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Abstract—Nowadays, our surrounding environment is more
and more scattered with various types of sensors. Due to their
intrinsic properties and representation formats, they form small
islands isolated from each other. In order to increase interoper-
ability and release their full capabilities, we propose to represent
devices descriptions including data and service invocation with a
common model allowing to compose mashups of heterogeneous
sensors. Pushing this paradigm further, we also propose to
augment service descriptions with a discovery protocol easing
automatic assimilation of knowledge. In this work, we describe
the architecture supporting what can be called a Semantic Sensor
Web-of-Things. As proof of concept, we apply our proposal
to the domain of smart buildings, composing a novel ontology
covering heterogeneous sensing, actuation and service invocation.
Our architecture also emphasizes on the energetic aspect and is
optimized for constrained environments.
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I. INTRODUCTION

With the evolution achieved in pervasive computing during
the last years, sensors, actuators, mobile devices and smart
appliances have become ubiquitous. We are nowadays able
to find them in many application scenarios, ranging from
small wireless sensor networks like weather monitoring up
to big-sized networks like smart buildings and even smart
cities composed of ten thousands of such devices. Due to their
dynamics, devices can appear and disappear in a short period
of time, move to another location and even be reassigned to
other purposes. In this context, composing physical-centred
applications represents a quite huge challenge as developers
must first gather knowledge about what the physical world
can offer to them. This problematic also applies to machine-to-
machine communications where physical mashups are realized
by devices themselves with no prior knowledge or human in-
tervention. For example, a motion sensor could discover some
eligible partners to form a specific use case as someone enters
a room by switching lights, moving the blinds and activating
the heating. Such a behaviour not only increases the human
comfort but also participates to the ecological and economical
trends of saving energy in buildings. To attain such a strategy,
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a service and discovery infrastructure is needed, connecting
sensors and actuators to form an homogeneous overlay where
they will communicate their capabilities and intentions in
well-understood machine-processable formats. Reaching such
an interaction style thus allows an interconnection between
various manufacturers and different device types.

Up to now, the worlds of the Web and sensor networks,
especially building automation systems (BAS) were isolated
from each other. As a consequence of this segregation, auto-
matic discovery is difficult to achieve, and requires a human
in the loop to find, aggregate, and use information from both
worlds. The HTML language and HTTP protocol appear as
key-enablers of an homogeneous application layer relying
on different hardware platforms and software components.
Augmenting sensors and BAS with Web capabilities in form of
lightweight Web services ensuring interoperability has already
been proposed for the well-spread KNX and Enocean building
automation standards [1]. However, those technologies, while
relying on Web service standards, do not cover the automation
of discovery, composition and invocation of Web services [2].
To solve those shortcomings, the Semantic Web [3] pushes
open technologies for enabling operations with as less human
intervention as possible. Although this concept paved the
way for semantic augmented things, some issues relative to
the dynamic aspect of sensor networks and to their energy
efficiency remain open.

In this paper, we propose a fully distributed Web service
discovery architecture that is designed to be robust, reliable and
energy efficient. It relies on the paradigm of the Web-of-Things
(WoT) where every device capability including discovery is
represented as a Web resource [4]. Following this approach
makes our discovery architecture loosely-coupled, providing
primitives for publishing and discovering Web services. From
a scalability and adaptability point of view, our proposed
architecture can be adapted to any kind of ontologies and even
description languages. In order to improve interoperability be-
tween devices, we developed an ontology not only describing
device capabilities but also method invocation mechanisms.
The descriptions are presented by following the RDF best
practices [5]. We argue this choice by leveraging on its
semantic richness allowing an automatic composition of Web
services in M2M applications. Working in the context of smart



buildings where the final aim is to save energy, a particular
attention is given to the energetic impact of our discovery
architecture.

This paper is organized as follows. The next section refers
and summarizes related works. In Section III, we provide a
list of requirements that a discovery architecture for smart
buildings must fulfil. Section IV introduces the ontology we
composed for improving interoperability. The distributed Web
service discovery architecture is described in Section V. A
reference implementation is provided in Section VI. Finally,
Section VII concludes our paper and provides insights on
further research.

II. RELATED WORK

Many XML schemas and other data models were developed
trying to describe processes and physical environments [6].
The Semantic Sensor Network Ontology (SSN) is based
around concepts of systems, processes and observations [7].
It supports the description of the physical and processing
structure of sensors. However notions of units and locations
are not part of it but can be completed by including other
ontologies like the DOLCE Ultra Lite (DUL) [8]. A concrete
application of semantics to building automation systems has
been proposed in [9].

Augmenting simple Web semantics with discovery capabil-
ities has already been explored in several projects. The notion
of shared space centralizing RDF descriptions of a logical
entity was introduced in [10]. Queries are performed by the
client providing RDF triples in a HTTP request following
the REST architectural style that will be applied to the RDF
descriptions of the Web services. Pushing this concept further,
SPITFIRE takes advantages of SPARQL, a language especially
conceived for querying RDF descriptions [11][12]. Unicast
CoAP discovery requests are sent to a repository where RDF
descriptions are stored [13]. This approach requires a service
announcement mechanism by service providers. It also offers
a possibility to look up for devices that are in a particular
state. In this approach, dynamic properties like state values are
probabilistically inferred from past data. Although it provides a
way for filtering Web services according to dynamic properties,
uncertainty remains about the real state so that the query could
respond with false positives. Our work is based on the concepts
introduced by SPITFIRE. We enhance it with a new ontology
describing services invocations. We also complete it with a
new architecture taking account of real state values instead of
predictions. Finally, we propose best practices for limiting the
number of network packets and thus reduce the overall energy
consumption.

III. REQUIREMENTS FOR SMART BUILDINGS

For building automation systems an extension from simple
discovery to query is required. We can list a minimal set of
requirements for a discovery architecture in the context of
smart buildings:
(1) Optimized for constrained devices - Smart buildings
are composed of IP-enabled sensors and actuators relying
on electronics offering only few computational power. Other
equipments based on KNX, BACnet or EnOcean technologies
are typically not IP and will require light gateways to expose

the services in the IP world.
(2) Plug-and-play installation of devices - Devices should
be integrated in the existing architecture with no human
interaction.
(3) Discovery of the entire network - For management pur-
poses, an overview of the entire network should be retrievable
in a simple manner.
(4) Selection of devices according to some contextual
parameters - Contrarily to classic pervasive environments
where only static parameters are needed for looking up specific
services, a more dynamic approach is necessary in the context
of smart buildings. This aspect is further explained in this
section.
(5) Scalability and fault tolerance in energy efficient
context - A scalable architecture is required as networks in
smart buildings will evolve over time, including new devices,
themselves running under new technologies. Fault tolerance
is also required considering the applications in buildings
such as access, lighting, heating, etc. Such requirements are
further discussed in the context of having an energy efficient
technology.

A. Web Service Discovery Models

Several discovery models already exist and can be applied
to our scenario. We here depict the most widespread ones and
argue which one should be used for smart buildings.

Static service discovery is available since the beginning of
the Web. In this scenario, descriptions are stored locally on
the endpoints and do not change over time. In the centralized
discovery approach, discovery repositories store descriptions
announced and published by endpoints. Discovery requests are
sent to the repositories instead of the service endpoints. The
model where a distributed approach is used rather than central
repositories is called dynamic. Infrastructures following this
approach are usually leveraging on P2P, data federation or are
agent-based [14]. In order to fulfil requirement 5, we opted
for a decentralized model in our infrastructure. This choice is
argued by the various features that are provided by this model,
such as scalability, reliability, and no single point of failure.

Regarding the filtering stage, it can be performed at two
different locations. A first naive manner is to empower clients
with this responsibility. Any device present on the network
will respond with its description to the client, that will in a
second step process all responses to find matches. The second
approach can be considered as more optimized in terms of
network traffic, as query processing is delegated to the service
endpoints. Only Web services having a description matching
with the query parameters will respond to the client. In our
architecture, we decided to follow the latter option as it is
compliant with requirement 5 concerning the energetic impact.

B. Concept of a Sensor’s Context

The context of a device or a Web service is decisive during
discovery. Many building management systems have to look
for devices being in a certain state or context for regulation
or alarming purposes. For example a building management
system (BMS) could search for temperature sensors on the
ground floor having measured in the last five minutes a value
above 25◦C. This request must also consider devices that have



not yet reported and are not known by the system. Relying on a
plug-and-play approach allows to have highly dynamic systems
requiring no previous knowledge of the available resources.
We introduce here the concept of static and dynamic resources
properties as illustrated in Fig. 1, which allows us to comply
with requirement 4. Static properties will not or rarely vary
over time, while dynamic ones are subject to frequent changes.
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Fig. 1. Static and dynamic properties of a resource

IV. THE ONTOLOGY MODEL

As previously mentioned, the SPITFIRE project proposes
a SSN based ontology for describing devices properties.
Although the ontology includes many aspects for describ-
ing intrinsic sensor properties, the related Web services for
interacting with devices capabilities are not covered. This
situation leads to incompatibilities between devices as a client
has no clue about how to consume a Web service. Let us
illustrate this with a switch that has to bind with a relay
for controlling lighting in a room. Following the proposed
discovering principle in SPITFIRE, it will be able to know
that there is a light relay in the specific room. However this
is not enough when composing mashups as the client should
also have knowledge about the Web service’s properties (e.g.
transport protocol, allowed parameters and their range, return
value, etc.). Based on this observation, we can argue that
an ontology should also include knowledge for describing
properties of Web services and how to consume them. We
therefore propose a new ontology that we motivate in the
remainder of this section. An example of our proposal is given
in Fig. 2.

A. Device Properties

The device properties that are responding to the question
”what does the resource offer?” are split into three different
categories as follows: (1) Sensor types are expressed using the
SSN ontology and extended to include any device type that
can be present in a building automation system (represented
in blue). (2) The location information is indicated by relying
on the DUL ontology that provides a vocabulary for expressing
components of a building (i.e. room, floor, building, etc.)
(represented in orange). (3) The value types and formats are
described by selecting the appropriate datapoint (represented
in pink). In BAS, datapoints represents endpoints for a specific
value.

B. Gates

The description of the procedure to consume a Web service
is given through gates (represented in green). We here rely
on the concept of RESTdec proposing a semantic facilitating
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Fig. 2. Excerpt of the proposed ontology dedicated to building automation
systems

service consumption between devices [15]. Each service owns
a description of which protocols it supports (e.g. HTTP, CoAP,
FTP, etc.), allowing a client to select the most appropriate one.
The method that has to be used for consuming the service is
also given by the ontology. The URI for accessing the service
is decomposed in multiple parts especially regarding the pa-
rameters. Their name and location inside the URI are specified.
Finally, the media type of the payload and response are defined
by the ontology which allows a client to have knowledge about
how to parse a response. Those properties are sufficient for a
client to automatically compose a requests and thus allows an
inter-compatibility between various technologies.

V. SEMANTIC WOT DISCOVERY AND COMPOSITION

Following the paradigm of the Web-of-Things, each device
represents its capabilities in terms of Web resources that are ac-
cessible though a RESTful API. As this approach comes with
many advantages like being loosely-coupled and compatible
with current Web standards, there is only a small footstep from
enhancing the WoT with semantic discovery. In this Section
we describe the main three components necessary for building
a semantic WoT, which are (1) augmenting sensors with
semantic descriptions, (2) providing a querying mechanism for
retrieving knowledge, and finally (3) automatically building
mashups between different device types.

A. Sensor Semantics

In a vision of a semantic Web, each resource has to be
described with semantics in order to achieve interoperability.
As previously explained, this is realized by forming RDF
descriptions using a vocabulary provided in a shared ontology.
Listing 1 shows a RDF description excerpt (only the device
property part) of a temperature sensor. When considering a
resource providing only static properties, the RDF description
can be built at resource creation and will remain valid until
the resource stops existing. Regarding resources that involve



dynamic properties like it is the case for most sensors, the
RDF description has to be up-to-date with the actual status of
the resource. Instead of holding internally a RDF document
that has to be updated each time a dynamic property changes,
we propose to build this document upon request when a client
retrieves the description. This way of functioning lessens the
required memory space and computing power.

Listing 1. Example of a temperature sensor device properties description
using RDF with the Semantic Sensor Network Ontology
@prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn> .
<coap://temp.kitchen.home>

rdf:type ssn:SensingDevice ;
ssn:observes <http://purl.oclc.org/NET/muo/ucum/physical−

quality/temperature> ;
ssn:hasMeasurementCapability <coap://temp.kitchen.home/temp> .

<coap://temp.kitchen.home/temp>
rdf:type ssn:MeasurementCapability ;
ssn:hasMeasurementProperty <coap://temp.kitchen.home/hum/accuracy> ;
ssn:hasMeasurementProperty <coap://temp.kitchen.home/hum/sensivity> .

<coap://temp.kitchen.home/hum/accuracy>
rdf:type ssn:Accuracy ; rdf:value 1 .

<coap://temp.kitchen.home/hum/sensivity>
rdf:type ssn:sensivity ; rdf:value 0.1 .

Assuming a client already knows the existence of a Web
resource or has just discovered it, it needs to retrieve the
RDF description in order to be able to understand what it
provides and how to communicate with it. Different scenarios
can be conceived depending on the application protocol used.
A first approach consists of using a special code in the
request indicating one wants to access the description of the
mentioned resource. We can illustrate this principle when
using HTTP by setting the method to OPTION, as proposed
by [15]. Unfortunately the CoAP protocol does not provide the
OPTION method. Additionally, CoAP having a very tightened
header, there is no possibility to set a specific flag inside
a request. To cope with this problematic, we consider RDF
documents as a sub-resources that can be accessed with a GET
request. By putting a special placeholder at the end of the
URL pointing to the Web resource, one indicates its intention
to retrieve the related description.

B. Querying for Resources

Having linked Web resources with RDF semantic descrip-
tion, discovery agents are now able to query resources. To com-
ply with requirements 2, 3 and 5, we opted for a decentralized
architecture leveraging on multicast queries. Using multicast
for sending queries through the network allows, with no prior
knowledge of the infrastructure, to reach any device providing
descriptions. Furthermore, multicast reduces the energy impact
as only one packet is sent by the discovery agent, whereas other
discovery architectures based on unicast will have much more
impact on the energetic aspect. Only sensors having resources
matching the query will respond to the request, which also
limits the network traffic.

As every WoT device embeds a Web server, we enhance it
with a new service that will be responsible for responding to
discovery queries. Any device offering discovery capabilities
will thus expand its API (e.g. coap://233.67.1.26/discover) with
a new service bond to the multicast group which is either pre-
configured or obtained from an auto-configuration system.

Finally, the discovery agent will express the query using
the SPARQL language that will be placed as payload inside
the request. Queries can range from very simple ones resulting
in the discovery of the entire network or contain restraining
properties which will limit the scope of results. A major
advantage of combining RDF documents and SPARQL is that a
client can specify what kind of property it wants as result (e.g.
the URL to the resource, the actual value, the device model,
etc.). This allows a new interaction style where, using only one
request, different kind of return values can be expected. For
example, a building management system could look for rooms
where the temperature is above a certain value by specifying
in the SPARQL that it wants to have only the location of
the sensor as result and does not care about the URL for
accessing the resource or other properties. Listing 2 provides
an example of a query seeking for temperature sensors located
in the kitchen.

Listing 2. Example of a SPARQL query to look after temperature sensors
with a value higher than 25◦ Celsius located in the kitchen
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn> .
SELECT ?node WHERE {

?node a ssn:Sensor ;
ssn:observes <http://purl.oclc.org/NET/muo/ucum/physical−

quality/temperature> .
dul:hasLocation ”kitchen” ; rdf:value ?lv ; FILTER (?lv > 25) .

}

C. Automatic Composition of Mashups

The ultimate aim of semantics is to automate interaction
and composition between various applications. In the same per-
spective, sensors can benefit from semantics by being able to
discover potential partners and to build mashups automatically
with no human in the loop. Since our proposed ontology not
only describes resources properties but also so-called gates,
we open the path for a new self-composing sensor network. In
classical approaches, administrators or developers are required
to manually link devices with each other following a pre-
configured and non-scalable interaction mechanism (i.e. chose
between HTTP or CoAP, available parameters, their position
and meaning). From now on, scenarios where a new sensors
can integrate itself in an existing environment by discovering
neighbours are possible. For example, an illumination sensor
being responsible for the whole lighting will send a query to
discover potential partners in the same room. Since each device
describes its gates, the illumination sensor will know how to
register for presence notifications on the presence sensor and
how to turn the light on or off and also to drive the blinds.

VI. IMPLEMENTATION

In order to demonstrate the feasibility of our proposed
architecture, we developed a prototype implementation based
on Java technologies running on several Raspberry Pi. The
scenario introduced in Section V-C served for validating our
approach of automatic mashup composition. The architecture
of our reference implementation that is further depicted in this
Section is illustrated in Fig. 3.

We opted for jcoap as base implementation for CoAP [16].
As at the time of writing this paper no implementation offered
multicast support (CoAP group communication), we enhanced
jcoap with this new functionality for the server and client
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sides. The CoAP server listens on a multicast socket with
preconfigured port and IP address. Its role is to dispatch
incoming discovery requests to the discovery and query engine.
If matches are found, it will respond to the source of the
request with the according payload data.

Going one level down in the server, the discovery and
query engine is responsible for evaluating requests and finding
corresponding matches. It starts with a SPARQL request
extractor that will take out the query from the CoAP messages
and perform some validations regarding the format. Once
the request is considered as well-formed, it is passed to the
querier. This module will gather the RDF representations of
all the resources present and available on the device. Once
the collection complete, the SPARQL query is applied to each
RDF representation of the collection. Each match is then stored
in a collection of results. If the collection of results is empty
after querying, the process can stop at this step. Otherwise, the
collection is forwarded up to the JSON formatter. This module
iterates through the results collection and formats SPARQL
responses to JSON. The last step consists of responding to the
client over the CoAP interface with the results. All this part is
handled by using the OpenRDF Sesame framework providing
a Java API for processing SPARQL queries [17].

Finally, the Web resource has to provide its entire descrip-
tion in form of a RDF document. Each time the description
is retrieved by either a remote client or internally by the
query engine, this module will collect the actual state of
dynamic properties and place them inside the RDF document.
According to a format parameter value, the description can
either be returned in standard XML, JSON or Turtle N3.

VII. CONCLUSION AND FUTURE WORKS

It is likely that the combination of ontologies and se-
mantics will play a key role in the field of sensor networks.
They indeed pave the way to a homogeneous global inter-
compatible network whereas current installations form small
islands isolated from each other. The main advantage of
semantic descriptions resides in being resource oriented which
fits with the concept of the Web-of-Things where every device
capability is represented as a Web resource accessible over
a RESTful API. Semantically augmenting things not only
exposes their properties to the rest of the world but also allows
a new query mechanism facilitating mashup composition. The
need for a human in the loop is greatly reduced, converging
to totally autonomous networks.

In this paper we showed our vision of semantics applied to
sensor networks with a particular emphasis on smart buildings.
Unlike the approach taken in SPITFIRE where dynamic prop-
erties are inferred from statistical data, our system considers
the real state of a property avoiding false positives. Our
enhanced ontology adds the vocabulary for describing gates
and thus enables an automatic consumption of services. Future
developments intends to make the architecture compatible with
very constrained devices that can not run a Java application
and also to even more reduce the energy impact. The security
aspect is also an important concern that has to be solved in
the near future.
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