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ON A SELECTION PRINCIPLE FOR MULTIVALUED SEMICLASSICAL FLOWS

AGISSILAOS ATHANASSOULIS, THEODOROS KATSAOUNIS, AND IRENE KYZA

Abstract. We study the semiclassical behaviour of solutions of a Schrödinger equation with a scalar po-
tential displaying a conical singularity. When a pure state interacts strongly with the singularity of the
flow, there are several possible classical evolutions, and it is not known whether the semiclassical limit cor-

responds to one of them. Based on recent results, we propose that one of the classical evolutions captures
the semiclassical dynamics; moreover, we formulate a selection principle for the straightforward calculation

of the regularized semiclassical asymptotics. We proceed to investigate numerically the validity of the pro-
posed scheme, by employing a solver with a posteriori error control for the Schrödinger equation. Thus, for
the problems we study, we generate rigorous upper bounds for the error of the asymptotic approximation.
For 1-dimensional problems without interference, we obtain compelling agreement between the regularized
asymptotics and the full solution. In problems with interference, there is a quantum effect that seems to
survive in the classical limit. We discuss the scope of applicability of the proposed regularization approach,
and formulate a precise conjecture.

Keywords: semiclassical limit for rough potential, smoothed Wigner transform, selection principle, a poste-
riori error control

1. Introduction

The study of the Schrödinger equation in the semiclassical regime

(1)
i~u~

t +
~2

2
∆u~ − V u~ = 0, u~(t = 0) = u~

0 ,

‖u~

0‖L2(Rd) = 1, ~ ≪ 1

arises naturally in many problems of mathematical physics. A standard physical interpretation is that of
the dynamics for a quantum particle, the behaviour of which is expected to resemble classical mechanics as
~ → 0, hence the term “semiclassical”. Since the full solution of (1) becomes intractable for ~ ≪ 1, several
asymptotic techniques have been developed for its approximation.

Semiclassical asymptotics can be said to be completely understood for problems with V ∈ C1,1(Rd);
difficulties arise for less regular potentials. In this work we will investigate some of these difficulties, and
possible ways to address them.

In section 1.1 some of the main motivations for the type of problem we consider are discussed. In section
1.2 we describe the particular problem that we investigate, and in section 1.3 the main results are reported.

1.1. Motivation and applications. Long distance propagation of many wave problems can be studied as
a semiclassical limit, see [19, 33]. Even for different types of equations, the difficulties caused by non-smooth
coefficients are essentially similar to what we study here. A related type of problems also appear in the
homogenisation of lattices [20, 31].

Schrödinger equations are well known to appear in the context of paraxial approximation to the propagation
of hyperbolic waves (see e.g. [8] and references therein for examples in acoustics, as well as [25] for optics).
In practical long distance problems (e.g. in geosciences and optics) the paraxial approximation is often
employed, and it leads to the semiclassical Schrödinger equation. This is then used as the basis for efficient
numerical and asymptotic treatment [30, 26]. Often the appearance of Lipschitz coefficients is an essential
part of the modelling of the underlying physical problem [14].
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2 ATHANASSOULIS, KATSAOUNIS, AND KYZA

Systems of the form (1) with symmetric matrix-valued potentials (smooth in x) are typically diagonalised
[19]. In most regions they decouple to several scalar Schrödinger equations; in some places there exist
eigenvalue crossings, which can be thought of as several coupled Schrödinger equations with potentials that
exhibit conical singularities. This is a topic with huge literature, but still not completely understood, see
e.g. [17, 24] and the references therein. The scalar Schrödinger equation with conical singularity, is thus a
one-step-easier version of that problem, as pointed out in [18, 24].

One of the prime sources of eigenvalue crossing problems is quantum molecular dynamics under the
Born-Oppenheimer approximation. In that framework, a version of (1) is formulated for the wavefunction
of the nuclei. The potential V then models the nucleus-nucleus interaction (repulsive Coulomb) as well as
an effective potential representing the contribution from electrons, which are taken to relax ‘instantaneously’
to a state defined by the position of the nuclei. The effective electronic potential then exhibits conical
singularities due to electronic eigenvalue crossings. The small parameter ~ then stands for the ratio of nuclear
to electronic masses, typically 10−3 − 10−4. For a thorough mathematical exposition of the derivation of the
Born-Oppenheimer approximation see the monograph [35]; for the state of the art study of the semiclassical
limit, which takes fully into account the rough potential that appears, see [3, 4].

Finally let us remark that semiclassical limits of nonlinear Schrödinger equations give rise to effective
potentials that are non-smooth, and this can be seen as the source of many of the analytical difficulties in
their study. Perhaps the nonlinear problem with the closest relation to the conical singularity is the one-
dimensional semiclassical Schrödinger-Poisson [36]. The self-interaction potential in that case is essentially
the Green’s function for the Laplacian, i.e. the conical singularity |x|. The state of the art for the aforemen-
tioned problem, is that the Wigner measure (see section 2.1) is one of the measure-valued weak solutions for
the Vlasov-Poisson, but the selection principle is not known [36]. In particular, the regularization studied
here for linear problems makes sense for the Schrödinger-Poisson as well, and in principle the same approach
can be employed to investigate the 1-d semiclassical Schrödinger-Poisson as well.

1.2. Precise setting of the problem. We will focus on problems with potentials having “conical singular-
ities”. Intuitively, these are potentials with corners. Technically, different definitions have been used for this
class. In a more abstract manner, one can require that

(2) V (x), ∂xV (x) ∈ L1, ∂2
xixj

V ∈ M(Rd) ∀i, j = 1, ..., d,

where M(Rd) are the measures of bounded total variation on Rd. A narrower definition is that there exist
real valued functions V0, w, g ∈ C∞(Rd) such that

(3) V (x) = V0(x) + w(x)|g(x)|.

To fix ideas, we will work with (3) unless otherwise specified.
The problem we investigate is the asymptotic treatment of the IVP (1) for ~ ≪ 1 with a potential exhibiting

conical singularities. The precise state of the art for the problem is given by [4, 18], and discussed in section
2.3. Full interaction of the wavefunction with the singularity (the point where V fails to be smooth) is
the quantum version of a particle being in “unstable equilibrium” on a non-smooth local maximum of the
potential. (For a precise definition of full interaction see definition 2.1) When that happens, it is in general
not possible to predict how the wavefunction, or even the coarse-scale observables (position density, current
density etc) will evolve.

To take a very simple example, in the problem

i~u~

t +
~2

2
∆u~ + |x|u~ = 0, u~(t = 0) = ~−

1
4 a0(

x√
~
) ∈ L2(R),

it is not known how to approximate either u~(t), or even
∫

x<0

|u~(x, t)|2dx short of solving the full problem.

This model problem and its extensions can be seen as simplified versions of crossing eigenvalue interactions,
as well as caustics in the nonlinear Schrödinger-Poisson equation. Indeed this was the motivation for recent
works on the same problem [4, 18].

In this work we formulate a regularized asymptotic scheme building on [5, 6], and we investigate whether
it gives the correct asymptotics for the full interaction of pure states with the singularity. The core idea
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is to derive a transport equation for a macroscopic phase-space (i.e. position - momentum (x, k)) density
ρ~(x, k, t), namely

(4) ∂tρ
~ + 2πk · ∂xρ~ − 1

2π
∂xV (x) · ∂kρ~ = 0, ρ~(t = 0) = ρ~0 ,

which is well-posed, easy to solve numerically, and controls the macroscopic observables of the problem in an
appropriate sense. This is a modification of the well known Wigner measure approach, which is outlined in
section 2. In a nutshell, a problem of the form

(5) ∂tρ
0 + 2πk · ∂xρ0 −

1

2π
∂xV (x) · ∂kρ0 = 0, ρ0(t = 0) = ρ00,

is solved for the Wigner measure ρ0(t). This limit problem (5) is no longer well posed when V /∈ C1,1, hence
it is necessary to seek a regularization. Thus problem (4) is a regularization of (5), with the initial datum
ρ~0 containing some additional ~−dependent (“quantum”) information as compared to ρ00. A more detailed
presentation of existing phase-space methods and the scheme we propose is provided below.

At this point it is appropriate to mention a special case of full interaction with the singularity: when two
wavepackets arive on the same point in phase-space, at the same time, from different trajectories, then we
say we have interference. This can only happen on singular points of the flow, since regular bicharacteristics
do not intersect each other. We note that this use of the term interference coincides with the one in [32].
We will have to differentiate between problems with and without interference, and as we will see there are
qualitatively different behaviours in these types of problems.

1.3. Main results. The main contributions of this work are the following:

(i) The formulation of a broadly applicable regularization of standard semiclassical asymptotics, which
yields practical asymptotic schemes for problems with non-smooth potentials V as in (2).

(ii) The systematic investigation of the validity of the proposed regularized asymptotics for concrete 1-
dimensional problems, which yields compelling evidence for its generic validity, as well as a quan-
titative understanding on its limitations. This is done by generating rigorous upper bounds for the
asymptotic error of the regularized scheme in each case. It must be stressed that the ability of any
classical scheme to capture correctly these singular interactions, is far from taken for granted in the
semiclassical community.

(iii) The tools required to carry out (ii), are also novel. This is the first time that an adaptive algorithm
with rigorous a posteriori error control is used to investigate systematically a Schrödinger equation
in a singular regime.

The main idea for the regularized asymptotic scheme is the following: given a problem of the form (1), for
some σx, σk ∈ (0, 1] set

W̃ ~[u](x, k) =
( √

2√
~σx

)d ∫
y,x′

e
−2πiky− ~π

2 σ2
ky

2− 2π
~

|x−x′|2
σ2
x u(x′ + y~

2 )u(x′ − y~
2 )dx′dy,

∂tρ
~ + 2πk · ∂xρ~ − 1

2π
∂xV (x) · ∂kρ~ = 0, ρ~(t = 0) = W̃ ~[u~

0 ].

Then this problem is well-posed, and it is proposed that for all t = O(1),

lim
~�0

〈W̃ ~[u~(t)]− ρ~(t), φ〉 = 0 ∀φ in an appropriate class of test-functions.

This would allow the effective asymptotic approximation of the observables of u~(t) through the macroscopic
phase-space density ρ~(t); for more details and context see section 3.1. The Hypothesis that the afore-
mentioned scheme indeed provides a good description of the full quantum dynamics will be referred to as
Hypothesis 1 from now on.

Using a solver for the semiclassical Schrödinger equation which provides rigorous upper bounds on the
error of the approximate solution [23], we investigate numerically whether Hypothesis 1 holds for concrete
problems. (See section 4.2 for a precise statement of the rigorous error control result). The Schrödinger
equation has very rich abstract theory (existence, uniqueness, mass and energy conservation etc), but the
empirical rules of thumb, which allow the qualitative understanding of its behaviour, break down due the
lack of smoothness. Here the abstract theory is fully exploited by the solver, with much weaker regularity
constraints.
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Mathematically speaking, one of course cannot investigate the limit as ~ → 0 by solving for particular
small values of ~. However, in most practical semiclassical problems, ~ is not much smaller than 10−4. Thus,
investigating the validity of our scheme for ~ ≈ 10−2 to ~ ≈ 10−4 is possibly even more interesting than
the limit ~ → 0. Here we work for ~ ∈ [5 · 10−3, 10−1], having put the emphasis into ensuring stability and
consistency in the problems that we solve, rather than pushing computations for very small values of ~. In
any case the behaviour we observe seems to be quite robust, and stabilizes very quickly (more or less for
~ ≈ 10−2).

In the case of non-interference (defined in section 1.2), Hypothesis 1 holds in the problems examined,
and it is suggested that it should be expected to hold more generally. Moreover, non-interference should be
considered to encompass the “generic interaction” with the singularity (in the sense that in general it would
be improbable that two wavepackets collide exactly on the singularity).

For problems with interference, Hypothesis 1 seems to not hold. In the problem that we examine, we
see substantial discrepancy between the proposed semiclassical asymptotics and the full quantum dynamics.
That said, we do observe a stable pattern emerging in interference problems – one that seems to be up to
around 5% different from what Hypothesis 1 would predict.

1.4. Structure of the paper. Background on semiclassical asymptotics and phase-space methods in par-
ticular is presented in section 2. With sufficient context, we then proceed to a more complete formulation of
our Hypothesis in section 3, including its main qualitative implications, and why it gives rise to a well defined,
practical asymptotic scheme. We discuss the numerical methods used for the computational simulation of
both the full quantum dynamics and the classical approximation in section 4. Finally the numerical results
are presented along with some processing that helps their interpretation can be found in section 5.

2. Phase-space methods for semiclassical asymptotics

2.1. The Wigner transform. To study the semiclassical behavior of (1), we will use the Wigner transform.
For a self contained introduction, as well as the state of the art for smooth potentials, one should consult the
references [27, 19]. Here the aim is to present a brief but self-contained introduction. For any f ∈ L2(R), its
Wigner transform (WT) is defined as

(6) W ~[f ](x, k) =

∫

y

e−2πikyf(x+
~y

2
)f̄(x− ~y

2
)dy.

This transform will be applied to the wavefunction u~(t); we will use the shorthand notations W ~(x, k, t) =
W ~[u~(t)](x, k), W ~

0 = W ~[u~
0 ] when there is no danger of confusion. In principle, the WT contains the

same information as the original wavefunction, but unfolded in phase space, i.e. position-momentum space
{(x, k)}. It can be seen to satisfy a well-posed equation in phase-space, namely

(7)
∂tW

~(x, k, t) + 2πk · ∂xW ~(x, k, t)+i

∫
e−2πiSy

V (x+ ~

2y)− V (x− ~

2y)

~
dy W ~(x, k − S, t)dS = 0,

W ~(t = 0) = W ~

0 .

The merit of the WT lies in its behavior as ~ → 0. The idea is that given a sequence of solutions of (1),
{u~n(t)} with lim

n→0
~n = 0, then (up to extraction of a subsequence) its Wigner measure (WM) W 0(t) is

defined as an appropriate weak-∗ limit of

(8) W ~(t) ⇀ W 0(t) ∈ M1
+(R

2d),

where M1
+(R

2d) are the probability measures on phase-space. Moreover, the WM satisfies a Liouville equa-
tion,

(9) ∂tW
0(t) + 2πk · ∂xW 0(t)− 1

2π
∂xV · ∂kW 0(t) = 0, W 0(t = 0) = W 0

0 ,

i.e. a formulation as in classical statistical mechanics. (See e.g. Théorème IV.1 of [27], Section 7.1 of [19], and
Theorem A.1 in Appendix A). For smooth potentials, problem (9) can be efficiently solved, and its solution
can be used to recover the macroscopic observables of the particle (e.g. position and momentum densities).
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The Liouville equation (9) can be solved with the method of characteristics [16]: consider the ODE for the
characteristics (the classical trajectories),

(10)
ẊX0,K0

(t) = 2πKX0,K0
(t), K̇X0,K0

(t) = − 1
2π∂xV (XX0,K0

(t)),
XX0,K0(0) = X0, KX0,K0(0) = K0.

Then a classical flow φt is induced, according to

(11) φt(x, k) = (Xx,k(t),Kx,k(t)).

It is straightforward to see that the solution of (9) is given by

W 0(t) = W 0
0 ◦ φ−t.

At this point it is clear why the regularity of V ∈ C1,1(Rd) is a natural threshold for the validity of these
types of results. For V ∈ C1,1(Rd), the characteristics (10) is well-defined for all (X0,K0) ∈ R2d, and thus the
WM is well defined at all times. If V /∈ C1,1(Rd), then in general the Cauchy problem (9) is not well-posed
over probability measures.

In [27] it was shown that for V ∈ C1(Rd) (under appropriate additional technical assumptions) the WM
does indeed satisfy (9), which in general has multiple solutions. Thus, the WM is one of the possible classical
evolutions, but it is not known which one. (A concrete example of V ∈ C1 \ C1,1 which gives rise to a
multivalued flow is given by the saddle points V (x) = −|x|1+θ, θ ∈ (0, 1)). The class of potentials with
conical singularities arise as another natural threshold with respect to the regularity of flows. In particular,
it has been shown recently that for potentials satisfying (2), the trajectories (10) are well defined for almost
all initial data (X0,K0) ∈ R2d. On the level of the Liouville equation, this can be seen as well-posedness
with initial data in L1 ∩L∞ [2, 10]. From a physical point of view, almost always well-posedness seems very
attractive. Thus a natural line of investigation opens up for potentials with conical singularities: can it be
shown that the WM satisfies (9) in an appropriate sense? And if so, can (9) be meaningfully regularized to
provide a well defined semiclassical approximation?

2.2. Asymptotics and Coarse-graining. Problem (1) gives rise to a meaningless “limit wavefunction”
u~ ⇀ u0; typically space oscillations of wavelength O(~) appear and are propagated by the equation leading
to

lim
~→0

u~(t) ⇀ 0 by oscillation.

So to study the semiclassical limit, one actually has to create an auxiliary problem for objects that do have
meaningful limits.

A powerful and well studied asymptotic technique is based on Coherent States (see e.g. [13] and the
references therein): assume that the initial wavefunction is of the form

u~

0(x) = a

(
x− q0√

~

)
eip0

x−q0
~ ;

under appropriate assumptions this form is then preserved by the solution of the quantum problem,

u~(x, t) ≈ a

(
x− q(t)√

~
, t

)
eip(t)

x−q(t)
~

−iθ(t),

where all the objects a(x, t), p(t), q(t), θ(t) satisfy simple equations independent of ~ [13]. The curve [0, T ] →
R2d : t 7→ (p(t), q(t)) is the characteristic corresponding to eq. (10), thus recovering the position and
momentum of the respective classical particle.

Another famous technique is Geometrical Optics (see e.g. [16, 34] and the references therein). This is
based on another special form for the initial wavefunction, which is preserved for short times, namely the
WKB ansatz,

u~

0(x) = A(x)ei
S(x)
~ .

This gives rise to more subtleties (in particular caustics), and continuing the solution after the caustic time
is quite tedious, and depends on the exact structure of the particular problem.

Both these techniques use a particular ansatz for the initial wavefunction and exploit it to recover a full
representation of the solution in the limit. While quite powerful and well developed, these are parametric
methods and have the respective limitations.
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The idea behind the WM is complementary: it is a non-parametric object, which captures and keeps
track in time of macroscopic information only. Thus in general it is impossible to reconstruct a wavefunction
u~(t) from the corresponding WM W 0(t); on the other hand the WM appears to be more flexible than a full
representation. One of the most famous examples is the unfolding of caustics in phase-space, see [34] and the
references therein.

To understand better the information encoded in various representations, one must consider the quadratic
observables of the quantum state. For every operator A~ in an appropriate class, one can evaluate the
corresponding observable

(12) A~(t) = 〈A~u~(t), u~(t)〉,

which is interpreted as a physical measurement on the quantum particle. It was mentioned earlier that the
Wigner transform “contains the same information” as the wavefunction. This can now be made precise: the
quadratic observables can also be recovered from the WT, using the Weyl calculus. In fact, an equivalent
definition of the (semiclassically scaled) Weyl symbol, A~

W(x, k), of the operator A~ is that [19]

(13) 〈A~u~, u~〉x = 〈A~

W ,W ~[u~]〉x,k.

However, the WT itself is in general much more complicated to represent and process than the original
wavefunction. (It is a highly oscillatory function, in twice the space dimensions, see [12, 21], Figure 15).
Using the WT as an alternative to the wavefunction is not practical; as has been mentioned, its merit comes
from the WM, its weak limit as ~ → 0. This is because the WM is a coarse-grained, macroscopic object.

To motivate this statement, it is instructive to look at coherent states: for a family of wavefunctions of

the form u~(x) = ~−
d
4 a(x−q√

~
)e

2πi
~

p(x−q)+iθ, the corresponding WM is W 0(x, k) = δ(x− q)δ(k− p); the shape

of the envelope a is completely lost. Moreover, if (q, p) 6= (q1, p1),

(14)
u~(x) =

~−
d
4

2

[
a(

x− q√
~

)e
2πi
~

p(x−q)+iθ + b(
x− q1√

~
)e

2πi
~

p1(x−q1)+iφ

]
⇒

W 0(x, k) = δ(x− q)δ(k − p) + δ(x− q1)δ(k − p1).

Both envelope shapes a, b are lost, as well as the relative phase of the two wavepackets, ei(φ−θ). At the same
time, one can still obtain meaningful approximations of (appropriate regularity classes of) observables,

(15) 〈A~u~, u~〉x = 〈A~

W ,W ~〉x,k ≈ 〈A~

W ,W 0〉x,k.

The question that arises in problems with non-smooth potentials is, does the WM keep track of enough
information to determine uniquely its evolution? It was shown in [5, 6] that this is not the case, at least not
in the standard sense (and there exist several other problems where this is not the case; see [11]).

2.3. Conical singularities and loss of uniqueness. It was seen that the well posedness of the ODE (10)
and the Liouville equation (9) are intimately related. Let us now look at an example concerning the loss of
uniqueness, namely the one-dimensional potentials

(16) V ±(x) = ±|x|.

For V + = |x|, the problem physically amounts to an oscillator. Although there is no strong solution of (10)
once the trajectory reaches {x = 0}, by accepting weak solutions the flow is in fact well defined. Indeed, it
is easy to check that the problem

(17)
Ẋ(t) = 2πK(t), K̇(t) = − 1

2π sign(X(t)),
X(0) = 0, K(0) = K0,

has a unique weak solution for all values of K0 ∈ R. (See also Figure 1). So the impact of the conical
singularity here is less smoothness of trajectories, but there is no loss of uniqueness.

For V − = −|x|, the problem is a singular saddle point (Figure 2). The trajectories that approach the fixed
point (x, k) = (0, 0) now arrive in finite time, in contrast to what happens in regular saddle points. Once
they reach the fixed point, there is no unique continuation – strong or weak. Consider the characteristic
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Figure 1. For V = V +, the characteristics in phase-space can be written explicitly (in each half
space ±X > 0) as X(t) = − 1

2
sign(X)t2+2πK0t+X0, K(t) = − 1

2π
sign(X)t+K0. Here we see plots

of (X(t),K(t)) for t ∈ [0, T ] and various initial conditions (X0, 0). All trajectories have corners, but
all are uniquely defined.

starting from (X0,K0) = (1,− 1
π
√
2
); then each of

(18) X(t) =

{
1
2 t

2 −
√
2t+ 1, t 6

√
2

− 1
2 (t−

√
2)2, t >

√
2

K(t) =

{
1
2π t− 1

π
√
2
, t 6

√
2

− 1
2π (t−

√
2), t >

√
2

(19) X̃(t) =

{
1
2 t

2 −
√
2t+ 1, t 6

√
2

1
2 (t−

√
2)2, t >

√
2

K̃(t) =

{
1
2π t− 1

π
√
2
, t 6

√
2

1
2π (t−

√
2), t >

√
2

(20) ˜̃X(t) =

{
1
2 t

2 −
√
2t+ 1, t 6

√
2

0, t >
√
2

˜̃K(t) =

{
1
2π t− 1

π
√
2
, t 6

√
2

0, t >
√
2

are weak solutions of (10) past the interaction with the singularity. In other words, a classical particle with
just enough momentum to reach this saddle point, can be scattered to the right, scattered to the left, or stay
on the saddle point indefinitely – or do combinations of the above. There are genuinely different classical
evolutions to choose from here; it is not only a technical question of using the appropriate function spaces.

With respect to a more general potential of the form (3) a similar analysis has been performed in [18].
Indeed, away from the set S = {g(x) = 0}, the potential is smooth, and therefore the characteristics are
well-defined and smooth. As far as the semiclassical limit is concerned, if the WM is never supported on
S, then the regular theory applies [19, 18]. If however the WM arrives at some time on S, then the regular
theory ceases to apply. However, the set S should really be decomposed into the disjoint union S = S1 ∪ S0,
where

(21)
S1 = {g(x) = 0 and k · ∂xg(x) 6= 0},
S0 = {g(x) = 0 and k · ∂xg(x) = 0}.

If a characteristic arrives at S1, its momentum will take it “immediately” out of S, and it will be continued
uniquely – with a corner. If a characteristic arrives at S0, several classical evolutions are possible. The main
result of [18] is that, as long as the WM stays away from S0, the uniquely defined flow indeed captures
correctly its evolution. This motivates the following

Definition 2.1. A semiclassical family of problems (1) is said to exhibit full interaction of the wavefunction
with the singularity of the flow if its WM reaches the set S0.

As we saw in our simple examples, to have full interaction, the initial WM W 0
0 has to be supported on a

very specific (Lebesgue measure zero) subset of phase-space. It seems that a generic WM would almost never
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Figure 2. For V = V −, the characteristics in phase-space can be written explicitly (in each half
space ±X > 0) as X(t) = 1

2
sign(X)t2 + 2πK0t+X0, K(t) = 1

2π
sign(X)t+K0. Here we see plots

of (X(t),K(t)) for t ∈ [0, T ] and various initial conditions (−1,K0). The separatrix k = ± 1

π

√
x
2

(shown in black) consists of two intersecting trajectories. Unlike regular saddle points, the two
branches of the separatrix intersect in finite time over the fixed point (0, 0).

interact with S0 and lose uniqueness. Indeed this has been made precise for non-concentrating populations
of particles in [4], inspired by Born-Oppenheimer molecular dynamics. The assumptions of [4] are that the
potential satisfies

(22)
V = VBV + VC , where VBV satisfies (2), and
VC is a sum of repulsive Coulomb singularities;

moreover the initial data u~
0 = u~

0(ω) is a stochastic population with the following property: the correspond-
ing population of Wigner measures W 0

0 (ω) is a population of delta-functions on phase-space, the centers
(X(ω),K(ω)) of which have probability density function f0 ∈ L1(R2d) ∩ L∞(R2d), i.e.

P [(X(ω),K(ω)) ∈ B ⊆ R2d] =

∫

B

f0 dx dk, for all measurable B ⊆ R2d.

The result is that the random WMs corresponding to u~(t;ω) are delta-function the centers (X(t;ω),K(t;ω))
of which are distributed according to the solution f(t) of

(23) ∂tf(t) + 2πk · ∂xf(t)−
1

2π
∂xV · ∂kf(t) = 0, f(t = 0) = f0.

Moreover, problem (23) was shown to be well posed for V as in eq. (22) and f0 ∈ L1(R2d) ∩ L∞(R2d) in [4],
by extending the results of [10, 2].

Certainly, in many cases this point of view is completely sufficient, and it can be said that semiclassical
limits with conical singularities are “well-understood with probability 1”. However, strong interactions with
the singularity of the flow, and the genuine multivaluedness that it can create, is sometimes the phenomenon
of interest. That is clearly reflected in the huge literature on eigenvalue crossings (which are also atypical,
when considering generic random data), and of course in the Schrödinger-Poisson problem,

(24) i~∂tu
~ +

~2

2
∆u~ +

(
|x| ∗ |u~|2

)
u~ = 0, u~(t = 0) = u~

0 ,

where the convolution term carries the conical singularity around with the wavefunction, making it impossible
to avoid interaction. With this in mind, we proceed to work on the possible loss of uniqueness and formulate
the proposed selection principle.
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3. The proposed regularization

3.1. Formulation. To the best of our knowledge, the state of the art for semiclassical limits with conical
singularities is given by the works [18, 4]. When dealing with initial data that interact strongly with the
singularity of the flow (the set S0 of eq. (21)), there are no general rigorous results.

There exist however some partial results. In [6], the semiclassical limit of a particular class of mixed states
interacting strongly with the singular saddle point V (x) = −|x| was studied. Using additional information
from the quantum problem, a simple selection principle was formulated. Thus for each quantum problem
it is possible to choose the appropriate classical solution, which approximates it as ~ → 0. Here we will
use the main idea of [6], formulate the generalization of the selection principle, and proceed to investigate
numerically its validity in a more general setting.

To that end, we will need to introduce one more phase-space density. Given a problem of the form (1),

let W ~(t) = W ~[u~(t)] be the WT of the wavefunction. Denote by W̃ ~(t) = W̃ ~[u~(t)] the corresponding
smoothed Wigner transform (SWT), defined as

(25) W̃ ~(x, k) =

(
2

~σxσk

)d ∫

x,k

e
− 2π

~

[
|x−x′|2

σ2
x

+
|k−k′|2

σ2
k

]

W ~(x′, k′) dx′ dk′.

For σx · σk > 1 it can be shown that W̃ ~(x, k) > 0. Often it is useful to use smaller values for the smoothing
constants, σx, σk < 1. In any case we will assume that the smoothing constants do not depend on ~, and
are allowed to be in σx, σk ∈ (0, 1]. The SWT can be thought of as a smooth, coarse-grained phase-space
function. In particular, it does not contain spurious oscillations – in contrast to the WT [12, 21, 7]. In the
limit the two transforms are equivalent [27],

lim
~→0

〈W̃ ~(t)−W ~(t), φ〉 = 0 ∀φ ∈ A.

where for the algebra of test functions A, see Appendix A. For more context on the SWT, including on the
calibration of the smoothing parameters, see Appendix B.

Now denote by ρ~ the solution of

(26)
∂tρ

~ + 2πk · ∂xρ~ − 1

2π
∂xV (x) · ∂kρ~ = 0,

ρ~(t = 0) = W̃ ~[u~

0 ].

Theorem 3.1. If the potential V satisfies (2), then for all ~ > 0 problem (26) is well posed in Lp for all
p ∈ [1,∞].

Proof: Follows by direct application of [2].

Hypothesis 1 (Proposed selection principle: the concentration limit for (26) captures the semi-

classical limit for (7)). It is proposed that for each t ∈ [0, T ]

(27) lim
~�0

〈W̃ ~(t)− ρ~(t), φ〉 = 0 ∀φ ∈ A ∩ L2,

where ρ~ was defined in (26), and the algebra of test functions A is defined in (55).

Remarks:

• It is clear that if Hypothesis 1 holds, then

(28) lim
~�0

〈W ~(t)− ρ~(t), φ〉 = 0 ∀φ ∈ A ∩ L2,

as well. In other words if Hypothesis 1 holds, the weak-∗ limit of ρ~ is the Wigner measure. We state
the selection principle using the SWT, because problem (26) can be considered a simpler problem to
solve than (1), thus providing a meaningful asymptotic scheme. The problem

(29)
∂tρ

~ + 2πk · ∂xρ~ − 1

2π
∂xV (x) · ∂kρ~ = 0,

ρ~(t = 0) = W ~

0 ,
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cannot, in general, be considered a simpler problem to solve than (1) because of the spurious inter-
ference terms of the Wigner transform. Problem (29) also requires extra assumptions to ensure that
W ~

0 ∈ L1 (which is needed for well-posedness).
• It is easy to check that Hypothesis 1 is a priori consistent with the existing rigorous results [18, 4] –
in addition to [5, 6] from which it was inspired.

3.2. Application. Often the proposed selection principle can be used to compute ρ~ and its weak limit
explicitly. This is true in particular for d = 1 and V = −|x| (see Figure 2). For this problem, phase space
{(x, k)} can be partitioned into the disjoint union R2 = S+ ∪ S ∪ S−, where

(30)

S+ = {(x, k) ∈ R2 | H(x, k) =
1

2
(2πk)2 − |x| > 0},

S− = {(x, k) ∈ R2 | H(x, k) =
1

2
(2πk)2 − |x| < 0},

S = {(x, k) ∈ R2 | H(x, k) =
1

2
(2πk)2 − |x| = 0}.

It is clear that in the classical problem (26) mass never crosses from S+ to S−. Consider initial data

W̃ ~
0 that concentrate to a delta-function supported on a trajectory which reaches (0, 0) as ~ → 0. Then,

the concentration limit of ρ~(t) would split into two delta functions upon reaching (0, 0), moving along

trajectories (18), (19) respectively, and with masses determined by lim
~→0

∫
S± W̃ ~dxdk. Indeed the amount of

mass scattered to the left and the right of the singularity is a basic observable of the interaction, and among
those on which the quality of the semiclassical approximation will be checked.

We will investigate numerically such problems, and examine whether the quantum dynamics agree with
this classical regularization. The scenario described above is called a “non-interference problem”. If the
initial WM contains two delta functions that arrive to (x, k) = (0, 0) from the left and right at the same time,
we say we have interference between the two wavepackets. (This is the concept of interference used in [32]).
We will also investigate problems with interference.

A~(0) = 〈A~u~
0 , u

~
0〉 A~(t) = 〈A~u~(t), u~(t)〉

u~(0)

measurement

OO

U~(t) //

WT

��

u~(t)

measurement

OO

WT

��
W ~(0)

E~(t) //

concentr.limit

��

◦φ−t

**

W ~(t)

dynam.asympt.

��
ρ~(t)

concentr.limit

��
W 0(0)

measurement

��

W 0(t)

measurement

��
A0(0) =

∫
A0

WdW 0
0 A0(t) =

∫
A0

WdW 0(t)

Figure 3. The regularized asymptotic scheme: the ~ � 0 limit must now be taken in two steps:
first we substitute the quantum dynamics with the classical dynamics; propagate in time, and then
take the concentration limit of the Wigner transform. That way, we propagate a Liouville equation
for L∞ ∩L1 data, which is well posed, and contains the quantum information needed to choose the
correct weak solution. In singular problems, time propagation and concentration limit of the initial
data no longer commute.
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A~(0) = 〈A~u~
0 , u

~
0〉 A~(t) = 〈A~u~(t), u~(t)〉

YY

Comparison

��

u~(0)

measurement

OO

U~(t) *4

WT

��
SWT

�!

u~(t)

measurement

JT

WT

��
W ~(0)

E~(t) //

smoothing

��

W ~(t)

smoothing

��
W̃ ~(0)

coarse measur.

rz

◦φ−t

&.

Ẽ~(t) //

concentr.lim.

��

W̃ ~(t)

proposed asympt.

��∫
A~

WdW̃ ~(0)

~�0

""

ρ~(t)

concentr.lim.

��

coarse measur.+3
∫
A~

Wdρ~(t)

~�0

{{

W 0(0)

measurement

��

W 0(t)

measurement

��
A0(0) =

∫
A0

WdW 0
0 A0(t) =

∫
A0

WdW 0(t)

Figure 4. Computational implementation of the asymptotic scheme of Figure 3:
double-arrows. One propagates a coarse-scale phase-space density with the Liouville equation,
and not the full Wigner transform – otherwise it would be even more expensive than the direct solu-
tion of (1). Coarse-scale observables can still be accurately recovered from the smoothed density, as
long as they correspond to length scales larger than the smoothing. Position densities, current flows
etc typically fall in this category. This allows the investigation of the selection principle, and in fact
it provides an efficient method for the computation of coarse-scale observables. Full solution of
(1): triple-arrows.

4. The numerical method

4.1. Solving the semiclassical Schrödinger equation with conical singularities. The numerical so-
lution of (1) is complicated from the theoretical as well as from the numerical point of view. The main
difficulty is that the solution of (1) oscillates with wavelength O(~) thus standard numerical methods require
very fine meshes (space and time) to resolve adequately this high oscillatory behaviour. Further the solution
might exhibit caustics, making its numerical approximation even more difficult. Finally the relatively low
smoothness of the potential V means that several tools widely used in the numerical analysis and simulation
of such problems are now not available.

Popular methods for the numerical solution of (1) are time-splitting spectral methods and Crank-Nicolson
finite element / finite difference methods. The standard Crank-Nicolson finite element / finite difference
methods suffer from a very restrictive dispersive relation, cf. [22], connecting the space and time mesh
sizes with the parameter ~ thus requiring considerable computational resources in order to produce accurate
solutions for ~ ≪ 1. In an attempt to relax this restrictive dispersive relation Bao, Jin and Markowich in
[9] proposed time-splitting spectral methods for the numerical solution of (1). This is widely considered to
be the preferred approach for semiclassical problems; however it requires V ∈ C2 at least for any kind of
rigorous convergence result.

A different approach to overcome this difficulty is based on adaptivity. Adaptive methods are widely
used in recent years to construct accurate numerical approximations to a broad class of problems with
substantially reduced computational cost by creating appropriately nonuniform meshes in space and time.
There are several ways to propose an adaptive strategy. One such approach is based on rigorous a posteriori
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error control. The idea is to estimate the error in some natural norm by

(31) ‖u− U‖ ≤ E(U)

where E(U) a computable quantity depending on the approximate solution U and the data of the problem.
A crucial property that the estimator E(U) must satisfy, is to converge with the same order as the numerical
method. It is then said that E(U) decreases with optimal order with respect to the mesh discretisation
parameters. The existing literature on adaptive methods based on a posteriori error bounds for the numerical
approximation of (1) is very limited. Very recently the authors presented in [23], an adaptive algorithm for
the numerical approximation of (1), based on a posteriori error estimates of optimal order. The proposed
adaptive method proved to be competitive with the best available methods in the literature not only for the
approximation of the solution of (1) but as well as for its observables, c.f. [23].

Here we want to investigate the behaviour of a quantum problem, for which we don’t have even any
qualitative a priori information. (E.g. the percentage of mass scattered in different directions after the
interaction with the singularity). Hence a posteriori error control is particularly useful, as it provides a
rigorous, quantitative grasp on the quantum interaction – making meaningful the subsequent comparison to
the classical asymptotics.

4.2. The CNFE method. In [23] the authors consider the initial-and-boundary value problem

(32)





i~u~

t +
~2

2
∆u~ − V u~ = f in Ω × (0, T ],

u~ = 0 on ∂Ω × [0, T ],

u~(t = 0) = u~

0 in Ω,

where Ω ⊂ Rd is a bounded domain and f ∈ L∞ ([0, T ];L2(Ω)
)
is a forcing term. They discretize (32)

by a Crank-Nicolson finite element (CNFE) scheme and prove a posteriori error estimates of optimal order.
One of the main features of the considered finite element spaces is that they are allowed to change in time.
The optimal order a posteriori error bounds are derived in the L∞

t L2
x norm and the analysis includes time-

dependent potentials. Furthermore the derived a posteriori estimates are valid for L∞
t L∞

x -type potentials as
well, in contrast to the existing results in the literature which require smooth C1

t C
2
x-type potentials.

The analysis in [23] is based on the reconstruction technique, proposed by Akrivis, Makridakis & Nochetto,
for the heat equation, cf. [1, 28]. In [23] the authors, following this technique, introduce a novel time-space
reconstruction for the CNFE scheme, appropriate for the Schrödinger equation (32). A posteriori estimates
for (32) and the CNFE method were also proven by Döfler in [15], but the estimator was not of optimal order
in time.

The main results of [23] can be summarised as follows: The approximations Un(x) of u~(x, tn), 0 ≤ n ≤ N,
are computed for a non-uniform time grid 0 =: t0 < t1 < · · · < tN =: T of [0, T ]. For each n, Un belongs
to a finite element space (which depends on n) consisting of piecewise polynomials of degree r. By U(x, t)
we denote the piecewise linear interpolant between the nodal values Un. More specifically, for t ∈ [tn−1, tn],

U(x, t) :=
t− tn−1

tn − tn−1
Un(x) +

tn − t

tn − tn−1
Un−1(x). Then

(33) ‖(u~ − U)(t)‖L2(Ω) ≤ E0
N + ES

N + ET
N , ∀t ∈ [0, T ],

where E0
N , ES

N , ET
N are all computable quantities. More precisely, E0

N accounts for the initial error, while
ES
N , ET

N are the space and time estimators respectively. These estimators are used to refine appropriately the
time and space mesh sizes, thus creating an adaptive algorithm. The algorithm is said to converge up to a
preset tolerance Tol if, after appropriate refinements, we obtain an approximate solution U of u with

E0
N + ES

N + ET
N < Tol.

In particular, in view of (33), we will then have that

(34) ‖(u~ − U)(t)‖L2(Ω) ≤ Tol, ∀t ∈ [0, T ].

The adaptive algorithm of [23] provides efficient error control for the solution and its observables for small
values of Planck’s constant ~, and in particular reduces substantially the computational cost as compared to
uniform meshes. It is very difficult to obtain such results via standard techniques and without adaptivity,
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especially when non-smooth potentials are considered. In addition, it is to be emphasized that as long as the
adaptive algorithm converges, we can guarantee rigorously, based on the a posteriori error analysis, that the
total L∞

t L2
x error remains below a given tolerance, Tol. For more details, see [23].

4.3. Validation of the CNFE scheme. We consider the one-dimensional spatial case of (32), Ω = (a, b),
and we proceed to a series of numerical experiments which (a) validate the method and the estimators in
(33) in terms of accuracy and (b) highlight the advantages of adaptivity. We consider the numerical solution
of (32), obtained by the CNFE scheme, with initial condition

u~

0(x) = a0(x)e
i
S0(x)

~ ,

where a0 may or may not depend on ~. For the spatial discretisation we use finite element spaces consisting
of B-splines of degree r, r ∈ N. The theoretical order of convergence for the CNFE scheme is 2 in time and
r + 1 in space; thus the expected order of convergence of the estimator ES

N is r + 1 and of ET
N is 2.

Next, our purpose is to verify numerically the aforementioned order of convergence for the estimators,
for smooth and non-smooth potentials V . To this end, let ℓ ∈ N count the different realisations (runs) of
the experiments. We consider uniform partitions in both time and space, and let M(ℓ) + 1 and N(ℓ) + 1

denote the number of nodes in space (of [a, b]) and in time (of [0, T ]), respectively. Then ∆x(ℓ) :=
b− a

M(ℓ)
and

∆t(ℓ) :=
T

N(ℓ)
denote the space and time discretisation parameters (of the ℓth realisation), respectively. The

experimental order of convergence (EOC) s computed for the space estimator ES
N as follows:

(35) EOCS :=
log
(
ES
N (ℓ)/ES

N (ℓ+ 1)
)

log
(
M(ℓ+ 1)/M(ℓ)

) ,

where ES
N (ℓ) and ES

N (ℓ+1) denote the values of the space estimators in two consecutive implementations with
mesh sizes ∆x(ℓ) and ∆x(ℓ+ 1), respectively. Similarly, for the time estimator ET

N the EOC is computed as

(36) EOCT :=
log
(
ET
N (ℓ)/ET

N (ℓ+ 1)
)

log
(
N(ℓ+ 1)/N(ℓ)

) .

First, let us look at a a smooth double well potential problem with initial data

V (x) = (x2 − 0.25)2, a0(x) = e−
25
2 x2

, S0(x) = −1

5
ln
(
e5(x−0.5) + e−5(x−0.5)

)
, with ~ = 0.25.(37)

The computational domain is [a, b]× [0, T ] = [−2, 2]× [0, 1]. For the double well potential (37) we use cubic

(a) Space Estimator

M ES
N EOCS

35 7.4125e−01 –
50 1.6791e−01 4.1633
70 4.1761e−02 4.1354
100 9.7450e−03 4.0799
145 2.1714e−03 4.0407
200 5.9598e−04 4.0205

(b) Time Estimator

N ET
N EOCT

80 1.7266e−02 –
160 3.9316e−03 2.1347
320 9.6275e−04 2.0299
640 2.3943e−04 2.0076
1280 5.9784e−05 2.0018
2560 1.4942e−05 2.0003

Table 1. EOCS and EOCT for Double Well potential

B-splines for the spatial discretization. The results are shown in Table 1. The predicted theoretical order of
convergence is observed for both the space and time estimators.

Now let us look at a problem with a non-smooth potential, namely

V (x) = 10|x|, a0(x) = ~−
1
4 e−

π
2~ (x−x0)

2

, S0(x) = 25
√
1.5(x− x0), with ~ = 0.5.(38)



14 ATHANASSOULIS, KATSAOUNIS, AND KYZA

We use quartic B-spline for the space discretisation and [a, b]× [0, T ] = [−4, 4]× [0, 0.1] is the computational
domain. The numerical results are shown in Table 2 demonstrating the correct order of convergence for the
estimators. It is worth noting that in this case the wavepacket passes over the non-smooth point x = 0 during
the simulation time.

(a) Space Estimator

M ES
N EOCS

800 1.4268e−01 –
1000 4.5514e−02 5.1204
1200 1.8094e−02 5.0594
1600 4.3186e−03 4.9799
2000 1.4135e−03 5.0051
3200 1.3481e−04 4.9998

(b) Time Estimator

∆t× 106 ET
N EOCT

10 1.5731e−03 –
5.724 5.1538e−04 2.0001
3.629 2.0715e−04 2.0001
1.768 4.9168e−05 1.9999
1.012 1.6109e−05 2.0000
0.312 1.5312e−06 1.9999

Table 2. EOCS and EOCT for non-smooth potential

Finally, to observe the benefits of adaptivity, we consider a time dependent potential, namely

(39) V (x, t) =
x2

2(t+ 0.05)
, a0(x) = e−λ2(x−0.5)2 , S0(x) = 5(x2 − x) with ~ = 1.

The computational domain is [a, b] × [0, T ] = [−1, 2] × [0, 1] and we discretize space using cubic B-splines.
In Figure 5, we plot the evolution of the estimators in logarithmic scale and the variation in time of the
time-steps ∆tn := tn − tn−1 and of the degrees of freedom. This is a characteristic example where intensive
adaptivity is observed, in both time and space.

t

ln
(E
st
im
a
to
rs
)
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Figure 5. Evolution of estimators in logarithmic scale (left) and variation of the time-steps ∆tn

and the degrees of freedom (DoF) versus t (right) during adaptivity for V (x, t) =
x2

2
·

1

t+ 0.05
.

4.4. Approximation of the observables of problem (1). As always when discretizing problems in free
space, we have to make sure the interval [a, b] is large enough so that (for the initial data u~

0 and timescale T
in question) the solutions of problems (32), (1) are close to each other. This follows from standard localization
arguments, and it is easy to check it in practice (by measuring how much mass reaches the endpoints) and
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poses no particular difficulty here. Hence eq. (34) can be interpreted as an approximation between the
numerical solution U and the exact solution of the free space problem (1). Here we discuss systematically
how this bound can be used for the approximation of quadratic observables of the wavefunction u~(t).

The quadratic observable with symbol A(x, k) is defined as

A
(
u~(t)

)
= 〈 W ~[u~] , A 〉 =

∫
e−2πiK(X+Y )A

(
X+Y

2 , ~K
)
dK u~(X)dX u~(Y )dY.

We will be concerned with two special types of observables, namely observables of position, for A = A(x)

(40) A
(
u~(t)

)
= 〈 W ~[u~] , A 〉 =

∫
A(x)u~(x, t)u~(x, t)dx,

and separable observables, A = A1(x)A2(k),

(41) 〈 W ~[u~] , A 〉 = ~−1
∫
e−2πiK

(X+Y )
~ A2 (K) dK A1

(
X+Y

2

)
u~(X)dX u~(Y )dY.

These observables are essentially controlled by the L∞
t L2

x norm of the wavefunction; this is made more
precise in the following

Lemma 4.1 (Approximation of observables). If ‖u − U‖L2 6 Tol as in (34), then for every observable of
position

(42) |A
(
u
)
−A

(
U
)
| 6 Tol(‖U‖L2 + ‖u‖L2)‖A‖L∞ = O(Tol),

while for any separable observable

(43) |A
(
u
)
−A

(
U
)
| 6 ~−

1
2Tol(‖U‖L2 + ‖u‖L2)‖A‖L2 = O(~−

1
2Tol).

The proof follows by inspection of eqs. (40), (41).

Remark: The estimate (43) is far from sharp (in fact for regular, localized observables the ~−
1
2 is very

pessimistic. Still, carrying out rigorously a sharper microlocal estimate for a non-smooth problem is outside
the scope of this work. We note that, even with a problematic constant, it is seen rigorously that the L2

approximation of the wavefunction does control the observables). Thus by having control over L2 errors, we
can guarantee the reliable control of L2 observables as well.

4.5. Particles for the Liouville equation. To approximate numerically the solution of (26), we use a
particle method; decompose the initial condition

W̃ ~

0 ≈
N∑

j=1

Mjδ(x−Xj , k −Kj);

then the center of each particle moves along its respective trajectory, in accordance to (10). (See also the
caption of Figure 2 for an explicit form of the trajectories). Thus

W̃ ~(t) ≈ P ~(t) =

N∑

j=1

Mjδ(x−Xj(t), k −Kj(t)).

The advantage in this case is that we know explicitly the trajectories, and therefore

〈W̃ ~(t)− P ~(t), φ〉 = 〈W̃ ~

0 − P ~(0), φ〉 ∀φ ∈ A.

This makes it easy to generate approximations of observables of ρ~(t) (i.e.
∫
ρ~(x, k, t)A(x, k)dxdk ≈∑

j

MjA(Xj(t),Kj(t))) with predetermined accuracy.
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Figure 6. The non-smooth potential V of eq. (44).

5. Numerical results

In this section we present a series of one-dimensional numerical experiments with the non-smooth potential
of type (3)

(44) V (x) = 1 + (1 + tanh(4(x+ 2.5)))(1 + tanh(−4(x− 2.5)))
(−|x|+ 4)

8
.

This potential incorporates the non-smoothness at x = 0 with a smooth transition to a constant state away

from it. Note that in a neighbourhood of x = 0, V is very close to − |x|
2 + 3. We use Tol ≈ 0.01 (more

specifically Tol ∈ [0.005, 0.02]) in the numerical results that follow.

5.1. Non-interference. For values of ~ ranging from 5 · 10−1 to 5 · 10−3, we simulate the evolution in time
of wavepackets of the form

(45) u0(x) = a0(x)e
im

S0(x)
~ , a0(x) = ~−

1
4 e

−π
2 (

x−x0√
~

)2
, S0(x) =

√
|x0|(x− x0),

for x0 = −1.5, m ∈ [0.8165, 1.4289].

When m = 1, the SWT W̃ ~[u~] of this problem is centered on (−1.5,
√

3
2 ); this point reaches zero in

t =
√
6, and roughly half the mass of the quantum particle – should (27) hold – is expected to pass to

{x > 0}, while the other half should reach close to x = 0 and then be reflected back to {x < 0}. By
perturbing the value of m in the initial data, the amount of mass expected to cross over to {x > 0} changes
(from no mass crossing over, to all the mass crossing over in the extreme cases). In all of these case studies
the interaction with the singularity starts around t = 1.3 and is over around t = 2.45. (Thus e.g. before the
interaction with x = 0 the classical and quantum solutions should agree very closely – this provides one more
opportunity to validate and check our computations). We estimate how well (27) is satisfied by looking at
approximations of the SWT in phase space, as well as the observables with symbols

(46) Aα,β,j(x, k) = xα kβ χ[0,4]((−1)jx)χ[−1,1](k), for α, β ∈ N0, α+ β 6 2, j ∈ {1, 2}.
The precise measurement of these observables corresponds to

〈 W ~ , xαkβ χ[0,4]((−1)jx)χ[−1,1](k) 〉 =

=

∫
e−2πiK(X+Y )

[
χ[0,4]((−1)j

X + Y

2
)χ[−1,1](~K)(

X + Y

2
)α(~K)β

]
dK u~(X) dX u~(Y ) dY.

For β = 0 these are observables of position only, so by the estimate (42) we have a very good approximation.
For β > 0 we do not attempt to saturate the estimate (43), since it is quite clear from the numerical results
that it is not necessary. Our findings are fully consistent for both types of observables, as we will see below.
The coarse-grained measurement for the same observables is

(47) 〈W̃ ~, xαkβ χ[0,4]((−1)jx)χ[−1,1](k)〉,
for the quantum problem, and

(48) 〈ρ~, xαkβ χ[0,4]((−1)jx)χ[−1,1](k)〉,
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for the proposed semiclassical problem. Because the observables themselves do not have any fine scales, the
fine and coarse measurements are very close.

The agreement we find between the quantum dynamics and the proposed semiclassical asymptotics is
striking already from relatively large values of ~. This is not entirely unexpected, as away from x = 0 the
Liouville equation (9) is in fact identical with the full quantum dynamics (7). The finding is that “nothing
non-classical happens” on x = 0 either, as can be clearly seen in Figures 7, 8 and 10.

Figure 7. Numerical result for ~ = 10−2, m = 0.9186. Top right: Exact SWT. Top left: momentum
density (dx integral of SWT). Bottom right: position density (dk integral of the SWT). Bottom left:
ρ~(t). (Note that in the SWT plots the wavenumber is scaled with 1

2π
).

Figure 8. Observable measurements, for the observables in (46) and ~ = 10−2, m ∈
{0.8165, 0.8777, 0.9186, 1.0206, 1.4289}, at times t ∈ [1.1788, 2.3577]. The x−coordinate of each
point is the measurement on the numerical solution U(t), Aquant = 〈A(x, k),W ~[U(t)]〉, and the
y−coordinate is the corresponding classical measurement Acl = 〈A(x, k), P ~(t)〉. Note that the
times used here roughly span the interaction time, in which any discrepancy between the classical
and quantum dynamics could occur. More specifically the interaction starts around t = 1 and is
over by t = 2.4 for all the problems.
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Figure 9. Measurements of observables of position only. The qualitative behaviour is consistent
with the larger dataset. These benefit from better accuracy, by virtue of eq. (42). It is clear that
qualitatively the picture doesn’t change when we include observables depending on momentum as
well (i.e. as in Figure 8). This is not surprising, since the simple estimate of eq. (43) is known to
be pessimistic.

Figure 10. Given two vectors of measurements ~x and ~y, where we expect xi ≈ yi, a standard way

to measure how well they line up is through the correlation coefficient ρx,y = 〈~x,~y〉
‖~x‖ ‖~y‖

, with ρx,y = 1

if the two vectors are exactly aligned. Here we plot the correlation coefficients for groupings of
measurements that correspond to early, high and late interaction stages. We use both the linear
and log scaling (as in Figure 8). The agreement is striking (and most probably numerical errors are
comparable to any quantum-classical discrepancies).

Qualitatively this behaviour also appeared in investigating problems with different envelopes and other
values of ~. This creates a compelling sense that in non-interference problems, the classical asymptotics
– regularized through (26) – are valid. In Appendix C an even more singular example can be seen to be
correctly captured by the regularized semiclassical asymptotics.

5.2. Collision of two wave packets. Since this is an one-dimensional problem, the only way to have
interference is by one wavepacket arriving to x = 0 from the left, and one from the right at the same time.
So we consider the collision of two wave packets, symmetrically located around x = 0, traveling with same
velocities and opposite directions. The two wavepackets have a phase difference of an angle 2πθ, 0 ≤ θ ≤ 1.
They meet at the corner point of the potential, they interact and continue to travel in opposite directions
until they are completely separated. We vary the parameter θ and we study its effect on the amount of
mass located to each side of the corner after the crossing is completed. The computational domain is taken
sufficiently large to avoid possible interactions with the boundary and we discretise in space using quintic
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B-splines. The initial condition is of the form

(49)

u0(x) = a0,1(x)e
i
S0,1(x)

~ + a0,2(x)e
i
S0,2(x)

~ ei2πθ, 0 ≤ θ ≤ 1,

a0,1(x) = ~−
1
4 e

−π
2 (

x−x0√
~

)2
, a0,2 = ~−

1
4 e

−π
2 (

x+x0√
~

)2
,

S0,1(x) =
√
|x0|(x− x0), S0,2(x) = −

√
|x0|(x+ x0).

In Figure 11 the graphs of u0(x), |u0(x)|2 are shown for ~ = 10−2. The wave packets are located initially
at x0 = − 3

2 and −x0 = 3
2 respectively. The initial step of the adaptive algorithm resolves correctly the

profile of u0 producing an initial mesh, depicted also in Figure 11, of around 1000 points with an initial
error bound approximately 10−9. In what follows the total error (33) is kept under 10−2. In Figure 13 the
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Figure 11. Visualization of u0 (as defined in (49), for ~ = 1e − 2). Left: Position density. Right:
Real and imaginary parts for the two components of u0 (right)

mass distribution is shown for three values of the parameter θ = 1
4 ,

1
2 ,

3
4 and two values of Planck’s constant

10−2, 5 · 10−3. The snapshots correspond to a time where the two wave packets have interacted with each
other over the corner of the potential and continue to move away from it. In Figure 12 we see the numerical

approximations for W̃ ~[u~] and ρ~ at a time after the interaction. The classical approximation is completely
symmetric, while the quantum result is not. This is a case of a “microscopic” (i.e. invisible in the WM of
the problem) feature, the phase-difference θ, playing a non-negligible “macroscopic” role.

This non-symmetry of the mass distribution depends on the phase separation of the two wave packets and
on the value of ~. Since mass is conserved – analytically as well as numerically – the excess mass in one side
is compensated by less mass on the other side of the corner. We measure this by the excess mass percentage
(EMP) after the interaction,

EMP = ‖U(t∗)χx>0‖2L2 − ‖U(t∗)χx<0‖2L2 ∈ [−1, 1]

(for time t∗ > 2.5 so that the interaction is complete, and the two waves travel away from x = 0 in opposite
directions).

For θ = 1
4 the wave packets have a π

2 phase difference and more mass, is located to the right of the corner,

EMP ≈ 5%. In a completely analogous way for a phase separation of 3π
2 (θ = 3

4 ) the exactly same amount of

excess mass is shifted to the left of the corner. However for θ = 0, 1
2 , 1 the mass is distributed equally around

the corner, EMP = 0.
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Figure 12. Numerical result for ~ = 5 ·10−3, θ = 18

24
. Top right: Exact SWT. Top left: momentum

density (dx integral of SWT). Bottom right: position density (dk integral of the SWT). Bottom left:
ρ~(t). (Note that in the SWT plots the wavenumber is scaled with 1

2π
).

The dependance of the mass imbalance on Planck’s constant ~ is not easily visible from Figure 13. To
clarify the situation we run several numerical experiments for a variety of values of ~ and θ :

θ = (2, 3, 4, 6, 8, 9, 12, 14, 17, 18, 21, 23)/24,

~ = 5 · 10−1, 10−1, 5 · 10−2, 10−2, 5 · 10−3.

The results are summarised in Figure 14 where the variation of the EMP to the right of the corner x = 0 is
shown. The dependence on the value of ~ is evident. The location of maximum and minimum values of EMP
depend solely on the value of θ and occurs for θ = 1

4 and θ = 3
4 respectively but does not depend on ~. The

value of this maximum and minimum depend on the value of ~, and seem to stabilize for ~ small enough.
For ~ = O(1), EMP ≈ 12.5%, and it reaches an apparent limiting value of EMP ≈ 5.5% for ~ = 5 · 10−3. We
also notice for θ = 0, 1

2 , 1 and for any value of ~ the mass is distributed evenly around the corner, EMP = 0.
The behaviour encoded in Figure 14 seems to persist even if change the envelopes a0,1, a0,2; i.e. there seems
to be a quantum scattering operator that depends only on the phase difference of the interfering waves.

In these problems, for all θ, ~, the classical model (26) yields EMP ≈ 0. Here the smoothing introduced
in the initial data is not entirely innocent, and in fact the solution of (29) yields a different result. This is to
be expected, because

W ~[u~

0 ](x, k) =
2

~
e−π

(x−x0)2

~
−4π

(k−
√

|x0|
2π

)2

~ +
2

~
e−π

(x+x0)2

~
−4π

(k+

√
|x0|
2π

)2

~

+ 2Re

(
2

~
e−

π
~
x2− 4π

~
k2

e−2πiθ− 2i
√

|x0|
~

x+4πix0k

)
.

The third term is suppressed by the smoothing (since it is highly oscillatory), but being supported over zero
it does affect the mass balance. Still, the EMP for eq. (29) does not seem to agree with that of the quantum
problem, but a more systematic investigation of that question is needed. In any case, eq. (29) cannot be
considered a semiclassical asymptotic scheme; investigating its behaviour can in fact be harder than solving
the full quantum problem.

The discrepancies between the scheme of eq. (26) due to this quantum mass exchange seem to be at
most ±5% for small values of ~; and in fact other observables fare somewhat better. So although we can
report that (26) does not provide the correct solution for interference problems, it does give a meaningful
qualitative picture of what takes place, plus or minus some mass exchange. Depending on the context, it
could conceivably provide a viable approximation, or a starting point for perturbation.



SELECTION PRINCIPLE FOR MULTIVALUED CLASSICAL FLOWS 21

x
-8 -6 -4 -2 0 2 4 6 8

0

0.5

1

1.5

θ=1/4

|u|
2

x
-4 -2 0 2 4

0

0.5

1

1.5

2 θ=1/4

|u|
2

x
-4 -2 0 2 4

0

0.5

1

1.5

2

2.5
θ=1/2

|u|
2

x
-4 -2 0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

θ=1/2

|u|
2

x
-8 -6 -4 -2 0 2 4 6 8

0

0.5

1

1.5

θ=3/4

|u|
2

x
-4 -2 0 2 4

0

0.5

1

1.5

2

2.5

θ=3/4

|u|
2

Figure 13. Mass distribution of (49) after the interaction for various values of θ: ~ = 10−2(left)
and ~ = 5 · 10−3(right)

6. Conclusions and Further Work

This work motivates the statement of the following

Conjecture. Hypothesis 1 holds for non-interference problems (under appropriately regularity conditions for
the initial data).

A proof of this would provide a practical, elegant asymptotic tool for a family of problems that currently
there exist none. A natural followup question would be to examine the generalizations of Hypothesis 1 for
systems (i.e. on eigenvalue crossings).

As for interference problems, although we don’t find Hypothesis 1 to hold, we do observe an apparent
limiting behaviour; see Figure 14. It is natural to ask whether this is indeed a stable “quantum scattering
operator”, which depends only on the phase difference and has the apparent limiting amplitude of ±5.5%.

It is also intriguing to ask if eq. (29) does indeed capture correctly the mass scattering and in general the
observables of the problem for both interference and non-interference problems. It is not clear if it can be
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Figure 14. EMP distribution for various values of θ and ~.

useful as a computational or asymptotic technique, but certainly one would like to eliminate it conclusively
before giving up on trying to prove it.

As was mentioned earlier, the whole approach that we carried out here, makes sense for the investigation
of the semiclassical limit of the Schrödinger-Poisson equation [36], which has essentially the same difficulties.
There is a quantum equation, a multi-valued classical equation, and the question is if we can find a practical
selection principle to connect the two. A lot of the machinery we use here for the linear problem can be
extended to the Schrödinger-Poisson problem. So finally, the investigation of the quantum regularization of
the Vlasov-Poisson equation with caustics is a very interesting possible next step.

Appendix A. Background on the Schrödinger equation and the Wigner transform

The Schrödinger equation (1) is well-posed on L2(Rd) for real potentials V in Kato’s class, i.e. if V = V1+V2

and

(50) V1 ∈ L∞, V2 ∈ Lp, p > max{2, d
2
}

or

(51) V1 ∈ L∞, V2 ∈ L2
loc, and ∃C > O such that V2 > −C(1 + |x|2).

Practically all physically interesting cases are covered by these conditions – unlike the situation in classical
mechanics. The Wigner transform (WT),

(52) W ~ : L2(Rd)× L2(Rd) → L2(R2d) : f, g 7→ W ~[f, g] =

∫
e−2πikyf(x+

~y

2
)g(x− ~y

2
) dy,

seen as a bilinear mapping is essentially unitary in L2, in the sense that

‖W ~[f, g]‖L2(R2d) = ~−
d
2 ‖f‖L2(Rd)‖g‖L2(Rd).

This allows the construction of an L2 propagator for the Wigner equation out of the Schrödinger propagator
[29]. We would like to interpret the WT as a phase-space probability density in the sense of classical statistical
mechanics; it has e.g. the correct marginals as position and momentum density

(53)

∫
W ~[f ](x, k) dk = |f(x)|2,

∫
W ~[f ](x, k) dx = |f̂(x)|2.
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However this picture cannot be taken too literally, since the WT has negative values in general [12, 21]. In
fact, it has been realized that when smoothed with an appropriately large kernel, the WT becomes non-
negative. Skipping over some details, this can be seen as an equivalent reformulation of the Heisenberg
uncertainty principle: one can get a valid (i.e. a priori non-negative) probability that a particle occupies a
region in phase-space only if that region is large enough. This leads to the definition of the Husimi transform,

(54) H~[f ](x, k) =

(
2

~

)d

e−
2π
~ [|x|2+|k|2] ∗W ~[f ] > 0 ∀f ∈ L2.

The Husimi transform is used to prove the positivity of the WM, since, as can be readily checked, W ~[u~]
and H~[u~] are close in weak sense as ~ � 0 [27].

The particular topology used for weak-∗ convergence W ~[u~], H~[u~] ⇀ W 0 is built on the algebra of test
functions A, defined as

(55) A = {φ ∈ C0(R
2d) |

∫
sup
x

|Fk�K [φ(x, k)]|dK < ∞}.

The main result for Wigner measures in smooth problems, precisely stated, is the following

Theorem A.1 (Wigner Measures for the linear Schrödinger equation [27, 19]). Let the real valued potential
V be in Kato’s class, and assume there exists a C > 0 such that V (x) > −C(1 + |x|2), and that V ∈ C1(R).

Assume moreover that the family of initial data {u~n

0 }, for a sequence lim
n→∞

~n = 0, has the following properties

• (~-oscillation) If Fφ(R) is defined as

Fφ(R) = lim sup
n→∞

∫

|k|> R
~n

|̂φu~n

0 |2 dk,

then, for all continuous, compactly supported φ

lim
R→∞

Fφ(R) = 0.

• (compactness) If G(R) is defined by

G(R) = lim sup
n→∞

∫

|x|>R

|u~n

0 |2 dx,

then

lim
R→∞

G(R) = 0.

Then, for a semiclassical family of problems of the form (1), and any timescale T > 0, the following hold:

• There exists a subsequence of the initial data, u
~mn

0 , so that their Wigner transform converges in A′

weak-∗ sense to a probability measure,

∀φ ∈ A lim
n→∞

〈W ~mn

0 −W 0
0 , φ〉 = 0, W 0

0 ∈ M1
+(R

2d)

• For t ∈ [0, T ], define W 0(t) as the propagation of the initial Wigner measure W 0
0 under the Liouville

equation (9). Then

W ~[u~n(t)] = W ~n(t) ⇀ W 0(t)

in A′ weak-∗ sense.

Appendix B. The Smoothed Wigner Transform

As was mentioned, sometimes flexibility in the calibration of the smoothing is required. Several approaches
for the smoothing of the Wigner transform have been studied [12, 21], and there exist trade offs for the different
choices and scalings of smoothing kernels. We use a Gaussian smoothing in what we call the Smoothed Wigner
transform (SWT). This has the advantage that it leads to entire analytic functions of known order and type,
thus making available a great toolbox of results for their asymptotic study [7].
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The SWT was introduced in (25). Observe that

(56)

W̃ ~[u](x, k) =

(
2

~σxσk

)d ∫

x,k

e
− 2π

~

[
|x−x′|2

σ2
x

+
|k−k′|2

σ2
k

]

W ~(x′, k′) dx′ dk′ =

=

( √
2√

~σx

)d ∫

y

e−2πiky− ~π
2 σ2

ky
2

∫

x′

e
− 2π

~

|x−x′|2
σ2
x u(x′ +

y~

2
)u(x′ − y~

2
) dx′ dy,

therefore only d convolutions are needed (i.e. in x), as the smoothing in k can be performed as part of the
FFT.

To implement this transform numerically, we will use the FFT. First of all recall that

Lemma B.1. For any function f ∈ S(R),
∑

j∈Z

f(jh)e−2πiknh =
1

h

∑

j∈Z

f̂(k +
j

h
).

This is a direct corollary of the Poisson summation formula, and the starting point of any use of the FFT
to approximate the Fourier transform of a continuous function. (The requirement f ∈ S(R) can be relaxed;
the details along this direction are outside the scope of this work).

Similarly, we can create an appropriate version of the Poisson summation formula for the evaluation of
the dy integral in (56) as an FFT:

Lemma B.2. If f ∈ S(R), denote by

Sa,b(X, y) = e−
π
2 ~σ2

ky
2

∫

x′

e
− 2π

~σ2
x
(X−x′)2

f(x′ + ~by)f(x′ − ~by) dx′.

Then
∑

j∈Z

Sa,b(X, j)e−2πi2Kaj =
σ2
k

b
√
2

∑

j∈Z

W̃ [u](X,
aK + j

b
).

Observe that the integral
∫
x′
e
− 2π

~σ2
x
(X−x′)2

f(x′ + ~by)f(x′ − ~by) dx′ only needs to be computed in a small

interval in x′ for each X because of the Gaussian localization.

Appendix C. Slicing in two of a WKB wavefunction

A more singular non-interference problem example is given by the initial data

(57) u0(x) = a0(x)e
i
S0(x)

~ , a0(x) = (1 + tanh(7(x+ 3))) · (1 + tanh(7(−x+ 1))), S0(x) =
−2
3 |x| 32

and

(58) V (x) = 1 + (1 + tanh(4(x+ 4)))(1 + tanh(−4(x− 4)))
(−|x|+ 4)

8
.

The initial WM of this problem is a line supported measure. The concentration limit of ρ~ predicts that

this measure would be “sliced” into two lines. We see clear qualitative agreement between ρ~ and W̃ ~, see
Figure 16. The quantum observables (46) (including mass scattered to the left / right) are within around
4% of their semiclassical prediction. Overall it seems that quantitative convergence as ~ → 0 is taking place,
albeit somewhat more slowly for this type of initial data than for the data of eq. (45).

The numerical solution for ρ~ (i.e. of the Liouville equation (27)) is more challenging for this problem,
than for the initial data of (45) because of the singularity of the flow.



SELECTION PRINCIPLE FOR MULTIVALUED CLASSICAL FLOWS 25

Figure 15. Smoothing of the Wigner transform. Left; the WT – dominant features correspond
to oscillations that vanish in the limit. Middle; fine smoothing – the most spurious oscillations
are gone, there is good resolution and some very negative values. Right; coarser smoothing, more
appropriate for computational use – there are still non-negligible negative values, but the dominant
features of the density are clearly positive while definition has not been overly smeared.
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