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Exponential convergence to quasi-stationary

distribution and Q-process

Nicolas Champagnat1,2, Denis Villemonais1,2

December 23, 2014

Abstract

For general, almost surely absorbed Markov processes, we obtain
necessary and sufficient conditions for exponential convergence to a
unique quasi-stationary distribution in the total variation norm. These
conditions also ensure the existence and exponential ergodicity of the
Q-process (the process conditioned to never be absorbed). We ap-
ply these results to one-dimensional birth and death processes with
catastrophes, multi-dimensional birth and death processes, infinite-
dimensional population models with Brownian mutations and neutron
transport dynamics absorbed at the boundary of a bounded domain.

Keywords: process with absorption; quasi-stationary distribution; Q-process;
Dobrushin’s ergodicity coefficient; uniform mixing property; birth and death
process; neutron transport process.
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1 Introduction

Let (Ω, (Ft)t≥0, (Xt)t≥0, (Pt)t≥0, (Px)x∈E∪{∂}) be a time homogeneous Markov
process with state space E ∪ {∂} [31, Definition III.1.1], where (E, E) is a
measurable space and ∂ 6∈ E. We recall that Px(X0 = x) = 1, Pt is the tran-
sition function of the process satisfying the usual measurability assumptions
and Chapman-Kolmogorov equation. The family (Pt)t≥0 defines a semi-
group of operators on the set B(E ∪ {∂}) of bounded Borel functions on
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E ∪∂ endowed with the uniform norm. We will also denote by p(x; t, dy) its
transition kernel, i.e. Ptf(x) =

∫

E∪{∂} f(y)p(x; t, dy) for all f ∈ B(E ∪{∂}).

For all probability measure µ on E ∪ {∂}, we will use the notation

Pµ(·) :=

∫

E∪{∂}
Px(·)µ(dx).

We shall denote by Ex (resp. Eµ) the expectation corresponding to Px (resp.
Pµ).

We consider a Markov processes absorbed at ∂. More precisely, we as-
sume that Xs = ∂ implies Xt = ∂ for all t ≥ s. This implies that

τ∂ := inf{t ≥ 0, Xt = ∂}

is a stopping time. We also assume that τ∂ < ∞ Px-a.s. for all x ∈ E and
for all t ≥ 0 and ∀x ∈ E, Px(t < τ∂) > 0.

Our first goal is to prove that Assumption (A) below is a necessary and
sufficient criterion for the existence of a unique quasi-limiting distribution
α on E for the process (Xt, t ≥ 0), i.e. a probability measure α such that
for all probability measure µ on E and all A ∈ E ,

lim
t→+∞

Pµ(Xt ∈ A | t < τ∂) = α(A), (1.1)

where, in addition, the convergence is exponential and uniform with respect
to µ and A. In particular, α is also the unique quasi-stationary distribu-
tion [28], i.e. the unique probability measure α such that Pα(Xt ∈ · | t <
τ∂) = α(·) for all t ≥ 0.

Assumption (A) There exists a probability measure ν on E such that

(A1) there exists t0, c1 > 0 such that for all x ∈ E,

Px(Xt0 ∈ · | t0 < τ∂) ≥ c1ν(·);

(A2) there exists c2 > 0 such that for all x ∈ E and t ≥ 0,

Pν(t < τ∂) ≥ c2Px(t < τ∂).

Theorem 1.1. Assumption (A) implies the existence of a probability mea-
sure α on E such that, for any initial distribution µ,

‖Pµ(Xt ∈ · | t < τ∂)− α(·)‖TV ≤ 2(1− c1c2)
⌊t/t0⌋, (1.2)

where ⌊·⌋ is the integer part function and ‖ ·‖TV is the total variation norm.
Conversely, if there is uniform exponential convergence for the total vari-

ation norm in (1.1), then Assumption (A) holds true.
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Stronger versions of this theorem and of the other results presented in
the introduction will be given in the next sections.

The quasi-stationary distribution describes the distribution of the pro-
cess on the event of non-absorption. It is well known (see [28]) that when
α is a quasi-stationary distribution, there exists λ0 > 0 such that, for all
t ≥ 0,

Pα(t < τ∂) = e−λ0t. (1.3)

The following proposition characterizes the limiting behaviour of the ab-
sorption probability for other initial distributions.

Proposition 1.2. There exists a non-negative function η on E ∪ {∂}, pos-
itive on E and vanishing on ∂, such that

µ(η) = lim
t→∞

eλ0tPµ(t < τ∂),

where the convergence is uniform on the set of probability measures µ on E.

Our second goal is to study consequences of Assumption (A) on the
behavior of the process X conditioned to never be absorbed, usually referred
to as the Q-process (see [1] in discrete time and for example [5] in continuous
time).

Theorem 1.3. Assumption (A) implies that the family (Qx)x∈E of proba-
bility measures on Ω defined by

Qx(A) = lim
t→+∞

Px(A | t < τ∂), ∀A ∈ Fs, ∀s ≥ 0,

is well defined and the process (Ω, (Ft)t≥0, (Xt)t≥0, (Qx)x∈E) is an E-valued
homogeneous Markov process. In addition, this process admits the unique
invariant distribution

β(dx) =
η(x)α(dx)
∫

E η(y)α(dy)

and, for any x ∈ E,

‖Qx(Xt ∈ ·)− β‖TV ≤ 2(1− c1c2)
⌊t/t0⌋.

The study of quasi-stationary distributions goes back to [38] for branch-
ing processes and [12, 33, 13] for Markov chains in finite or denumerable
state spaces, satisfying irreducibility assumptions. In these works, the exis-
tence and the convergence to a quasi-stationary distribution are proved using
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spectral properties of the generator of the absorbed Markov process. This is
also the case for most further works. For example, a extensively developed
tool to study birth and death processes is based on orthogonal polynomials
techniques of [23], applied to quasi-stationary distributions in [22, 6, 34]. For
diffusion processes, we can refer to [30] and more recently [4, 5, 26], all based
on the spectral decomposition of the generator. Most of these works only
study one-dimensional processes, whose reversibility helps for the spectral
decomposition. Processes in higher dimensions were studied either assuming
self-adjoint generator in [5], or using abstract criteria from spectral theory
like in [30, 10] (the second one in infinite dimension). Other formulations in
terms of abstract spectral theoretical criteria were also studied in [24]. The
reader can refer to [28, 11, 36] for introductory presentations of the topic.

Most of the previously cited works do not provide convergence results
nor estimates on the speed of convergence. The articles studying these
questions either assume abstract conditions which are very difficult to check
in practice [33, 24], or prove exponential convergence for very weak norms [4,
5, 26].

More probabilistic methods were also developed. The older reference is
based on a renewal technique [21] and proves the existence and convergence
to a quasi-stationary distribution for discrete processes for which Assump-
tion (A1) is not satisfied. More recently, one-dimensional birth and death
processes with a unique quasi-stationary distribution have been shown to
satisfy (1.1) with uniform convergence in total variation [27]. Convergence
in total variation for processes in discrete state space satisfying strong mix-
ing conditions was obtained in [9] using Fleming-Viot particle systems whose
empirical distribution approximates conditional distributions [37]. Sufficient
conditions for exponential convergence of conditioned systems in discrete
time can be found in [15] with applications of discrete generation particle
techniques in signal processing, statistical machine learning, and quantum
physics. We also refer the reader to [16, 17, 18] for approximations tech-
niques of non absorbed trajectories in terms of genealogical trees.

In this work, we obtain in Section 2 necessary and sufficient conditions
for exponential convergence to a unique quasi-stationary distribution for
general (virtually any) Markov processes (we state a stronger form of The-
orem 1.1). We also obtain spectral properties of the infinitesimal generator
as a corollary of our main result. Our non-spectral approach and results
fundamentally differ from all the previously cited references, except [27, 9]
which only focus on very specific cases. In Section 3, we show, using penal-
isation techniques [32], that the same conditions are sufficient to prove the
existence of the Q-process and its exponential ergodicity, uniformly in total
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variation. This is the first general result showing the link between quasi-
stationary distributions and Q-processes, since we actually prove that, for
general Markov processes, the uniform exponential convergence to a quasi-
stationary distribution implies the existence and ergodicity of the Q-process.

Section 4 is devoted to applications of the previous results to specific ex-
amples of processes. Our goal is not to obtain the most general criteria, but
to show how Assumption (A) can be checked in different practical situations.
We first obtain necessary and sufficient conditions for one-dimensional birth
and death processes with catastrophe in Section 4.1.1. We show next how
the method of the proof can be extended to treat several multi-dimensional
examples in Section 4.1.2. One of these examples is infinite-dimensional
(as in [10]) and assumes Brownian mutations in a continuous type space.
Our last example is the neutron transport process in a bounded domain,
absorbed at the boundary (Section 4.2). This example belongs to the class
of piecewise-deterministic Markov processes, for which up to our knowledge
no results on quasi-stationary distributions are known. In this case, the
absorption rate is unbounded, in the sense that the absorption time can-
not be stochastically dominated by an exponential random variable with
constant parameter. Other examples of Markov processes with unbounded
absorption rate can be studied thanks to Theorem 2.1. For example, the
study of diffusion processes on R+ absorbed at 0, or on Rd

+, absorbed at 0
or Rd

+ \ (R∗
+)

d is relevant for population dynamics (see for example [4, 5])
and is studied in [8]. More generally, the great diversity of applications of
the very similar probabilistic criterion for processes without absorption (see
all the works building on [29]) indicates the wide range of applications and
extensions of our criteria that can be expected.

The paper ends with the proof of the main results of Section 2 and 3 in
Sections 5 and 6.

2 Existence and uniqueness of a quasi-stationary
distribution

2.1 Assumptions

We begin with some comments on Assumption (A).
When E is a Polish space, Assumption (A1) implies that Xt comes back

fast in compact sets from any initial conditions. Indeed, there exists a
compact set K of E such that ν(K) > 0 and therefore, infx∈E Px(τK∪{∂} <
t0) > 0, where τK∪{∂} is the first hitting time of K ∪ {∂} by Xt. When
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E = (0,+∞) or N and ∂ = 0, this is implied by the fact that the process X
comes down from infinity [4] (see Section 4.1 for the discrete case).

Assumption (A2) means that the highest non-absorption probability
among all initial points in E has the same order of magnitude as the non-
absorption probability starting from distribution ν. Note also that (A2)
holds true when, for some A ∈ E such that ν(A) > 0 and some c′2 > 0,

inf
y∈A

Py (t < τ∂) ≥ c′2 sup
x∈E

Px (t < τ∂) .

We now introduce the apparently weaker assumption (A’) and the stronger
assumption (A”), proved to be equivalent in Theorem 2.1 below.

Assumption (A’) There exists a family of probability measures (νx1,x2
)x1,x2∈E

on E such that,

(A1′) there exists t0, c1 > 0 such that, for all x1, x2 ∈ E,

Pxi
(Xt0 ∈ · | t0 < τ∂) ≥ c1νx1,x2

(·) for i = 1, 2;

(A2′) there exist a constant c2 > 0 such that for all x1, x2 ∈ E and t ≥ 0,

Pνx1,x2
(t < τ∂) ≥ c2 sup

x∈E
Px(t < τ∂).

Assumption (A”) Assumption (A1) is satisfied and

(A2′′) for any probability measure µ on E, the constant c2(µ) defined by

c2(µ) := inf
t≥0, ρ∈M1(E)

Pµ(t < τ∂)

Pρ(t < τ∂)

is positive, where M1(E) is the set of probability measures on E.

2.2 Results

The next result is a detailed version of Theorem 1.1.

Theorem 2.1. The following conditions (i)–(vi) are equivalent.

(i) Assumption (A).

(ii) Assumption (A’).

(iii) Assumption (A”).
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(iv) There exist a probability measure α on E and two constants C, γ > 0
such that, for all initial distribution µ on E,

‖Pµ(Xt ∈ · | t < τ∂)− α(·)‖TV ≤ Ce−γt, ∀t ≥ 0. (2.1)

(v) There exist a probability measure α on E and two constants C, γ > 0
such that, for all x ∈ E,

‖Px(Xt ∈ · | t < τ∂)− α(·)‖TV ≤ Ce−γt, ∀t ≥ 0.

(vi) There exists a probability measure α on E such that
∫ ∞

0
sup
x∈E

‖Px(Xt ∈ · | t < τ∂)− α(·)‖TV dt <∞. (2.2)

In this case, α is the unique quasi-stationary distribution for the process.
In addition, if Assumption (A’) is satisfied, then (iv) holds with the explicit
bound

‖Pµ(Xt ∈ · | t < τ∂)− α(·)‖TV ≤ 2(1− c1c2)
⌊t/t0⌋. (2.3)

This result and the others of this section are proved in Section 5.
One can expect that the constant C in (iv) might depend on µ pro-

portionally to ‖µ − α‖TV . This is indeed the case, but with a constant of
proportionality depending on c2(µ), defined in Assumption (A2”), as shown
by the following result.

Corollary 2.2. Hypotheses (i–vi) imply that, for all probability measures
µ1, µ2 on E, and for all t > 0,

‖Pµ1
(Xt ∈ · | t < τ∂)− Pµ2

(Xt ∈ · | t < τ∂)‖TV ≤
(1− c1c2)

⌊t/t0⌋

c2(µ1) ∧ c2(µ2)
‖µ1 − µ2‖TV .

Remark 1. It immediately follows from (1.3) and (A”) that

e−λ0t ≤ sup
ρ∈M1(E)

Pρ(t < τ∂) ≤
e−λ0t

c2(α)
. (2.4)

In the proof of Theorem 2.1, we actually prove that one can take

c2(α) = sup
s>0

exp

Ç
−λ0s−

Ce(λ0−γ)s

1− e−γs

å
, (2.5)

where C and γ satisfy (2.1).
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Remark 2. In the case of Markov processes without absorption, Meyn and
Tweedie [29, Chapter 16] give several equivalent criteria for the exponential
ergodicity with respect to ‖ · ‖TV , among which are unconditioned versions
of (iv) and (v). The last results can be interpreted as an extension of these
criteria to conditioned processes. Several differences remain.

1. In the case without absorption, the equivalence between the uncon-
ditioned versions of criteria (iv) and (v) is obvious. In our case, the
proof is not immediate.

2. In the case without absorption, the unconditioned version of criterion
(vi) can be replaced by the weaker assumption supx∈E ‖Px(Xt ∈ ·) −
α‖TV → 0 when t → +∞. Whether (vi) can be improved in such
a way remains an open problem in general. However, if one assumes
that there exists c′2 > 0 such that for all t ≥ 0,

inf
ρ∈M1(E)

Pρ(t < τ∂) ≥ c′2 sup
ρ∈M1(E)

Pρ(t < τ∂),

then one can adapt the arguments of Corollary 2.2 to prove that

sup
x∈E

‖Px(Xt ∈ · | t < τ∂)− α(·)‖TV −−−→
t→∞

0

implies (i–vi).

3. The extension to quasi-stationary distributions of criteria based on
Lyapunov functions as in [29] requires a different approach because the
survival probability and conditional expectations can not be expressed
easily in terms of the infinitesimal generator.

4. In the irreducible case, there is a weaker alternative to the Dobrushin-
type criterion of Hypothesis (A1) known as Doeblin’s condition: there
exist µ ∈ M1(E), ε < 1, t0, δ > 0 such that, for all measurable set A
satisfying µ(A) > ε,

inf
x∈E

Px(Xt0 ∈ A) ≥ δ.

It is possible to check that the conditional version of this criterion
implies the existence of a probability measure ν 6= µ such that (A1)
is satisfied. Unfortunately ν is far from being explicit in this case
and (A2), which must involve the measure ν, is no more a tractable
condition, unless one can prove directly (A2”) instead of (A2).
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It is well known (see [28]) that when α is a quasi-stationary distribution,
there exists λ0 > 0 such that, for all t ≥ 0,

Pα(t < τ∂) = e−λ0t and eλ0tαPt = α. (2.6)

The next result is a detailed version of Proposition 1.2.

Proposition 2.3. There exists a non-negative function η on E ∪ {∂}, pos-
itive on E and vanishing on ∂, defined by

η(x) = lim
t→∞

Px(t < τ∂)

Pα(t < τ∂)
= lim

t→+∞
eλ0tPx(t < τ∂),

where the convergence holds for the uniform norm on E∪{∂} and α(η) = 1.
Moreover, the function η is bounded, belongs to the domain of the infinites-
imal generator L of the semi-group (Pt)t≥0 on (B(E ∪ {∂}), ‖ · ‖∞) and

Lη = −λ0η.

In the irreducible case, exponential ergodicity is known to be related to a
spectral gap property (see for instance [25]). Our results imply a similar
property under the assumptions (i–vi) for the infinitesimal generator L of
the semi-group on (B(E ∪ {∂}), ‖ · ‖∞).

Corollary 2.4. If f ∈ B(E ∪ {∂}) is a right eigenfunction for L for an
eigenvalue λ, then either

1. λ = 0 and f is constant,

2. or λ = −λ0 and f = α(f)η,

3. or λ ≤ −λ0 − γ, α(f) = 0 and f(∂) = 0.

3 Existence and exponential ergodicity of the Q-
process

We now study the behavior of the Q-process. The next result is a detailed
version of Theorem 1.3.

Theorem 3.1. Assumption (A) implies the three following properties.

(i) Existence of the Q-process. There exists a family (Qx)x∈E of probability
measures on Ω defined by

lim
t→+∞

Px(A | t < τ∂) = Qx(A)

9



for all Fs-measurable set A. The process (Ω, (Ft)t≥0, (Xt)t≥0, (Qx)x∈E)
is an E-valued homogeneous Markov process. In addition, if X is a
strong Markov process under P, then so is X under Q.

(ii) Transition kernel. The transition kernel of the Markov process X under
(Qx)x∈E is given by

p̃(x; t, dy) = eλ0t η(y)

η(x)
p(x; t, dy).

In other words, for all ϕ ∈ B(E) and t ≥ 0,

P̃tϕ(x) =
eλ0t

η(x)
Pt(ηϕ)(x) (3.1)

where (P̃t)t≥0 is the semi-group of X under Q.

(iii) Exponential ergodicity. The probability measure β on E defined by

β(dx) = η(x)α(dx).

is the unique invariant distribution of X under Q. Moreover, for any
initial distributions µ1, µ2 on E,

‖Qµ1
(Xt ∈ ·)−Qµ2

(Xt ∈ ·)‖TV ≤ (1− c1c2)
⌊t/t0⌋‖µ1 − µ2‖TV ,

where Qµ =
∫

E Qx µ(dx).

Note that, as an immediate consequence of Theorem 2.1, the uniform expo-
nential convergence to a quasi-stationary distribution implies points (i–iii)
of Theorem 3.1.

We investigate now the characterization of the Q-process in term of its
weak infinitesimal generator (see [19, Ch I.6]). Let us recall the definition
of the bounded pointwise convergence: for all fn, f in B(E ∪ {∂}), we say
that

b.p.- lim
n→∞

fn = f

if and only if supn ‖fn‖∞ <∞ and for all x ∈ E ∪ {∂}, fn(x) → f(x).
The weak infinitesimal generator Lw of (Pt) is defined as

Lwf = b.p.- lim
h→0

Phf − f

h
,
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for all f ∈ B(E ∪ {∂}) such that the above b.p.–limit exists and

b.p.- lim
h→0

PhL
wf = Lwf.

We call weak domain and denote by D(Lw) the set of such functions f . We
define similarly the b.p.–limit in B(E) and the weak infinitesimal generator
L̃w of (P̃t) and its weak domain D(L̃w).

Theorem 3.2. Assume that (A) is satisfied. Then

D(L̃w) =

®
f ∈ B(E), ηf ∈ D(Lw) and

Lw(ηf)

η
is bounded

´
(3.2)

and, for all f ∈ D(L̃w),

L̃wf = λ0f +
Lw(ηf)

η
.

If in addition E is a topological space and E is the Borel σ-field, and if for
all open set U ⊂ E and x ∈ U ,

lim
h→0

p(x;h, U) = lim
h→0

Ph1U (x) = 1, (3.3)

then the semi-group (P̃t) is uniquely determined by its weak infinitesimal
generator L̃w.

Let us emphasize that (3.3) is obviously satisfied if the process X is
almost surely càdlàg.

Remark 3. One can wonder if the weak infinitesimal generator can be re-
placed in the previous result by the standard one. Then Hille-Yoshida The-
orem would give necessary and sufficient condition for a strongly continuous
contraction semi-group on a Banach space B to be characterized by its stan-
dard infinitesimal generator (see for example [20, Thm 1.2.6, Prop 1.2.9]).
However this is an open question that we couldn’t solve. To understand
the difficulty, observe that even the strong continuity of P̃ cannot be easily
deduced from the strong continuity of P : in view of (3.1), if ηf ∈ B, we
have

∥

∥

∥P̃tf − f
∥

∥

∥

∞
−−→
t→0

0 ⇔

∥

∥

∥

∥

1

η
(Pt(ηf)− ηf)

∥

∥

∥

∥

∞

−−→
t→0

0.

We don’t know whether the last convergence can be deduced from the strong
continuity of P or if counter examples exist.
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4 Applications

This section is devoted to the application of Theorems 2.1 and 3.1 to discrete
and continuous examples. Our goal is to show how Assumption (A) can be
checked in different practical situations.

4.1 Generalized birth and death processes

Our goal is to apply our results to generalized birth and death processes.
In subsection 4.1.1, we extend known criteria to one dimensional birth and
death processes with catastrophe. In subsection 4.1.2, we apply a similar
method to multi-dimensional and infinite dimensional birth and death pro-
cesses.

4.1.1 Birth and death processes with catastrophe

We consider an extension of classical birth and death processes with pos-
sible mass extinction. Our goal is to extend the recent result from [27] on
the characterisation of exponential convergence to a unique quasi-stationary
distribution. The existence of quasi-stationary distributions for similar pro-
cesses was studied in [35].

Let X be a birth and death process on Z+ with birth rates (bn)n≥0 and
death rates (dn)n≥0 with b0 = d0 = 0 and bk, dk > 0 for all k ≥ 1. We also
allow the process to jump to 0 from any state n ≥ 1 at rate an ≥ 0. In
particular, the jump rate from 1 to 0 is a1 + d1. This process is absorbed in
∂ = 0.

Theorem 4.1. Assume that supn≥1 an < ∞. Conditions (i-vi) of Theo-
rem 2.1 are equivalent to

S :=
∑

k≥1

1

dkαk

∑

l≥k

αl <∞, (4.1)

with αk =
Ä
∏k−1

i=1 bi
ä
/
Ä
∏k

i=1 di
ä
.

Moreover, there exist constants C, γ > 0 such that

‖Pµ1
(Xt ∈ · | t < τ∂)− Pµ2

(Xt ∈ · | t < τ∂)‖TV ≤ Ce−γt‖µ1 − µ2‖TV (4.2)

for all µ1, µ2 ∈ M1(E) and t ≥ 0.

The last inequality and the following corollary of Theorem 3.1 are orig-
inal results, even in the simpler case of birth and death processes without
catastrophes.
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Corollary 4.2. Under the assumption that supn≥1 an <∞ and S <∞, the
family (Qx)x∈E of probability measures on Ω defined by

lim
t→+∞

Px(A | t < τ∂) = Qx(A), ∀A ∈ Fs, ∀s ≥ 0, (4.3)

is well defined. In addition, the process X under (Qx) admits the unique
invariant distribution

β(dx) = η(x)α(dx)

and there exist constants C, γ > 0 such that, for any x ∈ E,

‖Qx(Xt ∈ ·)− β‖TV ≤ Ce−γt. (4.4)

Remark 4. In view of Point 2. in Remark 2, we actually also have the
following property. Conditionally on non-extinction, X converges uniformly
in total variation to some probability measure α if and only if it satisfies
(i–vi).

Proof of Theorem 4.1. Let Y be the birth and death process on Z+ (without
catastrophe) with birth and death rates bn and dn from state n. The process
X and Y can be coupled such that Xt = Yt, for all t < τ∂ almost surely.

We recall (see [34]) that S <∞ if and only if the birth and death process
Y comes down from infinity, in the sense that

sup
n≥0

En(τ
′
∂) <∞,

where τ ′∂ = inf{t ≥ 0, Yt = 0}. More precisely, for any z ≥ 0,

sup
n≥z

En(T
′
z) =

∑

k≥z+1

1

dkαk

∑

l≥k

αl <∞, (4.5)

where T ′
z = inf{t ≥ 0, Yt ≤ z}. Note that this equality remains true even

when the sum is infinite.

Let us first assume that (A1) is satisfied. This will be sufficient to prove
that S <∞. Let z be large enough so that ν({1, . . . , z}) > 0. Then, for all
n ≥ 1,

Pn(Yt0 ≤ z) ≥ Pn(Xt0 ≤ z and t0 ≤ τ∂)

≥ c1ν({1, . . . , z})Pn(t0 ≤ τ∂).
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Since the jump rate of X to 0 from any state is always smaller than q = d1+
supn≥1 an, the absorption time dominates an exponential r.v. of parameter
q. Thus Pn(t0 ≤ τ∂) ≥ e−qt0 and hence

inf
n≥1

Pn(Yt0 ≤ z) ≥ ce−qt0 ,

for some c > 0. Defining θ = inf{n ≥ 0, Ynt0 ≤ z}, we deduce from the
Markov property that, for all n ≥ 1 and k ≥ 0,

Pn(θ > k + 1 | θ > k) ≤ sup
m>z

Pm(Yt0 ≥ z) ≤ 1− ce−qt0 .

Thus Pn(θ > k) ≤ (1 − ce−qt0)k and supn≥z En(T
′
z) ≤ supn≥z En(t0θ) < ∞.

By (4.5), this entails S <∞.

Conversely, let us assume that S <∞. For all ε > 0 there exists z such
that

sup
n≥z

En(T
′
z) ≤ ε.

Therefore, supn≥z Pn(T
′
z ≥ 1) ≤ ε and, applying recursively the Markov

property, supn≥z Pn(T
′
z ≥ k) ≤ εk. Then, for all λ > 0, there exists z ≥ 1

such that
sup
n≥1

En(e
λT ′

z) < +∞. (4.6)

Fix x0 ∈ E and let us check that this exponential moment implies (A2)
and then (A1) with ν = δx0

. We choose λ = 1 + q and apply the previous
construction of z. Defining the finite set K = {1, 2, . . . , z} ∪ {x0} and τK =
inf{t ≥ 0, Xt ∈ K}, we thus have

A := sup
x∈E

Ex(e
λτK∧τ∂ ) <∞. (4.7)

Let us first observe that for all y, z ∈ K, Py(X1 = z)Pz(t < τ∂) ≤ Py(t+
1 < τ∂) ≤ Py(t < τ∂). Therefore, the constant C−1 := infy,z∈K Py(X1 =
z) > 0 satisfies the following inequality:

sup
x∈K

Px(t < τ∂) ≤ C inf
x∈K

Px(t < τ∂), ∀t ≥ 0. (4.8)

Moreover, since λ is larger than the maximum absorption rate q, for t ≥ s,

e−λsPx0
(t− s < τ∂) ≤ Px0

(t− s < τ∂) inf
x≥1

Px(s < τ∂) ≤ Px0
(t < τ∂).

14



For all x ∈ E, we deduce from Chebyshev’s inequality and (4.7) that

Px(t < τK ∧ τ∂) ≤ Ae−λt.

Using the last three inequalities and the strong Markov property, we have

Px(t < τ∂) = Px(t < τK ∧ τ∂) + Px(τK ∧ τ∂ ≤ t < τ∂)

≤ Ae−λt +

∫ t

0
sup

y∈K∪{∂}
Py(t− s < τ∂)Px(τK ∧ τ∂ ∈ ds)

≤ APx0
(t < τ∂) + C

∫ t

0
Px0

(t− s < τ∂)Px(τK ∧ τ∂ ∈ ds)

≤ APx0
(t < τ∂) + C Px0

(t < τ∂)

∫ t

0
eλs Px(τK ∧ τ∂ ∈ ds)

≤ A(1 + C)Px0
(t < τ∂).

This shows (A2) for ν = δx0
.

Let us now show that (A1) is satisfied. We have, for all x ∈ E,

Px(τK < t) = Px(τK < t ∧ τ∂) ≥ Px(t < τ∂)− Px(t < τK ∧ τ∂)

≥ e−qt −Ae−λt.

Since λ > q, there exists t0 > 0 such that

inf
x∈E

Px(τK < t0 − 1) > 0.

But the irreducibility ofX and the finiteness ofK imply that infy∈K Py(X1 =
x0) > 0, thus the Markov property entails

inf
x∈E

Px(Xt0 = x0) ≥ inf
x∈E

Ex[1τK<t0−1 inf
y∈K

Py(X1 = x0)e
−qx0 (t0−1−τK)] > 0,

where qx0
= ax0

+bx0
+dx0

is the the jump rate from state x0, which implies
(A1) for ν = δx0

. Finally, using Theorem 2.1, we have proved that (i–vi)
holds.

In order to conclude the proof, we use Corollary 2.2 and the fact that

inf
x∈E

c2(δx) ≥ inf
x∈E

Px(Xt0 = x0)c2(δx0
) > 0.

This justifies the last part of Theorem 4.1.
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4.1.2 Extensions to multi-dimensional birth and death processes

In this section, our goal is to illustrate how the previous result and proof
apply in various multi-dimensional cases, using comparison arguments. We
focus here on a few instructive examples in order to illustrate the tools of our
method and its applicability to a wider range of models. We will consider
three models of multi-specific populations, with competitive or cooperative
interaction within and among species.

Our first example deals with a birth and death process in Zd
+, where each

coordinate represent the number of individuals of distinct types (or in dif-
ferent geographical patches). We will assume that mutations (or migration)
from each type (or patch) to each other is possible at birth, or during the
life of individuals. In this example, the absorbing state ∂ = 0 corresponds
to the total extinction of the population.

We consider in our second example a cooperative birth and death process
without mutation (or migration), where extinct types remain extinct forever.
In this case, the absorbing states are ∂ = Zd

+ \ Nd, where N = {1, 2, . . .}.
Our last example shows how these techniques apply to discrete popula-

tions with continuous type space and Brownian genetical drift. Such multi-
type birth and death processes in continuous type space naturally arise in
evolutionary biology [7] and the existence of a quasi-stationary distribution
of similar processes has been studied in [10].

Example 1 (Birth and death processes with mutation or migration).
We consider a d-dimensional birth and death process with type-dependent
individual birth and death rates X, where individuals compete with each
others with type dependent coefficients. We denote by λij > 0 the birth
rate of an individual of type j from an individual of type i, µi > 0 the death
rate of an individual of type i and by cij > 0 the death rate of an individual
of type i from competition with an individual of type j. More precisely, if
x ∈ Zd

+, denoting by bi(x) (resp. di(x)) the birth (resp. death) rate of an
individual of type i in the population x, we have

{

bi(x) =
∑d

j=1 λjixj ,

di(x) = µixi +
∑d

j=1 cijxixj .

Note that ∂ = 0 is the only absorbing state for this process.
The process X can be coupled with a birth and death process Y such
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that |Xt| ≤ Yt with birth and death rates

bn := nd sup
i,j

λij ≥ sup
x∈Zd

+
, |x|=n

d
∑

i=1

bi(x) (4.9)

dn := n inf
i
µi + n2 inf

i,j
cij ≤ inf

x∈Zd
+
, |x|=n

d
∑

i=1

di(x), (4.10)

where |x| = x1+ · · ·+xd. We can check that S, defined in (4.1), is finite and
hence one obtains (4.6) and (4.7) exactly as in the proof of Theorem 4.1.
From these inequalities, the proof of (A2) and (A1) is the same as for The-
orem 4.1, with K = {x ∈ E, |x| ≤ z} ∪ {x0} and q = maxi µi + cii <∞.

Hence there exists a unique quasi-stationary distribution. Moreover,
conditions (i–vi) hold as well as (4.2), (4.3) and (4.4).

Example 2 (Weak cooperative birth and death process without mutation).

We consider a d-dimensional birth and death process with type-dependent
individual birth and death rates, where individuals of the same type compete
with each others and where individuals of different types cooperate with each
others. Denoting by λi ≥ 0 and µi ≥ 0 the individual birth and death rates,
by cii > 0 the intra-type individual competition rate and by cij ≥ 0 the
inter-type individual cooperation rate for any types i 6= j, we thus have the
following multi-dimensional birth and death rates:

{

bi(x) = λixi +
∑

j 6=i cijxixj

di(x) = µixi + ciix
2
i .

This process is absorbed in ∂ = Zd
+ \ Nd.

We assume that the inter-type cooperation is weak, relatively to the
competition between individuals of same types. More formally, we assume
that, for all i ∈ {1, . . . , d},

Å
1−

1

d

ã
max
i 6=j

cij + cji
2

<
1

β
(4.11)

where β =
∑d

j=1
1
cjj

.

We claim that there exists a unique quasi-stationary distribution and
that conditions (i–vi) hold as well as (4.2), (4.3) and (4.4).
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Indeed the same coupling argument as in the last example can be used
with bn and dn defined as

bn := n max
i∈{1,...,d}

λi + n2
Å
1−

1

d

ã
max
i<j

cij + cji
2

,

dn := n min
i∈{1,...,d}

µi +
n2

β
.

From this definition, one can check that

sup
x∈Zd

+
, |x|=n

d
∑

i=1

bi(x) ≤ max
i∈{1,...,d}

λi

d
∑

i=1

xi +max
i<j

cij + cji
2

∑

i 6=j

xixj

≤ n max
i∈{1,...,d}

λi +max
i<j

cij + cji
2

(

n2 − n2 min
y∈Rd

+
,|y|=1

d
∑

i=1

y2i

)

= bn

and

inf
x∈Zd

+
, |x|=n

d
∑

i=1

di(x) ≥ n min
i∈{1,...,d}

µi + n2 min
y∈Rd

+
,|y|=1

d
∑

i=1

ciiy
2
i .

Since the function y 7→
∑d

i=1 ciiy
2
i on {y ∈ Rd

+, |y| = 1} reaches its minimum
at (1/c11, . . . , 1/cdd)/β, we have

inf
x∈Zd

+
, |x|=n

d
∑

i=1

di(x) ≥ dn.

Now we deduce from (4.11) that bn/dn+1 converges to a limit smaller than
1. Hence,

S′ :=
∑

k≥d

1

dkα
′
k

∑

l≥k

α′
l <∞,

with α′
k =

Ä
∏k−1

i=d bi
ä
/
Ä
∏k

i=d di
ä
. This implies that, for any λ > 0, there

exists z such that (4.6) holds. Because of the cooperative assumption, the
maximum absorption rate is given by q = maxi µi + cii < ∞ and we can
conclude following the proof of Theorem 4.1, as in Example 1.

Example 3 (Infinite dimensional birth and death processes).
We consider a birth and death processX evolving in the setM of finite point
measures on T, where T is the set of individual types. We refer to [10] for a
study of the existence of quasi-stationary distributions for similar processes.
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If Xt =
∑n

i=1 δxi
, the population at time t is composed of n individuals

of types x1, . . . , xn. For simplicity, we assume that T is the unit torus of Rd,
d ≥ 1, and that each individual’s type is subject to mutation during its life
according to independent standard Brownian motions in T.

We denote by λ(x) > 0 the birth rate of an individual of type x ∈ T,
µ(x) > 0 its death rate and by c(x, y) > 0 the death rate of an individual of
type x from competition with an individual of type y, where λ, µ and c are
continuous functions. More precisely, if ξ =

∑n
i=1 δxi

∈ M \ {0}, denoting
by b(xi, ξ) (resp. d(xi, ξ)) the birth (resp. death) rate of an individual of
type xi in the population ξ, we have

{

b(xi, ξ) = λ(xi),

d(xi, ξ) = µ(xi) +
∫

T c(xi, y)dξ(y).

This corresponds to clonal reproduction. Similarly to Example 1, we assume
that the process is absorbed at ∂ = 0 (see [7] for the construction of this
process).

We claim that there exists a unique quasi-stationary distribution and
that conditions (i–vi) hold as well as (4.2), (4.3) and (4.4).

Indeed, one can check as in example 1 that there exists t0 ≥ 0 such that

inf
ξ∈M

Pξ(|Supp Xt0 | = 1) > 0.

Observe that for all measurable set Γ ⊂ T,

Pδx(X1 = δy, with y ∈ Γ) ≥ e− supx∈T
(b(x,δx)+d(x,δx))Px(B̃1 ∈ Γ),

where B̃ is a standard Brownian motion in T. Hence, defining ν as the
law of δU , where U is uniform on T, there exists c1 > 0 such that, for all
measurable set A ⊂ M,

inf
ξ∈M

Pξ(Xt0+1 ∈ A) ≥ c1ν(A).

This entails (A1) for the measure ν. As in the two previous examples,
(A2) follows from similar computations as in the proof of Theorem 4.1.

In particular, there exists n0 such that supξ∈M Eξ(e
λτKn0

∧τ∂ ) < ∞, where
λ = 1 + supx∈T[µ(x) + c(x, x)] and

Kn0
= {ξ ∈ M, |Supp(ξ)| ≤ n0}.
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The new difficulty is to prove (4.8). Since absorption occurs only from states
with one individual, this is equivalent to: there exists a constant C > 0 such
that, for all t ≥ 0, x0 ∈ T,

Pδx0
(t < τ∂) ≥ C sup

ξ∈Kn0

Pξ(t < τ∂). (4.12)

If this holds, we conclude the proof as for Theorem 4.1.
To prove (4.12), let us first observe that the jump rate from any state

of Kn0
is uniformly bounded from above by a constant ρ < ∞. Hence,

we can couple the process Xt with an exponential r.v. τ with parameter ρ
independent of the Brownian motions driving the mutations in such a way
that X does not jump in the time interval [0, τ ]. For any x ∈ Tn and any
Brownian motion B on Tn independant of τ , we have

P(x+Bτ∧1 ∈ Γ) ≤ P(x+Bτ ∈ Γ)+P(x+B1 ∈ Γ) ≤ CLeb(Γ), ∀Γ ∈ B(Tn),

where the last inequality follows from the explicit density of Bτ [3, Eq. 1.0.5].
From this it is easy to deduce that there exists C ′ < ∞ such that, for all
1 ≤ n ≤ n0, A ∈ B(Kn \Kn−1) and ξ ∈ Kn \Kn−1,

Pξ(Xτ∧1 ∈ A) ≤ C ′Un(A),

where Un is the law of
∑n

i=1 δUi
, where U1, . . . , Un are i.i.d. uniform r.v. on

T. Since one also has

Pδx0
(X1 ∈ A) ≥ Pδx0

(|Supp(X1/2)| = n, X1 ∈ A) ≥ C ′′Un(A), ∀A ∈ B(Kn\Kn−1)

for a constant C ′′ independent of A, we have proved that

Pδx0
(X1 ∈ A) ≥ C sup

ξ∈Kn\Kn−1

Pξ(Xτ∧1 ∈ A), ∀A ∈ B(Kn \Kn−1)

for a constant C independent of A and n ≤ n0. We can now prove (4.12):
for all fixed ξ ∈ Kn \Kn−1,

Pδx0
(t+ 1 < τ∂) ≥

∫

Kn\Kn−1

Pζ(t < τ∂)Pδx0
(X1 ∈ dζ)

≥ C

∫

Kn\Kn−1

Pζ(t < τ∂)Pξ(Xτ∧1 ∈ dζ)

= CPξ(τ ∧ 1 + t < τ∂) ≥ CPξ(t+ 1 < τ∂).
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4.2 Absorbed neutron transport process

The propagation of neutrons in fissible media is typically modeled by neu-
tron transport systems, where the trajectory of the particle is composed of
straight exponential paths between random changes of directions [14, 39].
An important problem to design nuclear devices is the so-called shielding
structure, aiming to protect humans from ionizing particles. It is in partic-
ular crucial to compute the probability that a neutron exits the shielding
structure D before its absorption by the medium [2]. This question is of
course related to the quasi-stationary behavior of neutron tranport, where
absorption corresponds to the exit of a neutron from D.

We consider a piecewise-deterministic process of neutron transport with
constant velocity. LetD be an open connected bounded domain of R2, let S2

be the unit sphere of R2 and σ(du) be the uniform probability measure on S2.
We consider the Markov process (Xt, Vt)t≥0 in D×S2 constructed as follows:
Xt =

∫ t
0 Vs ds and the velocity Vt ∈ S2 is a pure jump Markov process, with

constant jump rate λ > 0 and uniform jump probability distribution σ. In
other words, Vt jumps to i.i.d. uniform values in S2 at the jump times of a
Poisson process. At the first time where Xt 6∈ D, the process immediately
jumps to the cemetery point ∂, meaning that the process is absorbed at the
boundary of D. An example of path of the process (X,V ) is shown in Fig. 1.
For all x ∈ D and u ∈ S2, we denote by Px,u (resp. Ex,u) the distribution of
(X,V ) conditionned on (X0, V0) = (x, u) (resp. the expectation with respect
to Px,u).

Remark 5. The assumptions of contant velocity, uniform jump distribution,
uniform jump rates and on the dimension of the process can be relaxed
but we restrict here to the simplest case to illustrate how conditions (A1)
and (A2) can be checked. In particular, it is easy to extend our results to
variants of the process where, for instance, the jump measure for V may
depend on the state of the process, provided this measure is absolutely
continuous w.r.t. σ with density uniformly bounded from above and below.

We denote by ∂D the boundary of the domain D, diam(D) its diameter,
and for all A ⊂ R2 and x ∈ R2, by d(x,A) the distance of x to the set A:
d(x,A) = infy∈A |x − y|. We also denote by B(x, r) the open ball of R2

centered at x with radius r. We assume that the domain D is connected
and smooth enough, in the following sense.

Assumption (B) We assume that there exists ε > 0 such that

(B1) Dε := {x ∈ D : d(x, ∂D) > ε} is non-empty and connected;
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X0

V0

XJ1

VJ1

XJ5

VJ5

∂

∂D

Figure 1: A sample path of the neutron transport process (X,V ). The times
J1 < J2 < . . . are the successive jump times of V .

(B2) there exists 0 < sε < tε and σ > 0 such that, for all x ∈ D \Dε, there
exists Kx ⊂ S2 measurable such that σ(Kx) ≥ σ and for all u ∈ Kx,
x+ su ∈ Dε for all s ∈ [sε, tε] and x+ su 6∈ ∂D for all s ∈ [0, sε].

As illustrated by Fig. 2, assumption (B2) means that, for all x ∈ D \Dε,
the set

Lx :=

®
y ∈ R2 : |y − x| ∈ [sε, tε] and

y − x

|y − x|
∈ Kx

´

is included in Dε and has Lebesgue measure larger than σ
2 (t

2
ε − s2ε) > 0.

These assumptions are true for example if ∂D is a C2 connected com-
pact manifold, since then the so-called interior sphere condition entails the
existence of a cone Kx satisfying (B2) provided ε is small enough compared
to the maximum curvature of the manifold.

Theorem 4.3. Assumption (B) implies (i–vi) in Theorem 2.1.

Proof. In all the proof, we will make use of the following notation: for all
k ≥ 1, let Jk be the k-th jump time of Vt (the absorption time is not
considered as a jump, so Jk+1 = ∞ if Jk <∞ and Xt hits ∂D after Jk and
before the (k + 1)-th jump of Vt).

Let us first prove (A1). The following properties are easy consequences
of the boundedness of D and Assumption (B).
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x

∂D

Dε

Kx

Lx

sε tε

Figure 2: The sets Kx and Lx of Assumption (B2).

Lemma 4.4. (i) There exists n ≥ 1 and x1, . . . , xn ∈ Dε such that Dε ⊂
⋃n

i=1B(xi, ε/16).

(ii) For all x, y ∈ Dε, there exists m ≤ n and i1, . . . , im distinct in {1, . . . , n}
such that x ∈ B(xi1 , ε/16), y ∈ B(xim , ε/16) and for all 1 ≤ j ≤ m−1,
B(xij , ε/16) ∩B(xij+1

, ε/16) 6= ∅.

The next lemma is proved just after the current proof.

Lemma 4.5. For all x ∈ D, u ∈ S2 and t > 0 such that d(x, ∂D) > t, the
law of (Xt, Vt) under Px,u satisfies

Px,u(Xt ∈ dz, Vt ∈ dv) ≥
λ2e−λt

4πt

(t− |z − x|)2

t+ |z − x|
1z∈B(x,t)Λ(dz)σ(dv),

where Λ is Lebesgue’s measure on R2.

This lemma has the following immediate consequence. Fix i 6= j in
{1, . . . , n} such that B(xi, ε/16) ∩ B(xj , ε/16) 6= ∅. Then, for all x ∈
B(xi, ε/16) and u ∈ S2,

Px,u(Xε/2 ∈ dz, Vε/2 ∈ dv) ≥ Cε1B(xj ,ε/8)∪B(xi,ε/8)(z)Λ(dz)σ(dv),

for a constant Cε > 0 independent of x, i and j.
Combining this result with Lemma 4.4, one easily deduces that for all

x ∈ Dε, u ∈ S2 and m ≥ n,

Px,u(Xmε/2 ∈ dz, Vmε/2 ∈ dv) ≥ Cεc
m−1
ε 1Dε(z)Λ(dz)σ(dv),
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where cε = CεΛ(B(ε/16)) = Cεπε
2/256. Proceeding similarly, but with a

first time step of length in [ε/2, ε), we can also deduce from Lemma 4.5 that,
for all t ≥ nε/2,

Px,u(Xt ∈ dz, Vt ∈ dv) ≥ C ′
εc

⌊2t/ε⌋−1
ε 1Dε(z)Λ(dz)σ(dv) (4.13)

for a contant C ′
ε > 0.

This entails (A1) with ν the uniform probability measure on Dε × S2

and any t0 ≥ nε/2, but only for initial conditions in Dε × S2.
Now, assume that x ∈ D \Dε and u ∈ S2. Let

s = inf{t ≥ 0 : x+ tu ∈ Dε ∪ ∂D}.

If x + su ∈ ∂Dε, then Px,u(Xs ∈ ∂Dε) ≥ e−λs ≥ e−λ diam(D), and thus,
combining this with (4.13), for all t > nε/2,

Px,u(Xs+t ∈ dz, Vs+t ∈ dv | s+ t < τ∂) ≥ Px,u(Xs+t ∈ dz, Vs+t ∈ dv)

≥ e−λ diam(D)C ′
εc

⌊2t/ε⌋−1
ε 1Dε(z)Λ(dz)σ(dv).

If x+ su ∈ ∂D,

Px,u(Xtε ∈ Dε, tε < τ∂) ≥ P(J1 < s ∧ (tε − sε), VJ1 ∈ Kx+uJ1 , J2 > tε)

≥ σe−λtεP(J1 < s ∧ (tε − sε)).

Hence (4.13) entails, for all t ≥ nε/2 such that t+ tε ≥ s,

Px,u(Xtε+t ∈ dz, Vtε+t ∈ dv | tε + t < τ∂)

≥
Px,u(Xtε ∈ Dε, tε < τ∂ , Xtε+t ∈ dz, Vtε+t ∈ dv)

Px,u(t+ tε < τ∂)

≥
P(J1 < s ∧ (tε − sε))

P(J1 < s)
σe−λtεc⌊2t/ε⌋+1

ε 1Dε(z)Λ(dz)σ(dv).

Since tε ≤ diam(D), we have for all 0 < s ≤ diam(D)

P(J1 < s ∧ (tε − sε))

P(J1 < s)
≥

1− e−λ(tε−sε)

1− e−λ diam(D)
> 0.

Hence, we have proved (A1) with ν the uniform probability measure on
Dε × S2 and t0 =

nε
2 + diam(D).

Now we come to the proof of (A2). This can be done in two steps: first,
we prove that for all x ∈ D and u ∈ S2,

Px,u(J4 <∞, XJ4 ∈ dz) ≤ C1D(z)Λ(dz) (4.14)
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for some constant C independent of x and u; second

Pν(J1 <∞, XJ1 ∈ dz) ≥ c1D(z)Λ(dz) (4.15)

for some constant c > 0.
Since for all k ≥ 1, conditionally on {Jk < ∞}, VJk is uniformly dis-

tributed on S2 and independent of XJk , this is enough to conclude as fol-
lows: by (4.14) and the inequality J4 ≤ 4 diam(D) a.s. on τ∂ > t, for all
t ≥ 4 diam(D),

Px,u(t < τ∂) ≤ Ex,u[PXJ4
,VJ4

(t− 4 diam(D) < τ∂)]

≤ C

∫∫

D

∫

S2

Pz,v(t− 4 diam(D) < τ∂)σ(dv)Λ(dz).

Similarly, (4.15) entails that, for all t ≥ diam(D),

Pν(t < τ∂) ≥ c

∫∫

D

∫

S2

Pz,v(t < τ∂)σ(dv)Λ(dz),

and thus, for all t ≥ 5 diam(D),

Px,u(t < τ∂) ≤
C

c
Pν(t− 4 diam(D) < τ∂).

Now, it follows from (A1) that Pν((Xt0 , Vt0) ∈ ·) ≥ c1Pν(t0 < τ∂)ν(·) and
thus

Pν(t− 4 diam(D) + t0 < τ∂) = Eν [PXt0
,Vt0

(t− 4 diam(D) < τ∂)]

≥ c1Pν(t− 4 diam(D) < τ∂).

Iterating this inequality as needed completes the proof of (A2).
So it only remains to prove (4.14) and (4.15). We start with (4.14). We

denote by (X̂t, V̂t)t≥0 the neutron transport process in D̂ = R2, coupled
with (X,V ) such that X̂t = Xt and V̂t = Vt for all t < τ∂ . We denote by
Ĵ1 < Ĵ2 < . . . the jumping times of V̂ . It is clear that Ĵk = Jk for all k ≥ 1
such that Jk <∞.

Now, X̂Ĵ4
= Y1+Y2+Y3+Y4, where the r.v. Y1, . . . , Y4 are independent,

Y1 = x + uZ, where Z is an exponential r.v. of parameter λ, and Y2, Y3, Y4
are all distributed as V Z, where V is uniform on S2 and independent of
Z. Using the change of variable from polar to Cartesian coordinates, one

checks that V Z has density g(z) = λe−λ|z|

2π|z| w.r.t. Λ(dz), so that g ∈ L3/2(R2).
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Applying twice Young’s inequality, one has g ∗ g ∗ g ∈ L∞(R2). Hence, for
all f ∈ B(R2),

Ex,u[f(XJ4); J4 < τ∂ ] ≤ E[f(X̂Ĵ4
)] ≤ ‖g ∗ g ∗ g‖∞

∫∫

R2

f(z)Λ(dz).

Hence (4.14) is proved.
We finally prove (4.15). For all x, y ∈ R2, we denote by [x, y] the segment

delimited by x and y. For all f ∈ B(R2),

Eν [f(XJ1); J1 <∞] =

∫∫

Dε

Λ(dx)

Λ(Dε)

∫

S2

σ(du)

∫ ∞

0
1[x,x+su]⊂D λe

−λsf(x+ su) ds

=

∫∫

Dε

Λ(dx)

Λ(Dε)

∫∫

D
Λ(dz)1[x,z]⊂D

λe−λ|z−x|

2π|z − x|
f(z)

≥
λe−λ diam(D)

2πdiam(D)Λ(Dε)

∫∫

D
Λ(dz)f(z)

∫∫

Dε

Λ(dx)1[x,z]⊂D.

Now, for all z ∈ D \Dε, using assumption (B2),

∫∫

Dε

1[x,z]⊂D Λ(dx) ≥ Λ(Lz) ≥
σ

2
(t2ε − s2ε),

and for all z ∈ Dε,

∫∫

Dε

1[x,z]⊂D Λ(dx) ≥ Λ(Dε ∩B(z, ε)).

Since the map z 7→ Λ(Dε∩B(z, ε)) is continuous and positive on the compact
set Dε, we have proved (4.15).

Proof of Lemma 4.5. Using twice the relation: for all bounded measurable
f , k ≥ 1, t ≥ 0, x ∈ D and u ∈ S2,

Ex,u[f(Xt, Vt); Jk ≤ t < Jk+1]

=

∫ t

0
dsλe−λs

∫

S2

σ(dv)Ex+su,v[f(Xt−s, Vt−s); Jk−1 ≤ t− s < Jk],

we obtain

Ex,u[f(Xt, Vt); J2 ≤ t < J3] = λ2e−λt

∫

S2

σ(dv)

∫

S2

σ(dw)

∫ t

0
ds

∫ t−s

0
dθf(x+ su+ θv + (t− s− θ)w,w).
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For all x, y, z ∈ R2, we denote by [x, y, z] the triangle of R2 delimited by x,
y and z. Using the well-known fact that a point in [x, y, z] with barycentric
coordinates distributed uniformly on the simplex is distributed uniformly
on [x, y, z], we deduce that

Ex,u[f(Xt, Vt); J2 ≤ t < J3]

=
λ2t2

2
e−λt

∫

S2

σ(dv)

∫

S2

σ(dw)

∫∫

[u,v,w]
f(x+ tz, w)

Λ(dz)

Λ([u, v, w])
.

Now, for all u, v, w ∈ S2,

Λ([u, v, w]) =
1

2
|u− w| |v − v′| ≤ |u− w|,

where v′ is the orthogonal projection of v on the line (u,w) (see fig. 3), and
where we used the fact that |v − v′| ≤ 2.

Figure 3: The triangle [u, v, w] and the point v′.
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Moreover, for fixed t ≥ 0, x ∈ D, u,w ∈ S2,

∫

S2

σ(dv)

∫∫

[u,v,w]
f(x+tz, w) Λ(dz) =

1

2π

∫ 2π

0
dθ

∫∫

[u,vθ,w]
f(x+tz, w)Λ(dz)

=
1

2π

∫ 2π

0
dθ

∫∫

B(1)
f(x+ tz, w)1z∈[u,vθ,w]Λ(dz)

=

∫∫

B(1)
f(x+ tz, w)

ŭzwz

2π
Λ(dz),

where vθ = (cos θ, sin θ) ∈ R2, B(r) is the ball centered at 0 of radius r of
R2, uz (resp. wz) is the symmetric of u (resp. w) with respect to z in S2

(see Fig. 4) and ıuv is the length of the arc between u and v in S2.

u

w

u0

w0

uz

wz

z

z0

S2

δ

u̇zwz

Figure 4: Definition of uz, wz, ŭzwz, z0, u0 and w0. The angle marked M is
larger than the one marked ).

Fix 0 < δ < 1, and let z0 be the farthest point in B(δ) from {u,w}
(this point is unique except when the segment [u,w] between u and w is a
diameter of S2). We set u0 = uz0 and w0 = wz0 (see Fig. 4). Note that
Thales’ theorem implies that

|u0 − w0| =
1− δ

1 + δ
|u− w|.
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Then, for any z ∈ B(δ), we have ’uz0w ≤ ‘uzw, where ‘xyz is the measure
of the angle formed by the segments [y, x] and [y, z]. Since in addition
|z0 − u0| = |z0 − w0| ≤ 1 and |z − uz| ∧ |z − wz| ≥ 1 − δ, Thales’ theorem
yields

|uz − wz|

1− δ
≥ |u0 − w0|.

Puting everything together, we deduce that

Ex,u[f(Xt, Vt);J2 ≤ t < J3]

≥
λ2t2

4π
e−λt

∫

S2

σ(dw)

∫∫

B(1)
f(x+ tz, w)

|uz − wz|

|u− w|
Λ(dz)

≥
λ2t2

4π
e−λt

∫

S2

σ(dw)

∫∫

B(1)
f(x+ tz, w)

(1− |z|)2

1 + |z|
Λ(dz).

This ends the proof of Lemma 4.5.

5 Quasi-stationary distribution: proofs of the re-
sults of Section 2

This section is devoted to the proofs of Theorem 2.1 (Sections 5.1 and 5.2),
Corollary 2.2 (Section 5.3), Proposition 2.3 (Section 5.4) and Corollary 2.4
(Section 5.5). In Theorem 2.1, the implications (iii)⇒(i)⇒(ii) and (iv)⇒(v)⇒(vi)
are obvious so we only need to prove (ii)⇒(iv) and (vi)⇒(iii).

5.1 (ii) implies (iv)

Assume thatX satisfies Assumption (A’). We shall prove the result assuming
(A1’) holds for t0 = 1. The extension to any t0 is immediate.

Step 1: control of the distribution at time 1, conditionally on non-absorption
at a later time.
Let us show that, for all t ≥ 1 and for all x1, x2 ∈ E, there exists a probability
measure νtx1,x2

on E such that, for all measurable set A ⊂ E,

Pxi
(X1 ∈ A | t < τ∂) ≥ c1c2ν

t
x1,x2

(A), for i = 1, 2. (5.1)

Fix x1, x2 ∈ E, i ∈ {1, 2}, t ≥ 1 and a measurable subset A ⊂ E. Using the
Markov property, we have

Pxi
(X1 ∈ A and t < τ∂) = Exi

[1A(X1)PX1
(t− 1 < τ∂)]

= Exi
[1A(X1)PX1

(t− 1 < τ∂) | 1 < τ∂ ]Pxi
(1 < τ∂)

≥ c1νx1,x2
(1A(·)P· (t− 1 < τ∂))Pxi

(1 < τ∂) ,
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by Assumption (A1’). Dividing both sides by Pxi
(t < τ∂), we deduce that

Pxi
(X1 ∈ A | t < τ∂) ≥ c1νx1,x2

(1A(·)P· (t− 1 < τ∂))
Pxi

(1 < τ∂)

Pxi
(t < τ∂)

.

Using again the Markov property, we have

Pxi
(t < τ∂) ≤ Pxi

(1 < τ∂) sup
y∈E

Py (t− 1 < τ∂) ,

so that

Pxi
(X1 ∈ A | t < τ∂) ≥ c1

νx1,x2
(1A(·)P· (t− 1 < τ∂))

supy∈E Py (t− 1 < τ∂)
.

Now Assumption (A2’) implies that the non-negative measure

B 7→
νx1,x2

(1B(·)P· (t− 1 < τ∂))

supy∈E Py (t− 1 < τ∂)

has a total mass greater than c2. Therefore (5.1) holds with

νtx1,x2
(B) =

νx1,x2
(1B(·)P· (t− 1 < τ∂))

Pνx1,x2
(t− 1 < τ∂)

Step 2: exponential contraction for Dirac initial distributions
We now prove that, for all x, y ∈ E and T ≥ 0

‖Px (XT ∈ · | T < τ∂)− Py (XT ∈ · | T < τ∂)‖TV ≤ 2(1− c1c2)
⌊T ⌋. (5.2)

Let us define, for all 0 ≤ s ≤ t ≤ T the linear operator RT
s,t by

RT
s,tf(x) = Ex(f(Xt−s) | T − s < τ∂)

= E(f(Xt) | Xs = x, T < τ∂),

by the Markov property. For any T > 0, the family (RT
s,t)0≤s≤t≤T is a

Markov semi-group: we have, for all 0 ≤ u ≤ s ≤ t ≤ T and all bounded
measurable function f ,

RT
u,s(R

T
s,tf)(x) = RT

u,tf(x).

This can be proved as Lemma 12.2.2 in [15] or by observing that a Markov
process conditioned by an event in its tail σ-field remains Markovian (but
no longer time-homogeneous).
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For any x1, x2 ∈ E, we have by (5.1) that δxi
RT

s,s+1 − c1c2ν
T−s
x1,x2

is a
positive measure whose mass is 1− c1c2, for i = 1, 2. We deduce that

∥

∥

∥δx1
RT

s,s+1 − δx2
RT

s,s+1

∥

∥

∥

TV

≤ ‖δx1
RT

s,s+1 − c1c2ν
T−s
x1,x2

‖TV + ‖δx2
RT

s,s+1 − c1c2ν
T−s
x1,x2

‖TV

≤ 2(1− c1c2).

Let µ1, µ2 be two mutually singular probability measures on E and any
f ≥ 0, we have

∥

∥

∥µ1R
T
s,s+1 − µ2R

T
s,s+1

∥

∥

∥

TV
≤

∫∫

E2

∥

∥

∥δxR
T
s,s+1 − δyR

T
s,s+1

∥

∥

∥

TV
dµ1 ⊗ dµ2(x, y)

≤ 2(1− c1c2) = (1− c1c2)‖µ1 − µ2‖TV .

Now if µ1 and µ2 are any two different probability measures (not neces-
sarily mutually singular), one can apply the previous result to the mutually

singular probability measures (µ1−µ2)+
(µ1−µ2)+(E) and (µ1−µ2)−

(µ1−µ2)−(E) . Then

∥

∥

∥

∥

∥

(µ1 − µ2)+
(µ1 − µ2)+(E)

RT
s,s+1 −

(µ1 − µ2)−
(µ1 − µ2)−(E)

RT
s,s+1

∥

∥

∥

∥

∥

TV

≤ (1− c1c2)

∥

∥

∥

∥

∥

(µ1 − µ2)+
(µ1 − µ2)+(E)

−
(µ1 − µ2)−

(µ1 − µ2)−(E)

∥

∥

∥

∥

∥

TV

.

Since µ1(E) = µ2(E) = 1, we have (µ1 − µ2)+(E) = (µ1 − µ2)−(E). So
multiplying the last inequality by (µ1 − µ2)+(E), we deduce that

‖(µ1 − µ2)+R
T
s,s+1 − (µ1 − µ2)−R

T
s,s+1‖TV

≤ (1− c1c2)‖(µ1 − µ2)+ − (µ1 − µ2)−‖TV .

Since (µ1 − µ2)+ − (µ1 − µ2)− = µ1 − µ2, we obtain

‖µ1R
T
s,s+1 − µ2R

T
s,s+1‖TV ≤ (1− c1c2)‖µ1 − µ2‖TV .

Using the semi-group property of (RT
s,t)s,t, we deduce that, for any x, y ∈ E,

‖δxR
T
0,T − δyR

T
0,T ‖TV = ‖δxR

T
0,T−1R

T
T−1,T − δyR

T
0,T−1R

T
T−1,T ‖TV

≤ (1− c1c2) ‖δxR
T
0,T−1 − δyR

T
0,T−1‖TV

≤ . . . ≤ 2 (1− c1c2)
⌊T ⌋ .
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By definition of RT
0,T , this inequality immediately leads to (5.2).

Step 3: exponential contraction for general initial distributions
We prove now that inequality (5.2) extends to any pair of initial probability
measures µ1, µ2 on E, that is, for all T ≥ 0,

‖Pµ1
(XT ∈ · | T < τ∂)− Pµ2

(XT ∈ · | T < τ∂)‖TV ≤ 2(1− c1c2)
⌊T ⌋. (5.3)

Let µ1 be a probability measure on E and x ∈ E. We have

‖Pµ1
(XT ∈ · | T < τ∂)− Px(XT ∈ · | T < τ∂)‖TV

=
1

Pµ1
(T < τ∂)

‖Pµ1
(XT ∈ ·)− Pµ1

(T < τ∂)Px(XT ∈ · | T < τ∂)‖TV

≤
1

Pµ1
(T < τ∂)

∫

y∈E
‖Py(XT ∈ ·)− Py(T < τ∂)Px(XT ∈ · | T < τ∂)‖TV dµ1(y)

≤
1

Pµ1
(T < τ∂)

∫

y∈E
Py(T < τ∂)‖Py(XT ∈ · | T < τ∂)− Px(XT ∈ · | T < τ∂)‖TV dµ1(y)

≤
1

Pµ1
(T < τ∂)

∫

y∈E
Py(T < τ∂)2(1− c1c2)

⌊T ⌋dµ1(y)

≤ 2(1− c1c2)
⌊T ⌋.

The same computation, replacing δx by any probability measure, leads
to (5.3).

Step 4: existence and uniqueness of a quasi-stationary distribution for X.
Let us first prove the uniqueness of the quasi-stationary distribution. If α1

and α2 are two quasi-stationary distributions, then we have Pαi
(Xt ∈ ·|t <

τ∂) = αi for i = 1, 2 and any t ≥ 0. Thus, we deduce from inequality (5.3)
that

‖α1 − α2‖TV ≤ 2(1− c1c2)
⌊t⌋, ∀t ≥ 0,

which yields α1 = α2.
Let us now prove the existence of a QSD. By [28, Proposition 1], this

is equivalent to prove the existence of a quasi-limiting distribution for X.
So we only need to prove that Px(Xt ∈ ·|t < τ∂) converges when t goes to
infinity, for some x ∈ E. We have, for all s, t ≥ 0 and x ∈ E,

Px (Xt+s ∈ · | t+ s < τ∂) =
δxPt+s

δxPt+s1E
=

δxPtPs

δxPtPs1E
=

δxR
s
0,sPt

δxRs
0,sPt1E

= PδxRs
0,s

(Xt ∈ · | t < τ∂) , (5.4)
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where we use the identity Rs
0,sf(x) =

Psf(x)
Ps1E(x) for the third equality. Hence

‖Px(Xt ∈ ·|t < τ∂)− Px(Xt+s ∈ ·|t+ s < τ∂)‖TV

= ‖Px(Xt ∈ ·|t < τ∂)− PδxRs
0,s
(Xt ∈ ·|t < τ∂)‖TV

≤ 2 (1− c1c2)
⌊t⌋ −−−−−→

s,t→+∞
0.

In particular the sequence (Px(Xt ∈ · | t < τ∂))t≥0 is a Cauchy sequence for
the total variation norm. The space of probability measures on E equipped
with the total variation norm is complete, so Px(Xt ∈ · | t < τ∂) converges
when t goes to infinity to some probability measure α on E.

Finally Equation (2.3) follows from (5.3) with µ1 = µ and µ2 = α.
Therefore we have proved (iv) and the last statement of Theorem 2.1 con-
cerning existence and uniqueness of a quasi-stationary distribution and the
explicit expression for C and γ.

5.2 (vi) implies (iii)

Assume that (2.2) holds with some probability measure α on E. Let us
define

ε(t) = sup
x∈E

‖Px(Xt ∈ · | t < τ∂)− α‖TV .

Step 1: ε(·) is non-increasing and α is a quasi-stationary distribution
For all s, t ≥ 0, x ∈ E and A ∈ E ,

|Px(Xt+s ∈ A | t+ s < τ∂)− α(A)

=

∣

∣

∣

∣

∣

Ex {1t<τ∂PXt(s < τ∂) [PXt(Xs ∈ A | s < τ∂)− α(A)]}

Px(t+ s < τ∂)

∣

∣

∣

∣

∣

≤
Ex {1t<τ∂PXt(s < τ∂) |PXt(Xs ∈ A | s < τ∂)− α(A)|}

Px(t+ s < τ∂)

≤ ε(s).

Taking the supremum over x and A, we deduce that the function ε(·) is
non-increasing. By (2.2), this implies that ε(t) goes to 0 when t→ +∞. By
Step 4 above, α is a quasi-stationary distribution and there exists λ0 > 0
such Pα(t < τ∂) = e−λ0t.
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Step 2: proof of (A2′′) for µ = α
We define, for all s ≥ 0,

A(s) =
supx∈E Px(s < τ∂)

Pα(s < τ∂).
= eλ0s sup

x∈E
Px(s < τ∂).

Our goal is to prove that A is bounded. The Markov property implies, for
s ≤ t,

Px(t < τ∂) = Px(s < τ∂)E (PXs(t− s < τ∂) | s < τ∂) .

By (2.2), the total variation distance between α and Lx(Xs | s < τ∂) is
smaller than ε(s), so

Px(t < τ∂) ≤ Px(s < τ∂)

Ç
Pα(t− s < τ∂) + ε(s) sup

y∈E
Py(t− s < τ∂)

å
.

For s ≤ t, we thus have

A(t) ≤ A(s) (1 + ε(s)A(t− s)) . (5.5)

The next lemma proves that

Pα(t < τ∂) = e−λ0t ≥ c2(α) sup
x∈E

Px(t < τ∂) (5.6)

for the constant c2(α) = 1/ sups>0A(s) and concludes Step 2.

Lemma 5.1. A function A : R+ 7→ R+ satisfying (5.5) for all s ≤ t is
bounded.

Proof. We introduce the non-decreasing function ψ(t) = sup0≤s≤tAs. It
follows from (5.5) that, for all s ≤ u ≤ t,

A(u) ≤ ψ(s) (1 + ε(s)ψ(t− s)) .

Since this inequality holds also for u ≤ s, we obtain for all s ≤ t,

ψ(t) ≤ ψ(s) (1 + ε(s)ψ(t− s)) . (5.7)

By induction, for all N ≥ 1 and s ≥ 0,

ψ(Ns) ≤ ψ(s)
N−1
∏

k=1

(1 + ε(ks)ψ(s))

≤ ψ(s) exp

(

ψ(s)
N−1
∑

k=1

ε(ks)

)

≤ ψ(s) exp

(

ψ(s)
∞
∑

k=1

ε(ks)

)

, (5.8)
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where
∑∞

k=1 ε(ks) <∞ by (2.2).
Since ψ is non-decreasing, it is bounded.

Remark 6. Note that, under Assumption (v), ε(t) ≤ Ce−γt. Using the fact
that ψ(s) ≤ eλ0s, we deduce from (5.8) that, for all s > 0,

A(Ns) ≤ exp

Ç
λ0s+

Ce(λ0−γ)s

1− e−γs

å
.

This justifies (2.5) in Remark 1.

Step 3: proof of (A2′′)
Applying Step 3 of Section 5.1 with µ1 = ρ and δx = α, we easily obtain

ε(t) = sup
ρ∈M1(E)

‖Pρ(Xt ∈ · | t < τ∂)− α‖TV .

Let µ be a probability measure on E. For any s ≥ 0, let us define µs(·) =
Pµ(Xs ∈ · | s < τ∂). We have ‖µs − α‖TV ≤ ε(s) and so

Pµs(t− s < τ∂) ≥ Pα(t− s < τ∂)− ε(s) sup
x∈E

Px(t− s < τ∂)

≥ e−λ0(t−s) −
ε(s)

c2(α)
e−λ0(t−s)

by (5.6). Since ε(s) decreases to 0, there exists s0 such that ε(s0)/c2(α) =
1/2. Using the Markov property, we deduce that, for any t ≥ s0,

Pµ(t < τ∂) = Pµs0
(t− s0 < τ∂)Pµ(s0 < τ∂)

≥
e−λ0(t−s0)

2
Pµ(s0 < τ∂).

Therefore, by (5.6), we have proved that

Pµ(t < τ∂) ≥ c2(µ) sup
x∈E

Px(t < τ∂)

for

c2(µ) =
1

2
c2(α)e

λ0s0Pµ(s0 < τ∂) > 0.

Step 4: construction of the measure ν in (A1)
We define the measure ν as the infimum of the family of measures (δxR

2t
0,2t)x∈E ,

as defined in the next lemma, for a fixed t such that c2(α) ≥ 2ε(t). To prove
(A1) for t0 = 2t, we only need to check that ν is a positive measure.
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Lemma 5.2. Let (µx)x∈F be a family of positive measures on E indexed by
an arbitrary set F . For all A ∈ E, we define

µ(A) = inf

{

n
∑

i=1

µxi
(Bi) | n ≥ 1, x1, . . . , xn ∈ F, B1, . . . , Bn ∈ E partition of A

}

.

Then µ is the largest non-negative measure on E such that µ ≤ µx for all
x ∈ F and is called the infimum measure of (µx)x∈F .

Proof of Lemma 5.2. Clearly µ(A) ≥ 0 for all A ∈ E and µ(∅) = 0. Let us
prove the σ-additivity. Consider disjoints measurable sets A1, A2, . . . and
define A = ∪kAk. Let B1, . . . , Bn be a measurable partition of A. Then

n
∑

i=1

µxi
(Bi) =

∞
∑

k=1

n
∑

i=1

µxi
(Bi ∩Ak) ≥

∞
∑

k=1

µ(Ak).

Hence µ(A) ≥
∑∞

k=1 µ(Ak).
Fix K ≥ 1 and ǫ > 0. For all k ∈ {1, . . . ,K}, let (Bk

i )i∈{1,...,nk} be a

partition of Ai and (xki )i∈{1,...,nk} be such that

µ(Ak) ≥
nk
∑

i=1

µxk
i
(Bk

i )−
ǫ

2k
.

Then

K
∑

k=1

µ(Ak) ≥
K
∑

k=1

(

nk
∑

i=1

µxk
i
(Bk

i )−
ǫ

2k

)

≥ µ

(

K
⋃

k=1

Ak

)

− ǫ.

Since, for any x0 ∈ F ,

µ(A) ≤ µ

(

K
⋃

k=1

Ak

)

+ µx0

(

A \
K
⋃

k=1

Ak

)

,

choosing K large enough, µ(A) ≤ µ
Ä
∪K
k=1Ak

ä
+ ǫ. Combining this with the

previous inequality, we obtain

µ(A) ≥
∞
∑

k=1

µ(Ak) ≥ µ(A)− 2ǫ.

This concludes the proof that µ is a non-negative measure.
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Let us now prove that µ is the largest non-negative measure on E such
that µ ≤ µx for all x ∈ F . Let µ̂ be another measure such that µ̂ ≤ µx. Then,
for all A ∈ E and B1, . . . , Bn a measurable partition of A and x1, . . . , xn ∈ F ,

µ̂(A) =
n
∑

i=1

µ̂(Bi) ≤
n
∑

i=1

µxi
(Bi).

Taking the infimum over (Bi) and (xi) implies that µ̂ ≤ µ.

Let us now prove that ν is a positive measure. By (5.4), for any x ∈ E,
t ≥ 0 and A ⊂ E measurable,

δxR
2t
0,2t(A) = PδxRt

0,t
(Xt ∈ A|t < τ∂)

=

∫

E Py(Xt ∈ A)δxR
t
0,t(dy)

∫

E Py(t < τ∂)δxR
t
0,t(dy)

.

By Step 2, we have

δxR
2t
0,2t(A) ≥ c2(α)e

λ0t
∫

E
Py(Xt ∈ A)δxR

t
0,t(dy).

We set ν+t,x = (α − δxR
t
0,t)+. Using the inequality (between measures)

δxR
t
0,t ≥ α− ν+t,x,

δxR
2t
0,2t(A) ≥ c2(α)α(A)− c2(α)e

λ0t
∫

E
Py(Xt ∈ A | t < τ∂)Py(t < τ∂)ν

+
t,x(dy).

Since ν+t,x is a positive measure, Step 2 implies again

δxR
2t
0,2t(A) ≥ c2(α)α(A)−

∫

E
Py(Xt ∈ A | t < τ∂)ν

+
t,x(dy)

= c2(α)α(A)−

∫

E
δyR

t
0,t(A)ν

+
t,x(dy)

≥
Ä
c2(α)− ν+t,x(E)

ä
α(A)−

∫

E

Ä
δyR

t
0,t(A)− α(A)

ä
ν+t,x(dy)

≥ (c2(α)− ε(t))α(A)−

∫

E

Ä
δyR

t
0,t(A)− α(A)

ä
+
ν+t,x(dy),

where the inequality ν+t,x(E) ≤ ε(t) follows from (2.2). Moreover ν+t,x =
(α− δxR

t
0,t)+ ≤ α, therefore

δxR
2t
0,2t(A) ≥ (c2(α)− ε(t))α(A)−

∫

E

Ä
δyR

t
0,t(A)− α(A)

ä
+
α(dy).
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Hence, for all B1, . . . , Bn a measurable partition of E and all x1, . . . , xn ∈ E,

n
∑

i=1

δxi
R2

0,2tt(Bi) ≥ (c2(α)− ε(t))α(E)−

∫

E

n
∑

i=1

Ä
δyR

t
0,t(Bi)− α(Bi)

ä
+
α(dy).

Now

n
∑

i=1

Ä
δyR

t
0,t(Bi)− α(Bi)

ä
+
≤
∥

∥

∥δyR
t
0,t(Bi)− α(Bi)

∥

∥

∥

TV
≤ ε(t).

Therefore ν(E) ≥ c2(α)− 2ε(t) > 0.
This concludes the proof of Theorem 2.1.

5.3 Proof of Corollary 2.2

Assume that the hypotheses of Theorem 2.1 are satisfied and let µ1, µ2 be
two probability measures and t ≥ 0. Without loss of generality, we assume
that Pµ1

(t < τ∂) ≥ Pµ2
(t < τ∂) and prove that

‖Pµ1
(Xt ∈ · | t < τ∂)− Pµ2

(Xt ∈ · | t < τ∂)‖ ≤
(1− c1c2)

⌊t/t0⌋

c2(µ1)
‖µ1 − µ2‖TV .

Using the relation

µ1Pt = (µ1 − (µ1 − µ2)+)Pt + (µ1 − µ2)+Pt,

the similar one for µ2Pt and µ1− (µ1−µ2)+ = µ2− (µ2−µ1)+, we can write

µ1Pt

µ1Pt1E
−

µ2Pt

µ2Pt1E
= α1Pt − α2Pt, (5.9)

where α1 and α2 are the positive measures defined by

α1 =
(µ1 − µ2)+
µ1Pt1E

and

α2 =
(µ2 − µ1)+
µ2Pt1E

+

Å
1

µ2Pt1E
−

1

µ1Pt1E

ã
× (µ1 − (µ1 − µ2)+) .

We immediately deduce from(5.9), that α1Pt1E = α2Pt1E , so that

‖α1Pt − α2Pt‖TV = α1Pt1E

∥

∥

∥

∥

α1

α1Pt1E
Pt −

α2

α2Pt1E
Pt

∥

∥

∥

∥

TV

≤ 2(1− c1c2)
⌊t/t0⌋α1Pt1E .
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Since

α1Pt1E =
(µ1 − µ2)+Pt1E

µ1Pt1E

≤ (µ1 − µ2)+(E)
supρ∈M1(E) ρPt1E

µ1Pt1E
≤

‖µ1 − µ2‖TV

2c2(µ1)

by definition of c2(µ1), the proof of Corollary 2.2 is complete.

5.4 Proof of Proposition 2.3

Step 1: Existence of η.
For all x ∈ E and t ≥ 0, we set

ηt(x) =
Px(t < τ∂)

Pα(t < τ∂)
= eλ0tPx(t < τ∂).

By the Markov property

ηt+s(x) = eλ0(t+s)Ex (1t<τ∂PXt(s < τ∂))

= ηt(x)Ex (ηs(Xt) | t < τ∂) .

By (A2′′),
∫

E ηs(y)ρ(dy) is uniformly bounded by 1/c2(α) in s and in ρ ∈
M1(E). Therefore, by (2.1),

|Ex (ηs(Xt) | t < τ∂)− α(ηs)| ≤
C

c2(α)
e−γt.

Since, α(ηs) = 1, we obtain

sup
x∈E

|ηt+s(x)− ηt(x)| ≤
C

c2(α)2
e−γt.

That implies that (ηt)t≥0 is a Cauchy family for the uniform norm and hence
converges uniformly to a bounded limit η. By Lebesgue’s theorem, α(η) = 1.

It only remains to prove that η(x) > 0 for all x ∈ E. This is an immediate
consequence of (A2′′).

Step 2: Eigenfunction of the infinitesimal generator.
We prove now that η belongs to the domain of the infinitesimal generator L
of the semi-group (Pt)t≥0 and that

Lη = −λ0η. (5.10)
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For any h > 0, we have by the dominated convergence theorem and Step 1,

Phη(x) = Ex (η(Xh)) = lim
t→∞

Ex (PXh
(t < τ∂))

Pα(t < τ∂)
.

We have Pα(t < τ∂) = e−λ0hPα(t+h < τ∂). Hence, by the Markov property,

Phη(x) = lim
t→∞

e−λ0h Px(t+ h < τ∂)

Pα(t+ h < τ∂)

= e−λ0hη(x).

Since η is uniformly bounded, it is immediate that

Phη − η

h

‖·‖∞
−−−→
h→0

−λ0η.

By definition of the infinitesimal generator, this implies that η belongs to
the domain of L and that (5.10) holds.

5.5 Proof of Corollary 2.4

Since Lf = λf , we have Ex(f(Xt)) = Ptf(x) = eλtf(x). When f(∂) 6= 0,
taking x = ∂, we see that λ = 0 and, taking x 6= ∂, the left hand side
converges to f(∂) and thus f is constant. So let us assume that f(∂) = 0.
By property (v),

Ptf(x)

Pt1E(x)
− α(f) −−−−→

t→+∞
0

uniformly in x ∈ E and exponentially fast. Assume first that α(f) 6= 0, then
by Proposition 2.3,

e(λ+λ0)tf(x)

η(x)
−−−−→
t→+∞

α(f), ∀x ∈ E.

We deduce that λ = −λ0 and f(x) = α(f)η(x) for all x ∈ E ∪ {∂}. Assume
finally that α(f) = 0, then, using (2.4) to give a lower bound for 1/Pt1E(x),
we deduce that

c2(α)e
(γ+λ+λ0)tf(x) ≤

eγtPtf(x)

Pt1E(x)
, ∀x ∈ E,

where the right hand side is bounded by property (v) of Theorem 2.1. Thus
γ + λ+ λ0 ≤ 0.
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6 Q-process: proofs of the results of Section 3

We first prove Theorem 3.1 in Subsection 6.1 and then Theorem 3.2 in
Subsection 6.2.

6.1 Proof of Theorem 3.1

Step 1: existence of the Q-process Qx and expression of its transition kernel.
We introduce Γt = 1t<τ∂ and define the probability measure

QΓ,x
t =

Γt

Ex (Γt)
Px,

so that the Q-process exists if and only if QΓ,x
t admits a proper limit when

t→ ∞. We have by the Markov property

Ex (Γt | Fs)

Ex (Γt)
=

1s<τ∂PXs (t− s < τ∂)

Px (t < τ∂)
.

By Proposition 2.3, this is uniformly bounded and converges almost surely
to

Ms := 1s<τ∂e
λ0s η(Xs)

η(x)
.

By the dominated convergence Theorem, we obtain that

Ex (Ms) = 1.

By the penalisation’s theorem of Roynette, Vallois and Yor [32, Theo-
rem 2.1], these two conditions imply that M is a martingale under Px and
that QΓ,x

t (Λs) converges to Ex (Ms1Λs) for all Λs ∈ Fs when t → ∞. This
means that Qx is well defined and

dQx

dPx Fs

=Ms.

In particular, the transition kernel of the Q-process is given by

p̃(x; t, dy) = eλ0t η(y)

η(x)
p(x; t, dy).

Let us now prove that (Qx)x∈E defines a Markov process, that is

EQx (f(Xt) | Fs) = EQx (f(Xt) | Xs) ,
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for all s < t and all f ∈ B(E). One easily checks from the definition of the
conditional expectation that

MsEQx (f(Xt) | Fs) = Ex (Mtf(Xt) | Fs)

By definition of Mt and by the Markov property of Px, we deduce that

MsEQx (f(Xt) | Fs) = Ex(Mtf(Xt) | Xs).

Since Ex (Mtf(Xt) | Xs) = MsEQx (f(Xt) | Xs), this implies the Markov
property for the Q-process. The same proof gives the strong Markov prop-
erty of X under (Qx)x∈E provided that X is strong Markov under (Px)x∈E .

This concludes parts i) and ii) of Theorem 3.1.

Step 2: exponential ergodicity of the Q-process.
Let us first check that β is invariant for X under Q. By (2.6) and (3.1), we
have for all t ≥ 0 and ϕ ∈ B(E)

α(ηP̃tϕ) = eλ0tα(Pt(ηϕ)) = α(ηϕ).

Since η is bounded, β is well defined and is an invariant distribution for X
under Q.

By (5.1) and the semi-group property of (RT
s,t)s,t, we have for all µ1, µ2 ∈

M1(E) and all t ≤ T

∥

∥

∥µ1R
T
0,t − µ2R

T
0,t

∥

∥

∥

TV
≤ (1− c1c2)

⌊t/t0⌋‖µ1 − µ2‖TV .

By definition of RT
0,t and by dominated convergence when T → ∞, we obtain

‖Qµ1
(Xt ∈ ·)−Qµ2

(Xt ∈ ·)) ‖TV ≤ (1− c1c2)
⌊t/t0⌋‖µ1 − µ2‖TV .

Taking µ2 = β, this implies that X is exponentially ergodic under Q with
unique invariant distribution β.

6.2 Proof of Theorem 3.2

Step 1: computation of L̃w and a first inclusion in (3.2).
Let us first show that

D(L̃w) ⊃

®
f ∈ B(E), ηf ∈ D(Lw) and

Lw(ηf)

η
is bounded

´
.
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Let f belong to the set in the r.h.s. of the last equation. We have

P̃hf − f

h
=
eλ0h

η

Ph(ηf)− ηf

h
+ f

eλ0h − 1

h
. (6.1)

So, obviously, P̃hf−f
h converges pointwise to L̃wf . By [19, I.1.15.C],

Pt(ηf)− ηf =

∫ t

0
PsL

w(ηf)ds.

Since |Lw(ηf)| ≤ Cη for some constant C > 0 and Psη = eλ0sη, we obtain

|Pt(ηf)− ηf | ≤ C
eλ0t − 1

λ0
η.

Therefore the r.h.s. of (6.1) is uniformly bounded. Finally, L̃wf is the

b.p.–limit of P̃hf−f
h .

It only remains to check that b.p.-lim P̃hL̃
wf = L̃wf . Since L̃wf is

bounded, we only have to prove the pointwise convergence. We have

P̃hL̃
wf = λ0P̃hf + P̃h

Lw(ηf)

η
= λ0P̃hf +

eλ0h

η
PhL

w(ηf)

where the last equality comes from (3.1). Since ηf ∈ D(Lw), the pointwise
convergence is clear.
Step 2: the second inclusion in (3.2).
Let f ∈ D(L̃w). We have b.p.–convergence in (6.1) and, since η and f are

bounded, Ph(ηf)−ηf
h b.p.–converges to some limit g ∈ B(E∪{∂}) (recall that

by convention ηf(∂) = 0) such that

g = ηL̃wf − λ0ηf.

Let us check that b.p.-limPhg = g. Since g is bounded, we only have to
prove the pointwise convergence. We have

Phg = Ph(ηL̃
wf)− λ0Ph(ηf) = ηe−λ0hP̃hL̃

wf − λ0Ph(ηf),

by (3.1). Since f ∈ D(L̃w), the first term converges pointwise ηL̃wf . The
second term converges to −λ0ηf since we have proved the b.p.–convergence
of Ph(ηf)−ηf

h . We deduce that

b.p.- lim
h→0

Ph(g) = ηL̃wf − λ0ηf = g.
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Thus ηf ∈ D(Lw) and Lw(ηf) = ηL̃wf − λ0ηf , so that |Lw(ηf)| ≤ Cη for
some constant C > 0.
Step 3: characterization of (P̃t) by L̃

w

We assume that E is a topological space and that E is the Borel σ-field. By
[19, Thm II.2.3], the result follows if (P̃t) is stochastically continuous, i.e.,
for all open set U ⊂ E and all x ∈ U ,

P̃h1U (x) −−−→
h→0

1.

By (3.1), we have

P̃t1Uc(x) =
eλ0t

η(x)
Pt(η1Uc)(x) ≤

eλ0t‖η‖∞
η(x)

Pt(1Uc)(x).

The results follows from the assumption (3.3).
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[5] P. Cattiaux and S. Méléard. Competitive or weak cooperative stochastic
lotka-volterra systems conditioned to non-extinction. J. Math. Biology,
60(6):797–829, 2010.

[6] J. A. Cavender. Quasi-stationary distributions of birth-and-death pro-
cesses. Adv. Appl. Probab., 10(3):570–586, 1978.

44
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