
HAL Id: hal-00973728
https://hal.science/hal-00973728

Submitted on 4 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HashGraph : an expressive and scalable Twitter users
profile for recommendation

Julien Subercaze, Christophe Gravier, Frédérique Laforest

To cite this version:
Julien Subercaze, Christophe Gravier, Frédérique Laforest. HashGraph : an expressive and scalable
Twitter users profile for recommendation. 2013 IEEE/WIC/ACM International Conference on Web
Intelligence (WI’13), Nov 2013, Atlanta, United States. pp.101-108. �hal-00973728�

https://hal.science/hal-00973728
https://hal.archives-ouvertes.fr

Towards an expressive and scalable Twitter profile

hash for users recommendation

Julien Subercaze, Christophe Gravier, Frédérique Laforest
LT2C, Télécom Saint-Etienne, Université Jean Monnet

20 rue du docteur Rémy Annino, F-42000 Saint Etienne, France
email: firstname.lastname@telecom-st-etienne.fr

Abstract—Microblogging websites such as Twitter
produce tremendous amounts of data each second.
Identifying people to follow is a heavy task that cannot
be completely done by users. Consequently, real time
recommendation systems require very efficient algo-
rithm to quickly process this massive amount of data, so
as to recommend users having similar interests. In this
paper we present a tractable algorithm to build user
profiles out of their tweets. We propose a scalable and
extensible way of building content-based users profiles
in real time. Scalability refers to the relative complexity
of algorithms involved in building the users profiles with
respect to state of the art solutions. Extensibility con-
siders avoiding to recompute the model for newcomers.
Our model is a graph of terms co-occurency, driven by
the fact that users sharing similar interests will share
similar terms. We show how this model can be encoded
as a binary footprint, hence boosting comparison of
profiles. We provide an empirical study to measure how
the distance between users in the hash space differs
from distance between users using standard Informa-
tion Retrieval techniques. This experiment is based on
a Twitter dataset we crawled, and represents 25K users
and 1 million tweets. Our approach is driven by real
time analysis requirements and is thus oriented on a
trade-off between expressivity and efficiency. Experi-
mental results shows that our approach outperforms
vector space model by three orders of magnitude, with
a precision of 58%.

I. Introduction

Microblogging websites such as Twitter produce
tremendous amount of data each second. For instance,
Twitter was known to publish an average of 140 millions
tweets per day as of march 20111. In a single year, this
number has increased up to 340 millions tweets2. In this
context, we address the problem of building a “good” user
profile model, in order to later exploit it in application such
as recommending users to users. We expect a “good” user
profile model that maximizes the following characteristics
:

• Distance-preserving : The distance between users
in the user profile space should preserve the prox-
imity perceived by users with their peers as much
as possible.

• Extensibility : The set of users and their interests
evolves with time. However, it should be possible

1http://blog.twitter.com/2011/03/numbers.html
2http://blog.twitter.com/2012/03/twitter-turns-six.html

to update the model without having to rebuild it.

• Scalability : Algorithms to compute and compare
user profiles should present a complexity as low as
possible.

• Parallellization : These algorithms should also be
easily parallelized, to take advantage of the advent
of Map/Reduce [1] and related paradigms.

• Explainability : Recommender systems should be
able to produce human-understandable justifica-
tions of a recommendation.

In this paper we present a new approach to create and
compare profiles of social network users. The solution ex-
ploits user-generated contents. In this model, we generate
a binary footprint of the user profile that preserves the
distance between users profiles in the binary space. Using
a binary footprint provides both scalability and parallel-
lization for computing and comparing hashed user profiles.
Computing Hamming distance between two hashes is a
very fast operation that is computed at the processor level
3 on commodity machines. Moreover, computing newcom-
ers profiles does not require to recompute others’ profiles.
The paper is organized as follows. Section II presents
related works on building user profiles. Section III de-
scribes the core of our proposition, which is a complete
processing of user-generated contents resulting in building
and comparing user profiles. Details on how we deal with
finding representative data structures in the user profile
is provided in section III-A. We apply this approach on
a Twitter dataset that we crawled, and compete with
other content-based techniques, taken from the field of
Information Retrieval. Experimental results validate the
quality and the real-time property of our approach in
section IV. Section V concludes and provides hints for
further investigations.

II. On building social user profiles

Twitter analysis has been applied for folksonomies
homogenisation [2], tag recommendation [3], [4] or as a
corpus for opinion mining and sentiment analysis [5], [6].
It is often used as a datasource for recommender systems.
Among these systems a distinction is done between user
recommendations and user-generated content recommen-
dations. User-generated content recommendations concern

3Recent processors with the SSE4 instruction set allow the com-
putation of hamming distance in two operations, XOR and POPCNT

tweets or external content sources suggestions to users
whereas users recommender systems suggest users to follow
as an output. Both rely on a digital representation of
each user’s features, which is usually called the user’s
profile. The field of recommender systems blossomed with
the advent of Web-scale data analysis, especially with
applications in Web search and social networks. While it
has grown so as to be now considered as a new data science
by itself, we tried to cover how building user’s profile is
performed in the myriad of existing works. Exhaustive
literature reviews with better coverage can be found in
[7], [8], and [9]. To our knowledge, user recommender
systems fall in the following schools of thought: Social
Network Analysis, Collaborative Filtering, Semantic-based
models, and Content-based models. They can also combine
these approach for building hybrid recommender systems.
Our proposal (see Section III) falls into the content-based
model category.

A. Social Graphs

A possible approach to build user profiles is to consider
information from the social network of the user. The
assumption is that the proximity of users in a social
graph conveys the distance between users’ interests, hence
the user recommendation scheme. The proximity between
users mainly relies on concepts such as graph density and
centrality in order to identify key users in the social graph.
In these works, the problem is not taken as ranking all
possible friends to a given user. Instead, it most frequently
aims at finding clusters of users (sometimes referred as
communities) in the social graph. Recommended users are
then picked within the user’s cluster. For instance, in [?],
the authors introduced a users segmentations method
using the Gaussian Mixture Model (GMM). In [10], the
authors look for hubs and authorities in the network and
then identify possible overlapping and dense communities
in the network.

The major issues with Social Network were stressed by
Social Network Analysis studies [11]. They demonstrate
that content and user interactivity prevail over the social
graph of the user. Moreover, note that most of the algo-
rithms applied to social graph are NP-hard problems, and
even applying heuristics or approximations are at best in
polynomial time.

B. Collaborative Filtering

Collaborative Filtering is a very popular research
area for recommender systems. It builds recommendations
based on past item-user interactions, previous ratings of
items by users. It is primarily used in item recommender
systems [12], as competitions are organized around large
publicly available datasets, like the Netflix dataset [13].
They can also be used for user to user and item to item
recommender systems. State of the art implementations
rely on Matrix Factorization methods [14].

Collaborative filtering methods are known to provide
good results given enough data. They suffer from the in-
famous sparse data and cold start problems. Computation
is also at stake when the matrix is in a order of magnitude

of billions of lines and columns. However, given both users
and items are projected in a feature space, they can provide
some justifications for the recommendation they made,
for instance by illustrating the recommendation with close
users-items interactions in the feature space [14].

C. Semantic-based models

Semantic-based models exploit external databases in
order to enrich user profiles, especially linked data. In [15],
the authors presents Flink, a system that builds user pro-
files out of users web pages, emails, and even FOAF pro-
files. FOAF profiles is a cornerstone for these approaches,
since it is the de facto standard for modeling user profile in
the Semantic Web. This category of user profiles usually
complement Collaborative Filtering, as they address the
cold start. Nonetheless, they do not scale well, because
reasoning over logic fragments involved in the Semantic
Web is, even for minimalist fragments like [16] in polyno-
mial time, and at worst NEXPTIME [17]. Regarding the
user recommendation process that follows user profile con-
struction, [18] proposed the use of semantic technologies
for better people recommendation in a system called Social
Adviser. The authors introduced linked data (DBPedia, a
semantized version of Wikipedia) in the content extraction
process. They have also defined specific scores to measure
expertise). Even if no performance analysis is provided,
[19] showed that executing SPARQL queries over the Web
of data takes at least 20 seconds even with all data locally
retrieved in advance, which discards de facto such an
approach for real-time purpose.

D. Content-based models

Content-based models aim at modeling users with
predefined features. For instance, users can present ge-
olocation, gender, age. . . while items could have features
such as metadata, topics, hashtags, etc. There are many
possible features and ways to combine them, thus leading
to as many different models. For instance, [20] builds user
profiles out of folksonomies. From the user personomy, a
bipartite graph is built and greedy algorithm looks for
clusters of tags, and most frequent tags in the cluster serve
as a signature of this cluster.

A large spectrum of works tries to leverage the textual
information that were produced or rated by the user. Our
proposal that follows in Section III falls in this category.
Early popular approaches rely on Vector Space Models
(VSM) [21]. VSM uses frequency measures in text corpus
in order to leverage semantic information.

Frequencies encompass [22] :

• frequencies of terms in documents, for modeling
user interests based on their choice of words.

• frequencies of terms in the context of a given term
for word sense disambiguation.

• frequencies of word pairs with other word pairs, in
order to model latent word pairs semantic related-
ness.

Distance-Preserving Extensibility Scalability Parallelizable Explanations

Social Graphs − + −− − +
Collaborative Filtering + − + ++ +
Semantic-based + − −− − +

Content-based + − −− ++ −

Hybrid ++ −− −− + −−

TABLE I: Pro/cons of differents schools of trends for building user profiles as an input to recommender systems.

Most of these techniques use bags of words to characterize
users or documents [23], [24]. As the bag of words approach
has shown its limitations, machine learning techniques
have been developed to go beyond this representation. The
most popular are continuous Conditional Random Fields
(CRF) [25] and Latent Dirichlet Allocation algorithm [26]
(LDA). Both techniques have been used to represent doc-
uments [27], [28] and LDA has also been used for topic
modeling in social network [29]. The main drawback of
these machine learning techniques is the learning part,
which is prohibitively extensive for real-time processing.
Wallach[27] provides mean execution time for LDA. Re-
sults show that each iteration (around 200 are required)
takes between 2 and 15 seconds. Although presenting
computational issue, these approaches extract knowledge
automatically, thus avoiding the hurdle to create ad hoc
ontologies like in semantic-based approaches.

E. Hybrid methods

Several works tried to combine usually the afore-
mentioned approaches. For instance, [?] combines Social
graph with Collaborative Filtering. They propose Referral
Web, a Web-scale system for searching social networks
for users and items at both coarse and fine grain. In
[30], the authors propose a combination of collaborative
filtering and content-based methods for item recommen-
dation. Another combinaison is Content-based mixed with
Collaborative Filtering as proposed by [31] for improved
recommendations. In [32], twitter users are recommended
some followers using content and Collaborative Filtering
approaches. Hybrid systems are gaining momentum since
they have proven to beat single approach baseline in large
and popular dataset. In lessons learnt from the Netflix
prize in [33], the authors stress the importance of using
a variety of models that complement the shortcomings
of each others. This is however beyond the scope of this
paper. We focus on a proposal falling into the Content-
based category, and expect that improving one of these
categories would improve the overall performance of hybrid
recommender systems. We provide a synoptic view of the
different schools of trends on building user profile in Tab I,
in the light of the criteria presented in Section I that we
want to maximise when building a user profile.

As a conclusion, the real time processing of textual data
cannot be handled efficiently with the use of external data
sources or with machine learning techniques.

In this paper we developed a document centric ap-
proach, with the use of statistics and graph techniques.
Given shortcoming stressed in this section and gathered in
Table I, the aim is to keep the advantages of Content-based

approaches but provide them extensibility and scalability
using heuristics and hash functions. This approach is
described in the next section.

III. Binary user profiles

Our approach is inspired by the paper of Matsuo &
Ishizuka [34] on keyword extraction. In this article the
authors present a method to extract keywords from a
single document using statistical information. In a first
step their algorithm computes the co-occurency matrix
of the terms in each sentence of the document. Then
they apply the following procedure "Co-occurrences of a
term and frequent terms are counted. If a term appears
selectively with a particular subset of frequent terms, the
term is likely to have an important meaning. The degree
of bias of the co-occurrence distribution is given by the
χ2-measure."

We adapt the approach of Matsuo & Ishizuka for user
profile extraction on twitter. Documents are built from
users’ tweets contents. The χ2-measure is later used in
their algorithm to extract relevant keywords or keyphrases,
the other words of interest being discarded. In our ap-
proach we aim at keeping all relevant words in the users’
profiles, with corresponding weights.

The main steps for user recommendation using our
HashGraph approach are the following:

1) Grab text from user tweets so as to build a
document representing the user

2) Preprocess the document
3) Build the graph of terms
4) Compute the hash of the profile
5) Identify the top-k closest users and recommend

them

Figure 1 (inspired by [35] to compare keyword ex-
traction processes) summarizes this process. This process
must be computable in a real time fashion, so as to react
"instantaneously" to the evolution of users tweets topics.

Some of these steps do not deserve much attention. In
the following we focus on two main actions in these steps.
The first action is to transform a document containing
a sequence of short text messages into a graph of terms.
We present the method for this transformation in section
III-A. Since we focus on a real time algorithm, we discuss
the complexity of the algorithms used. The second action
concerns hashing user profiles and computing a distance
between hashed profiles. It is the object of section III-B.

We define an undirected weighted graph of terms G =<
V, E > where V is the set of vertices (i.e. the terms) and

E is the set of edges. E is an application from V to V . To
each e ∈ E, a weight w is associated :w ∈ ℜ, where w is
the proximity between the two terms.

A. User profile as graphs of terms

We process the tweets using standard text analysis
steps. Instead of sentences split, our algorithm consider
a tweet as a sentence, i.e. all the words in a tweet are co-
occurring, even if they belong to two different sentences
in the same tweet. The idea being to consider a tweet as
a unity in terms of performative speech act. The terms
are then stemmed using a standard Porter-stemming al-
gorithm. From the set of terms, we restrict the set of
candidate terms for building the graphs to the lemmatized
tokens and extracted n-grams minus the stopwords. Part
of speech tagging is used to extract only nouns, verbs and
adjectives from the tweets. Afterwards we build the co-
occurrence matrix of the terms based on a tweet (and not
a sentence) split. Table II presents an example of a co-
occurrence matrix.

Once the co-occurrence matrix is built, we transform it
into a graph representation. Several approaches are possi-
ble. The naive approach would consider the co-occurrence
matrix as an adjacency matrix of the graph. We have
decided to consider rows of the matrix as an occurence
probability distribution and to compare distributions of
terms using statistical divergence measure.

a b c d e Total

a 3 4 2 1 10
b 3 0 0 2 5
c 4 0 4 0 8
d 2 0 4 6 12
e 1 2 0 6 9

TABLE II: Co-Occurrence matrix example

If we normalize the values of each row in the matrix
so that the sum is equal to one and assuming that terms
are independently occurring, we can consider the rows of
the co-occurrence matrix to be a distribution probability.
This means that for row of term a, each cell represents the
probability that terms a co-occur with an other one. Table
III presents the normalized values for the first row.

a b c d e Total

frequency 3 4 2 1 10
probability 0.3 0.4 0.2 0.1 1

TABLE III: Co-occurence frequency and probability for
the term a

For instance probability of co-occurrence of a and c is
0.4. To determine wether two terms belong to a same topic,
it is possible to evaluate the distance of their co-occurrence
probability distribution. Several statistical measures pro-
vide either divergence or metrics, we used the square root
of the Jensen-Shannon divergence.

Very different terms have a low Jensen-Shannon diver-
gence. They are not of interest in our approach, thus we
set a threshold to select the interesting value. A commonly

Sparsity Average 0.075
Sparsity standard derivation 0.15

TABLE IV: Sparsity of the co-occurrence matrix - Based
on the tweets dataset

adopted threshold is 0.95 × log(2) [34]. We ran several
tests on our dataset and agreed with this value. We then
build the graph of the terms using the selected values. The
results for the co-occurrence matrix of our example are
depicted in figure 2.

a b

c d

e

0.86

0.26

0.72

0.44

0.77

0.21

0.40

0.45

0.81

0.69

Fig. 2: Graph of terms example using table II
co-occurrence matrix

Computing the divergence between two discrete prob-
ability distributions of N events requires N×(N−1)

2 opera-
tions for comparison between rows times N−1 comparisons
between each pi and qi. This complexity seems prohibitive
but in fact co-occurrence matrices are very sparse; conse-
quently the number of operations is drastically reduced.
Analysis from the dataset are presented in Table IV. In
the average only 7.5% of the values are defined in the
matrix. This seems logical since few terms co-occur with
other terms. We observe that users with few tweets (≤ 25)
have more dense matrix than users that have much more
tweeted. This means that when the matrices are dense,
their size is very small, thus the total computation time
remains low. We also noticed that users that tweet very
much (≥ 400) and that have abnormal small and dense
matrices are users that generate automatically their con-
tent such as services providing regularly news from their
website using a few templates to generate their tweets. For
example a web dictionary that would tweet "‘The word
FOO has been defined, check out http://mydict/FOO"’
each time a new word is defined, it would be affected a
small and dense matrix. Consequently one could use the
deviation to the average of the co-occurrence matrix in
order to detect spam and automatic generated content.

Optimization: To speed-up the graph computation,
it is possible to take advantage of the fact that the square
root of the JS divergence is a metric. Considering geo-
metrically the relations between three points a, b, c where
the distance between a and b and between b and c are
known, it is possible to obtain an upper bound for the
distance between a and c. Since the square root of Jensen-
Shannon is a metric, it verifies the triangle inequality i.e.
|a, c| ≤ |a, b| + |b, c|. Considering the fact that we discard
distances inferior to a given threshold, we can use the
upper bound from the triangle inequality to know without

Twitter username :

How many friends :

@user

k

Search friends

Tweet querier@user

Twitter API

@
u

se
r

{tw
eets}

Text preprocessing
(Stopwords, POS)

Co-occurencer

{tweets}

Graph Builder
(Jensen-Shannon

divergence

threshold s = 0.3)

3

a b c d
a

b

6

7

9

5

 2

c

d

a,b,c,d : terms from cleaned tweets

co-occurence matrix

a

c

b

d

0.3

0.6 0.7

0.9

in-memory

graph model

Graph

Signature

SimHash())

node N bits hash depending on method
a
b
c

1100101010001...................... 01101111

0100100010111...................... 11000000

0000011110100...................... 00101011

(result of Simhash() applied to

values of a,b,c)

1110101.... 0101011

Hash of the graph

ArgMax

(top-k users

closest to @user)

k

1110101.... 0101011

possible friends

dataset

25.000 users
1 million of tweets
user pro�les : precomputed hashes

R = {user} / |R| ≤ k

You may want to follow :

@user1 Tweets Follow !

@user2 Tweets Follow !

@userk Tweets Follow !

....

WI

attendee

Querying

using in-house API

Step 1

Step 2

Fig. 1: Successive steps of the algorithm. We propose with the paper an online demonstration to WI 2013 attendees.

calculating if the distance will be sufficient. If the upper
bound is smaller than the threshold, then calculating the
distance would be superfluous. In the worst case, if all the
distances are over the threshold then the gain is null. In
the best case, the two third of the distances helped to avoid
the computation of the last third. Thus the maximum
reduction is of N/3 operations. In practice, we observed a
gain around 8%, which is not to be neglected when dealing
with large amount of data.

B. Hashing user profiles and distance between profiles

Using the technique presented before, each user can
have his/her profile modeled as an undirected weighted
graph, whose vertices are terms extracted from the user’s
tweets. We then require to compute a compact footprint
of this graph, that can be used for both storage and com-
parison. We have investigated different options to encode a
graph as a bit array, so that the Hamming distance could
be used as a similarity metric between user profiles, and
can also be highly prone to be inserted in a Map/Reduce
implementation [1].

We found a representative hash function of our user
profile modeled as a graph of terms. An important review
and some approaches on hashing graphs can be found in
[36]. [37] proposed SimHash, a hash function for generating
a footprint out of a graph. SimHash can be applied to any
kind of resource (document, images . . .), and in our case
a graph.

In SimHash, the resource, usually a document, is split-
ted into token, possibly weighted. Each token is then
represented as its hash value, as the result of a traditional
cryptographic function applied to the token, which is
originally a string. Then, a vector V, of length of the
desired hash size, is initialized to 0. For each hash value for

the set of tokens, the ith element of V is decreased by the
corresponding token’s weight if the ith bit of the hash value
is 0. Otherwise, the ith element of V is increased by the
corresponding token’s weight. SimHash works well even for
small fingerprints [37], and was historically applied to the
detection of near-duplicates of web crawl graphs.

We use SimHash to compute binary user profiles by
hashing graph of terms with the following settings:

• As SimHash features : the set of edges and vertices
of the graph of terms.

• As Simhash edges weights : the normalized Jensen-
Shannon divergence values, which is the edge’s
weight.

Nodes and edges must be manipulated as a bit array
in SimHash. The hash values, depending on the hash func-
tion used are very compact. For example, with the MD5
algorithm, user profiles are 128 bits long, thus allowing to
store 64 millions profiles in 1GB. Using MD5, it allows
us to manage 820 billions profiles with a collision proba-
bility around 10−15. We tested several hash functions, as
presented in our evaluation in the next section.

Finding users to recommend is thus solved as getting
the top-k closest hashed profiles using a Hamming dis-
tance, which has the property to be rapidly computed and
easily parallelizable.

IV. Experimental results

A. Building dataset

Twitter users share messages called tweets that are
limited to 140 characters. Using the public API of Twitter
it is possible to retrieve tweets of any user that has not

set its profile private (which is in practice very rare). A
users’s sequence of tweets is commonly called the user’s
timeline. To create a user’s profile, one could choose either
to retrieve all the tweets from the timeline or to select a
subset from this timeline. A common intuition is that all
the tweets, especially the very old ones may not be of great
interest, then selecting a subset would be appropriate. To
ensure our choice, and in order to determine the most
interesting subset, we conducted some tests on our dataset.
In case of analyzing a subset, we then have to determine
how to limit this subset : should it be time limited or
bounded by a number of tweets.

We first crawled up to 1K tweets for 5K users. We
then analyzed how many tweets users actually wrote, and
their distribution among time. Table V presents some basic
analysis of the collected dataset.

Average tweets per user ≈ 120
Standard deviation of tweets per user ≈ 212
Average interval between two tweets ≈ 6 days

Standard deviation between two tweets ≈ 240 days

TABLE V: Tweets distribution

Distribution over time is biased by numbers of accounts
that produced a few tweets at account creation and later
remain unused. However the distribution over time is not a
very precise indicator. There is a very broad range of usage
patterns. One may tweet regularly whereas one other may
tweet once in a while. Therefore it is very difficult to setup
a relevant time window.

The average tweets number per user is surprisingly
low on the sample, however the standard deviation being
higher than the mean is an indicator of high volatility of
the measure.

The volatility of the results shows that once again
it is hard to decide wether we should limit the subset
on a temporal or on a numerical basis. Since a decision
had to be made, our choice went to a numerical basis,
for the simplicity and stability of data harvest. From the
cumulative results, we were able to select the number of
tweets per user to extract, in order to cover the largest set
of users. Technically the Twitter API provides 200 tweets
per page. Splitted into interval of 200 tweets, we present
the distribution in table VI.

Limits Percentage of users

200 81,6%
400 92,48%
600 95,43%
800 96,25%

TABLE VI: Percentage of users having less than a given
number of tweets

Requests to the Twitter API are limited and time-
costly. Since the gain between 600 and 800 is less than
1%, we decided to set the limit at 600 tweets per user,
which seemed to us to be an acceptable trade-off.

We then gathered about 1 million tweets for around
25K users. The tweets are stored on a three machines

Cassandra-cluster4. Due to the current Twitter’s terms of
services we are unfortunately not able to publicly provide
this dataset.

B. Runtime and Quality

We compared our approach against standard Vector
Space Model approach. For this purpose, we implemented
our solution in Java without any particular optimisation.
As a baseline we used the Lucene5 based TF/IDF vectors
with the cosine similarity.

Although containing only 25K Twitter users, our
dataset contain more than one million terms in the Lucene
index, therefore the curse of dimension would have disas-
trous consequence on cosine similarity computation with
such high dimensional vectors. Therefore, we precomputed
TF/IDF vectors for various number of frequent terms, we
also precomputed hashes using our approach with three
cryptographic hash methods : MD5, SHA-256 and SHA-
512. Precomputation time are depicted in figure 4. The
difference of precomputation time for 25K users between
TF/IDF and our approach HashGraph (20 seconds vs 110
seconds) could be overcome by implementation optimisa-
tion. One should not forget that we compare an optimized,
in-production solution (Lucene) with a research prototype.
This difference should not obscure that the average time
required to precompute a binary user profile is only 5
milliseconds.

The running times for the four methods are shown in
figure 3. The x axis shows the number of distance compar-
isons performed. The slight decrease at the beginning of
the HashGraph curves is counter-intuitive and is to our
opinion, to be attributed to the Java JIT compiler warm
up phenomenon.

The HashGraph algorithm clearly outperforms the
cosine similarity by three orders of magnitude. For in-
stance, to compute 10 millions comparisons between pro-
files, the cosine similarity requires 150 seconds, while
HashGraphMD5 requires only 253 milliseconds. As one
would expect from simple complexity analysis, the running
time grows linearly in the number of comparison for both
methods.

To determine the quality of our approach against
the baseline, we use the standard root-mean-square er-
ror (RMSE) on pairwise distances between users on the
dataset. The distance between two users ui, uj in the base-
line is the standard cosine similarity denoted cos(ui, uj).
Let vi, vj being two TF/IDF vectors representing users ui

and uj . The similarity is defined as follows :

sim(ui, uj) =
vi × vj

||vi||.||vj ||
(1)

The distance between two hashes is the normalized
version of the standard hamming distance.

4http://cassandra.apache.org/
5http://lucene.apache.org/

0 0.2 0.4 0.6 0.8 1 1.2

·107

102

103

104

105

Comparisons

C
o
m

p
u
ta

ti
o
n

T
im

e
(m

s)

TF/IDF1K

TF/IDF10K

HashGraphMD5

HashGraphSHA-256

HashGraphSHA-512

Fig. 3: Running time of TF/IDF 1K vs HashGraphMD5.

T
F

/
ID

F
1
K

T
F

/
ID

F
5
0
K

H
a
sh

G
ra

p
h

M
D

5

H
a
sh

G
ra

p
h

S
H

A
2
5
6

H
a
sh

G
ra

p
h

S
H

A
5
1
2

104.5

105

C
om

p
u
ta

ti
on

T
im

e
(m

s)

Fig. 4: Precomputation time

We computed the precision on the set of users using
the following RMSE :

1 −

√

√

√

√

N
∑

i=0

N
∑

j=i

(sim(ui, uj) − hamming(ui, uj))2 (2)

The obtained RMSE, regardless of the number of fre-
quent terms used in the cosine similarity distance is greater
than 0.5. It also appears that the choice of hash function in
simhash doesn’t have much influence on the RMSE. Since
MD5 provides the most compact representation with 128
bits, it will be our method of choice.

103 104 105

0.4

0.45

0.5

0.55

0.6

Frequent terms in the TF/IDF legend style

P
re

ci
si

o
n

HashGraphMD5

HashGraphSHA256

HashGraphSHA512

Fig. 5: Precision (1-RMSE) of the different HashGraph
functions against TD/IDF with various frequent terms

V. Conclusion

In this paper we have proposed a novel technique for
designing very compact and scalable user profile based on
the content generated by users. Our approach generates
a graph of terms from the content, this graph is finally
hashed using the HashGraph algorithm. The experimental
results demonstrate the computational efficiency of the
approach as well as its quality using Vector Space Model
as a baseline.

However, Vector Space Model is no golden standard.
The computed precision in this paper allows us to conclude
that the results obtained with HashGraph are coherent
with state of the art content based user profile. There-
fore further research will aim to determine the perceived
quality of recommandation through user evaluation, as
well as enhancing the descriptive power of our approach
by focusing on the design of a dedicated family of hash
functions.

Demontration

If this paper is accepted, an interactive online demon-
stration will be available for WI2013 participants.

References

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data pro-
cessing on large clusters,” in Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation
- Volume 6, ser. OSDI’04. Berkeley, CA, USA: USENIX
Association, 2004, pp. 10–10.

[2] E. Zangerle, W. Gassler, and G. Specht, “Using tag recommen-
dations to homogenize folksonomies in microblogging environ-
ments,” Social Informatics, pp. 113–126, 2011.

[3] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W. Lee, and C. Giles,
“Real-time automatic tag recommendation,” in Proceedings
of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval. ACM,
2008, pp. 515–522.

[4] W. Wu, B. Zhang, and M. Ostendorf, “Automatic generation
of personalized annotation tags for twitter users,” in Human
Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, 2010,
pp. 689–692.

[5] A. Pak and P. Paroubek, “Twitter as a corpus for sentiment
analysis and opinion mining,” Proceedings of LREC 2010, 2010.

[6] A. Go, L. Huang, and R. Bhayani, “Twitter sentiment analysis,”
Entropy, vol. 2009, no. June, p. 17, 2009.

[7] G. Adomavicius and A. Tuzhilin, “Toward the next generation
of recommender systems: A survey of the state-of-the-art and
possible extensions,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 17, no. 6, pp. 734–749, 2005.

[8] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T.
Riedl, “Evaluating collaborative filtering recommender sys-
tems,” ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 5–53, Jan.
2004.

[9] P. Lops, M. Gemmis, and G. Semeraro, “Content-based Rec-
ommender Systems: State of the Art and Trends Recom-
mender Systems Handbook,” in Recommender Systems Hand-
book, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds.
Boston, MA: Springer US, 2011, ch. 3, pp. 73–105.

[10] A. Java, X. Song, T. Finin, and B. Tseng, “Why we twit-
ter: understanding microblogging usage and communities,” in
Proceedings of the 9th WebKDD and 1st SNA-KDD 2007
workshop on Web mining and social network analysis, ser.
WebKDD/SNA-KDD ’07. NY, USA: ACM, 2007, pp. 56–65.

[11] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao,
“User interactions in social networks and their implications,” in
Proceedings of the 4th ACM European conference on Computer
systems, ser. EuroSys ’09. New York, NY, USA: ACM, 2009,
pp. 205–218.

[12] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “The
adaptive web,” P. Brusilovsky, A. Kobsa, and W. Nejdl, Eds.
Berlin, Heidelberg: Springer-Verlag, 2007, ch. Collaborative
filtering recommender systems, pp. 291–324.

[13] J. Bennett, S. Lanning, and N. Netflix, “The netflix prize,” in
In KDD Cup and Workshop in conjunction with KDD, 2007.

[14] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization
techniques for recommender systems,” Computer, vol. 42, no. 8,
pp. 30–37, Aug. 2009.

[15] P. Mika, “Flink: Semantic web technology for the extraction
and analysis of social networks,” Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 3, no. 2, pp.
211–223, 2005.

[16] S. Muñoz, J. Pérez, and C. Gutierrez, “Minimal deductive sys-
tems for rdf,” in The Semantic Web: Research and Applications.
Springer, 2007, pp. 53–67.

[17] H. J. ter Horst, “Completeness, decidability and complexity of
entailment for rdf schema and a semantic extension involving
the owl vocabulary,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 3, no. 2, pp. 79–115, 2005.

[18] J. Stan, V.-H. Do, and P. Maret, “Semantic user interaction
profiles for better people recommendation,” in ASONAM, 2011,
pp. 434–437.

[19] O. Hartig, C. Bizer, and J. Freytag, “Executing sparql queries
over the web of linked data,” The Semantic Web-ISWC 2009,
pp. 293–309, 2009.

[20] C. man Au Yeung, N. Gibbins, and N. Shadbolt, “A study
of user profile generation from folksonomies.” in SWKM,
ser. CEUR Workshop Proceedings, P. Dolog, M. KrÃűtzsch,
S. Schaffert, and D. Vrandecic, Eds., vol. 356. CEUR-WS.org,
2008.

[21] G. Salton, A. Wong, and C.-S. Yang, “A vector space model

for automatic indexing,” Communications of the ACM, vol. 18,
no. 11, pp. 613–620, 1975.

[22] P. D. Turney and P. Pantel, “From frequency to meaning: vector
space models of semantics,” J. Artif. Int. Res., vol. 37, no. 1,
pp. 141–188, Jan. 2010.

[23] O. Phelan, K. McCarthy, and B. Smyth, “Using twitter to
recommend real-time topical news,” in Proceedings of the third
ACM conference on Recommender systems. ACM, 2009, pp.
385–388.

[24] J. Hannon, M. Bennett, and B. Smyth, “Recommending twit-
ter users to follow using content and collaborative filtering
approaches,” in Proceedings of the fourth ACM conference on
Recommender systems. ACM, 2010, pp. 199–206.

[25] J. Lafferty, A. McCallum, and F. Pereira, Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Se-
quence Data. Morgan Kaufmann, San Francisco, CA, 2001,
vol. CONF 18, pp. 282–289.

[26] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,”
The Journal of Machine Learning Research, vol. 3, pp. 993–
1022, 2003.

[27] H. Wallach, “Topic modeling: beyond bag-of-words,” in Pro-
ceedings of the 23rd international conference on Machine learn-
ing. ACM, 2006, pp. 977–984.

[28] F. Peng and A. McCallum, “Information extraction from re-
search papers using conditional random fields,” Information
processing & management, vol. 42, no. 4, pp. 963–979, 2006.

[29] M. Pennacchiotti and S. Gurumurthy, “Investigating topic
models for social media user recommendation,” in Proceedings
of the 20th international conference companion on World wide
web. ACM, 2011, pp. 101–102.

[30] S. Debnath, N. Ganguly, and P. Mitra, “Feature weighting in
content based recommendation system using social network
analysis,” in Proceedings of the 17th international conference
on World Wide Web. ACM, 2008, pp. 1041–1042.

[31] P. Melville, R. J. Mooney, and R. Nagarajan, “Content-boosted
collaborative filtering for improved recommendations,” in Eigh-
teenth national conference on Artificial intelligence. Menlo
Park, CA, USA: AAAI, 2002, pp. 187–192.

[32] J. Hannon, M. Bennett, and B. Smyth, “Recommending twit-
ter users to follow using content and collaborative filtering
approaches,” in Proceedings of the fourth ACM conference on
Recommender systems, ser. RecSys ’10. New York, NY, USA:
ACM, 2010, pp. 199–206.

[33] R. M. Bell and Y. Koren, “Lessons from the netflix prize
challenge,” SIGKDD Explor. Newsl., vol. 9, no. 2, pp. 75–79,
Dec. 2007.

[34] Y. Matsuo and M. Ishizuka, “Keyword extraction from a single
document using word co-occurrence statistical information,”
International Journal on Artificial Intelligence Tools, vol. 13,
no. 1, pp. 157–170, 2004.

[35] T. Zesch and I. Gurevych, “Approximate matching for evalu-
ating keyphrase extraction,” in Proceedings of the 7th Inter-
national Conference on Recent Advances in Natural Language
Processing. Citeseer, 2009, pp. 484–489.

[36] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web
graph similarity for anomaly detection,” Journal of Internet
Services and Applications, vol. 1, no. 1, pp. 19–30, 2010.

[37] M. Charikar, “Greedy approximation algorithms for finding
dense components in a graph,” Approximation Algorithms for
Combinatorial Optimization, pp. 139–152, 2000.

