ≈ this means

RGµ̃G
≈ RHµ̃H

and by Proposition 12 we have RG ≈ RH as required.

Proof: (of Theorem 2)

We adopt a constructive proof by considering the basic language of regular expressions. A regular expression e is defined
inductively on an alphabet Σ as either:

• empty language: e = ∅

• empty symbol: e = ǫ

• singleton: e = x for any symbol x ∈ Σ

• union: e = e1 + e2 with e1, e2 regular expressions

• concatenation: e = e1.e2 with e1, e2 regular expressions

• Kleene star: e = e′∗ with e′ a regular expression.

Regular expressions notoriously characterize the regular languages. We will denote by Le the regular language specified by
a regular expression e.

For our hardness proof, we will mimic the construction of non-deterministic finite automata (NFA) from regular expressions.
However in our case, for each kind of regular expression we will produce a resource graph with correct resource usage. The
construction is relatively simple and tedious to formalize so we adopt a semi-formal presentation.

We first build the structure of resource graph Ge corresponding to a regular expression e is a tuple 〈Re =
2Σ∪{ǫ}, Ve, Ee, αe, γe, δe〉 constructed recursively as follows:

Ge=∅:

Ge=ǫ :
ve
⊥

γ{}

ve
⊤

Ge=x :
ve
⊥

γ{x}

ve
⊤

Ge=e1+e2 :
ve
⊥

v
e1
⊥

Ge1

v
e1
⊤

v
e2
⊥

Ge2

v
e2
⊤

v
e2
⊤

Ge=e1.e2 :
ve
⊥ v

e1
⊥

Ge1

v
e1
⊤

v
e2
⊥

Ge2

v
e2
⊤

ve
⊤

Ge=e′∗ :
ve
⊥ v

e1
⊥

Ge′

ve′

⊤
ve
⊤

The only non-trivial case is the last one, because in resource graph we must generate lassos, i.e. paths generated from
non-reflexive transitive concatenation closures. Hence use the following encoding: e∗ = ǫ + e+. Now, the graph Ge obtained
finally only lacks proper allocations and deletions (i.e. the αe and δe components). Since allocations must be unique, the only
possibility is to allocate all the resources (i.e. symbols of the initial regular expression) at a “dummy” bottom node. Then we
have to delete the resources just “before” the top node at the end. This gives the longest possible lifespan for the variables.

The final construction is thus something like the following:

v⊥
αΣ

ve⊥

Ge δΣ

ve⊤
v⊤

By a simple structural induction, it is easy (albeit cumbersome) to demonstrate that the profile RGe
is indeed exactly the

language Le specified by the regular expression e. The proof simply corresponds to the inductive construction of an isomorphism
between the construction of a NFA recognizing e on the one side, and the automaton AGe

constructed using the recursor described
in the paper. Our construction of the resource graph is in fact exactly the construction of a NFA from a regular expression, up-to
some subtilities (e.g. root and tails vertices, unfolding of Kleene star, etc.). We thus omit the formalities here.

Hence, deciding RGe1
≈ RGe2

results in establishing Le1 = Le2 . Since RGe
is obtained from a regular expression e in

polytime, the reduction is completed and we can conclude PSPACE-hardness for the considered problem.

APPENDIX 2: THE SLICE-PI CALCULUS

A. Syntax

The syntax of the slice-π calculus is as follows:

Definition D(x̃)
def

= P

Process P,Q ::= 0 (inert)
| α.P (prefix)
| new(x) P (observable)
| local(y) Q (inobservable)
| P | Q (parallel)
| D[ã] (call)

Action α ::= τ (silent)
| ab (output)
| a(x) (input)

The structural congruence the least relation on processes satisfying:

• P ≡ Q by a renaming of bound variables

• P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R , P | 0 ≡ P

• D[ã] ≡ P{ã/x̃} if D(x̃)
def

= P

• for res ∈ {new, local},

◦ res(x) (P | Q) ≡ P | res(y) Q provided x /∈ free(P)

B. Semantics

A system term in slice-π is of the form Λ ⊢ P where Λ is a set of names and P a process term. A reduction in slice-π is

of the form Λ ⊢ P
µ
−→ Λ′ ⊢ P ′ where µ is a label either:

• 〈b〉 for an open reduction when first observing b.

• b for a transparent reduction when observing b once more.

• • for an opaque reduction.

The reduction rules are as follows:

a) Step:

Λ ⊢ τ.P
•
−→ Λ ⊢ P

(step)

b) Observable:

Λ ∪ {x} ⊢ P
µ
−→ Λ′ ⊢ P ′ x /∈ Λ

Λ ⊢ new(x) P
µ
−→ Λ′ ⊢ P ′

(obs)

c) Inobservable:

Λ ⊢ P
µ
−→ Λ′ ⊢ P ′ x /∈ Λ

Λ ⊢ local(x) P
µ
−→ Λ′ ⊢ P ′

(inobs)

d) Synchronizations:

a ∈ Λ ∪ {b} ∨ a ∈ Λ

Λ ∪ {b} ⊢ ab.P | a(x).Q
〈b〉
−−→ Λ ∪ {b} ⊢ P | Q{b/x}

(sync-fresh)

a ∈ Λ ∨ a ∈ Λ b /∈ Λ

Λ ⊢ ab.P | a(x).R
〈b〉
−−→ Λ ∪ {b} ⊢ P | R{b/x}

(sync-open)

a ∈ Λ ∨ a ∈ Λ ∪ {b}

Λ ∪ {b} ⊢ ab.P | a(x).Q
b
−→ Λ ∪ {b} ⊢ P | Q{b/x}

(sync-obs)

a /∈ Λ

Λ ⊢ ab.P | a(x).R
•
−→ Λ ⊢ P | R{b/x}

(sync-inobs)

e) Context:

Λ ⊢ P
µ
−→ Λ′ ⊢ P ′

Λ ⊢ P | Q
µ
−→ Λ′ ⊢ P ′ | Q

(par)

P ≡ P ′ Λ ⊢ P
µ
−→ Λ′ ⊢ Q Q ≡ Q′

Λ ⊢ P ′ µ
−→ Λ′ ⊢ Q′

(struct)

