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Abstract—In this paper we consider the problem of reli-
able and robust data storage in peer-to-peer networks. The
approach we follow builds a multi-agents system in which
documents are split using a (m,n)-erasure code. Each gen-
erated fragment is embedded into an autonomous and mobile
agent. This mobility gives them, for example, the ability to
choose the network area where they want to be hosted. But this
motion may have heavy consequences on the system robustness
if the initial fragmentation parameters of a document are
inappropriate. As a consequence, we focus on the problem of
finding the suitable m and n values to apply to a document
given the underlying peer-to-peer network properties.

Keywords-mobile agents, peer-to-peer networks, bio-inspired
model, repair policy, reliable storage

I. INTRODUCTION

Decentralized peer-to-peer networks are dynamic and
heterogeneous systems where participants have the same re-
sponsibilities and no particular peer occupies a central func-
tion. The dynamism, caused by a connection/disconnection
phenomenon called churn, generates some availability and
dependability issues in data storage applications. Indeed, no
availability guarantees can be expected from the peer that
stores a data. In this kind of architecture, robustness and
availability is obtained by setting up:

1) A redundancy policy: where documents are replicated
or fragmented using erasure coding [1] to provide
fault-tolerance.

2) A monitoring policy: it is necessary to monitor the
number of fragments of a document over time in order
to repair it when fragments are lost. Among existing
monitoring policies [2], the local policy places the
fragments of a document on neighborhoods in the
overlay'. This policy is particularly interesting because
it provides a fully decentralized monitoring.

3) A repair policy: it defines the time when a regeneration
of fragments has to be initiated [3].

In usual decentralized approaches, like Past [4], the peers
are responsible for the application of these policies and they
are blindly trusted. In [5] we have proposed a mobile-agents
oriented approach where this responsibility is transfered
from the peers to the documents themselves. In this informa-
tion model, each fragment is embedded into a mobile agent

li.e., the logical peer-to-peer network

and the document is then represented by its group of agents.
The network can be seen as a simple execution environment
for the agents that can cooperate afterwards to apply their
own repair policies. These agents have also the capacity to
move inside the network. In this way, the group can apply its
own policies locally and has the ability to decide the network
area where it wants to be stored. To keep a high degree
of locality between the agents and a decentralized decision
making, flocking rules are asynchronously applied by each
agent to decide its moves. The global emerging behavior is
a flock of fragments. The early results in [5] indicate that
the flexibility of the flocking motion as well as the network
parameters have an impact on the repair policy efficiency and
on the initial fragmentation scheme. As a consequence, this
paper is focused on the repair policy to add on the flocking
model and its implications on the fragmentation parameters
to apply to a document according to the underlying network
properties.

II. RELATED WORKS

Setting up a redundancy policy is the first step required
to achieve data availability in peer-to-peer data storage
applications. It can be obtained by generating a (m,n)-
erasure code that splits a data into m blocks of equal sizes.
After an encoding step, n fragments of redundancy are
generated. In this way, it is possible to rebuild the original
data by decoding any subset of m fragments among the
m + n. This code is able to tolerate n fragments losses.
An erasure code provides the same level of availability as
replication using less storage cost [6]. Among replication-
based peer-to-peer data storage applications we can cite
GFS [7] and Past [4]. For erasure-coding-based applications
we can cite Glacier [8] and Flocking [5].

The second mechanism required to achieve availability is
a monitoring policy. Some studies have been made on this
particular question [2] and two distinct policies are emerg-
ing: the global policy and the local policy. The first one
consists in distributing uniformly at random the fragments of
a document in the whole network. In this policy a monitoring
peer is randomly chosen among the set of peers to monitor
the fragments of a document. This data placement provides
an efficient load balancing and limits the bottleneck effect
on one peer. GFS [7] uses this data placement method but
relies on a “master” entity which knows the exact state



of the network. This central entity is an evident reliability
drawback. In the local policy, the fragments of a document
are placed on the neighbors of a peer. In this way, they can
monitor each other and the monitoring is not centralized on
a peer anymore. It is the case in Glacier [8], Past [4] and
Flocking [5].

In the last policy, the results of the monitoring process
are analyzed to repair lost fragments when it becomes a
necessity. In the eager repair a reconstruction is triggered
every time a fault is detected. This easy-to-deploy policy
does not make any difference between permanent and tran-
sient failures and thus, generates an unnecessary network
bandwidth consumption and a storage overhead. This policy
is applied in Past [4] and Glacier [8]. To overcome these
problems a more subtle policy called lazy repair has been
proposed [9] where a tolerance threshold r is defined such
that m < r < m + n. A repair is triggered only when the
fragments number reaches r. Thus, the lazy repair tolerates a
certain amount of temporary disconnections. Among appli-
cations relying on the lazy repair policy, we can cite GFS [7]
and Total Recall [9].

III. THE FLOCKING MODEL
A. Mobile Agents and flocking rules

In the following of this article, we only consider the
Flocking model detailed in [S]. This model builds a multi-
agents system in which each information fragment, obtained
by erasure coding, is embedded into a cognitive mobile
agent able to make its own decisions. This cognition allows
the agents to autonomously move from peers to peers
following flocking rules similar to those proposed by Craig
Reynolds [10]. Each document is then represented by the
flock composed of the set of its fragment-agents. A distance
measure between two agents has been introduced and is
given by the round trip time (RTT) between their hosting
peers. Reynold’s rules are transposed in a network and
applied asynchronously by each agent such that:

1) A given peer can only store one fragment per docu-
ment (separation rule).

2) The agents move in order to get closer to the most
distant agents (cohesion rule associated to a RTT
distance).

Figure 1 displays a network of 12 peers hosting a 5
fragments flock represented by the gray discs. The flocking
algorithm described in [5] works as follows. The first step for
a moving agent, let say agent a hosted on peer 5, is to build
busy, the set of neighboring peers hosting fragments from
the same file and free the others. We have in the example
busy, = {3,4} and free, = {6,9,10,11}. After that, the
agent builds anchors, the subset of busy containing the
most distant peers. We consider in the example that 3 is far
enough from 5 according to the RTT so anchors, = {3}.
A set of candidates, stored in candidates, is then build by

(a) agent a before its move

(b) agent a after its move

Figure 1. Flock of 5 fragments in a 12 peers network. The agent a on
peer 5 moves on peer 11 and takes peer 3 as an anchor.

selecting elements of free that are neighbors of anchors. In
the example, candidates, = {11} because 11 is a neighbor
of 3 and 5. The last step of this algorithm is that the agent
can now choose a peer in candidates for its move.

B. Network Structure

In [5], the agents evolve in the Scalable Membership
Protocol (SCAMP) [11], a fully decentralized peer-to-peer
lightweight membership protocol. Initially designed to sup-
port reliable gossip-based multicast protocols, it is used as
the network layer for its good properties in terms of scala-
bility and fault-tolerance to achieve the required reliability at
network level. SCAMP constructs a random directed graph
following the Erdés and Rényi model [12] and having a
mean degree converging to (c+ 1) log(p) with p the number
of peers and c a design parameter used to modulate the
expected network degree. This property permits the graph
to stay connected if the link failure probability is smaller

than . On top of that, the degree size grows slowly

c
with system size so the network scales well in terms of
neighborhood size.

C. Repair Policy

We have enhanced the flocking model with a lazy repair
policy. This policy takes advantage of the flock’s locality
to ease the information dissemination between the agents.
Indeed, as displayed in Figure 1, a flock can be seen as
a connected subgraph of the logical network. As a conse-
quence, it is possible to elect a leader periodically.

Leader election mechanism: let A, be the time period
between two monitoring. This value represents the system’s
reactivity against faults. Each agent arms a timer ¢t = Ay +¢
with € a random choice in a time interval coherent with
A;. When this timer expires, the associated agent launches
a distributed spanning tree algorithm limited to the flock
subgraph. We use an adapted version of the MST [13]
algorithm in our implementation. This algorithm is designed
to tolerate multiple initiators such that conflicts between
multiple leaders does not happen. This is done by merging



partial subtrees until the whole network is covered. When
the MST construction is finished, the root of the tree is the
leader of the current session. This leader launches a flood of
the spanning tree to get informations on the execution site
of each agent and on the total number of agents N,.
Repair mechanism: if m < N, < r then the current
leader [ chooses m agents and asks them to recreate (m +
n) — N, fragments on a free peer adjacent to /. Once this
regeneration is done, the flock has its m-+n fragments back.
As a final procedure, the leader asks the whole flock to rearm
its election timers and the current spanning tree is cleaned.

D. Problems generated by the flocking motion

Like in physical flocking, the application of asynchronous
and local rules combined with the transit times of the agents
can generate ruptures in the flocks cohesion. It is possible,
for example, that a flock may be separated into multiple
subflocks that can eventually merge together again later.
We measure this cohesion value using the flock’s graph.
We define the cohesion value of a flock as the size of the
biggest connected component of its associated graph. For
example, in Figure 1, the cohesion value is 5. It happens
that the perception an agent had when it decided to move
is not true anymore when the motion is over. Such changes
in the environment cause cohesion breaks. We saw in the
flocking algorithm that an agent a who wants to move relies
on anchor peers. These anchors permit a to stay close to the
flock after its move. But the anchors are mobile agents too
and their move can break the cohesion, as we can see in Fig-
ure 2. In Figure 2(a), agent 1 chooses agent 2 as an anchor
for its move. But 2 decides to move as well and chooses
agent 3 as an anchor while 1 is still moving (Figure 2(b)).
Agent 2 finishes its motion before agent 1 due to a quicker
network link (Figure 2(c)). Finally, agent 1 finishes its move
too and becomes isolated from the flock (Figure 2(d)). The
size of the biggest connected component (i.e., the cohesion)
is 4 instead of 5. The cohesion variations consequences are
immediate on the monitoring and on the repair policies.
Given that the monitoring process is based on the flock’s
connectivity, a supervisor has only a partial vision of the
whole flock which is limited to the connected component it
belongs to. If we look at the example of Figure 2(d), the
elected supervisor in the connected component of agent 2
will obtain a cohesion value of 4 and the one elected in
the connected component of agent 1 will obtain a cohesion
value of 1. However, the document has still its 5 initial
fragments into the network. A first problem occurs when
this cohesion rupture crosses the threshold fixed in the lazy
repair policy because it has the effect of triggering one or
more useless repairs. But the real problem happens when the
flock is separated in subflocks such that the cohesion value is
less than m. In this particular case, the data is temporarily
unavailable because no subflock has enough fragments to
rebuild the original data. Preliminary results in [5] suggest

(a) t =1, cohesion =5  (b) t = 2, cohesion =5

(c) t = 3, cohesion =5

(d) t = 4, cohesion = 4

Figure 2.
steps.

Example of a cohesion break caused by a moving anchor in 4

that it is possible to find a number of fragments fitted for
a network instance such that cohesion breaks never goes
beyond a certain value. Our contribution is twofold. For
a given fragmentation scheme and a given repair policy
threshold, we confirm the hypothesis that it is possible to
find the suitable number of fragments to prevent the cohesion
variations from interfering with the repair policy. We provide
several evaluations of the system on different network sizes
and we will see that a flock is able to find its steady state
after multiple repairs. From this steady state we can deduce
the ideal initial fragmentation parameters for each network
instance.

1V. EXPERIMENTAL RESULTS
A. Experimental Protocol

We present in this section a set of simulations
done on several SCAMP peer-to-peer networks in-
stances. The considered number of peers p is taken
in {100, 300, 600, 1000, 4000,10000} and the connectiv-
ity constants ¢ for each network instance are taken in
{4,10,20}. The aim of these experiments is to evaluate
the impact of the network size and its mean degree on a
flock’s behavior. Remember a SCAMP network of size p
has a mean degree converging to an expected theoretical
value of (¢ + 1)log(p). Note that in practice, this bound is
rarely reached. In each experiment, we let a flock evolve in
the different considered (p,c)-SCAMP networks. This flock
is fragmented using a (10,5)-erasure code and is using a
lazy repair threshold » = 13. It means that each flock is
constituted of 15 fragment at the beginning of each simula-
tion run. The repair mechanism explained in section III-C is



Network Properties Cohesion = Fragments Number y Network Properties Cohesion = Fragments Number y

P deg(p) T Oz Vary g oy Vary P deg(p) T or | Varg g oy Vary
100 16 187 | 0.7 0.5 18.8 | 0.7 0.5 100 29 152 | 0.5 0.2 152 | 0.5 0.2
300 21 25.6 1.1 1.1 26.1 1.8 34 300 45 18.8 | 0.7 0.5 18.8 | 0.8 0.5
600 25 31 1.3 1.7 335 | 1.15 1.3 600 58 236 | 1.1 12 24 1.1 1.2
1000 27 36.6 1.7 3.07 41.9 1.5 2.3 1000 67 265 | 1.1 12 275 1 1.1
4000 36 464 | 17.6 310 703 | 214 457 4000 87 39 2.5 6.7 463 | 2.7 7.5
10000 39 37.1 | 29.6 879 84.8 | 55.7 | 3113 10000 101 438 | 5.2 27.5 593 | 6.7 45

Table I Table III

MEAN COHESION MEASURE AND FRAGMENTS NUMBER OF A FLOCK
HAVING 15 INITIAL FRAGMENTS WITH » = 13 AND ¢ = 4.

Network Properties Cohesion = Fragments Number y

P deg(p) T Oz Vary Y oy Vary
100 25 16.1 0.7 0.5 16.1 0.7 0.5
300 35 22.6 1.3 1.6 23 1.2 1.5
600 45 26.8 1.2 1.4 27.7 1.1 1.3
1000 54 31.6 1.3 1.9 338 1.3 1.6
4000 70 449 | 59 34.1 55.8 7 49

10000 72 49.6 | 5.84 76.2 76.7 | 135 | 1839

Table II

MEAN COHESION MEASURE AND FRAGMENTS NUMBER OF A FLOCK
HAVING 15 INITIAL FRAGMENTS WITH r» = 13 AND ¢ = 10.

active. As a result, the flock triggers a repair process when
its cohesion is contained between 10 and 13. With these
simulations, we want to observe the repairs triggered by a
flock during its evolution to be able to deduce the good initial
fragmentation scheme to apply. That’s why we didn’t add
any faults model since it would have biased these results.
The simulations have been made with oRis [14], a discrete-
events and multi-agents simulator. Each simulation has been
reproduced 70 times with a run duration of 30000 cycles
which represents a simulated period of approximatively 21
days. The network upload bandwidths are contained between
64kB/s and 640kB/s, the size of a fragment is fixed to 64MB
and A; = 1.

B. Results

Tables I, II and III present the average results of the sim-
ulations done for different sizes SCAMP networks having
constants ¢ = 4, ¢ = 10 and ¢ = 20 respectively. These
tables show the mean cohesion z and the mean number
of fragments y obtained for each network configuration.
They also show the average degree of the network deg(p)
in addition to the standard deviation o and variance Var
measures. For example, in Table I, the first line means that
in a (100,4)-SCAMP network, the average cohesion value
of the flock is 18.7 fragments and its average fragments
number during the simulations was 18.8. In this particular
case, we can observe that the repair policy has generated
4 more fragments. Another visualization of these results
is presented in Figures. 3(a), 3(b) and 3(c). The number
of peers is fixed for each plot and each curve displays the
evolution of the mean cohesion measure z and the observed
fragments number 4 for a value of c. We observe that after

MEAN COHESION MEASURE AND FRAGMENTS NUMBER OF A FLOCK
HAVING 15 INITIAL FRAGMENTS WITH » = 13 ET ¢ = 20.

an initial repair period, the values of a flock are stabilizing
around the ones given in the previous corresponding tables.
It is important to see that for a fixed network size, the in-
crease of ¢ generates less fragments required to find a steady
state. In Figure 3(b) when p = 4000 and in Figure 3(c) when
p = 10000, we have a convincing overview of the fact that
a large network having a small degree generates subflocks.
This behavior is particularly emphasized in the (10000,4)-
SCAMP network where the fragments number is twice the
value of the cohesion measure.

C. Results Analysis

From these simulations results, we can conclude that each
flock is able, after a period of successive repairs, to find
the fragmentation parameters fitted for its network. It is
materialized by the number of fragments converging toward
its mean value. Secondly, it is clear that the required flock
size is function of the network properties. More precisely, the
size of a flock has to grow when the network size grows to
prevent the cohesion breaks from disrupting the monitoring
and the repair policies. This property is particularly impor-
tant in large network instances where the peer number is
greater than 1000. We also observe that increasing the mean
degree of the network when its size is fixed is reducing the
number of generated fragments required by the flock to find
its steady state. Finally, from the provided set of tables, it
is possible to deduce the initial fragmentation to apply to a
flock for this repair threshold. For example, in a (1000, 10)-
SCAMP network, we read in Table II that a fragmentation
scheme that may not disrupt the repair policy for » = 13
could be m = 10 and n = 25 for a total of 35 initial
fragments.

V. CONCLUSION

We consider in this paper the problem of documents
mobility in peer-to-peer data storage applications. This mo-
bility is obtained according to a flocking model in which
documents are fragmented with erasure coding and where
these fragments move in groups. We have seen that this
group motion is particularly interesting because it relies on
asynchronous local rules applied by each agent. But this
flexibility has a cost on the fragmentation to apply for a
given repair policy. Indeed, It happens that a flock may be
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Figure 3.

separated into multiple subflocks that can eventually merge
together again later. This instability of the cohesion makes
the decentralized monitoring mechanism having a partial
vision of the entire flock restricted to its own subflock. This
partial perception of the document’s global state has the
effect of initiating useless repairs when the fragmentation
scheme is not adapted to the network properties and to the
fixed repair threshold. We saw that when the network size
increases, the flock must generate more fragments to obtain a
cohesion value that does not interfere with the repair policy.
We also saw that, for a fixed network size, increasing the
degree lowers the number of generated fragments. Finally,
we gave a set of experimental values that can be used to
deduce the ideal fragmentation scheme to apply to a flock
given a repair threshold. Future works on this topic will
focus on finding the relation between the parameters that
affect cohesion in ordrer to provide a function that give the
mean cohesion of a particular flock in a network instance.
This information will give us a better way of finding the
expected repair threshold r value.
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