Frédéric Mallet
email: frederic.mallet@unice.fr

Daniel Gaffé
email: gaffe@i3s.unice.fr

Fernand Boéri
email: boeri@unice.fr

Concurrent Control Systems: from Grafcet to VHDL

Keywords: Specification, Modelling, GRAFCET, VHDL, programmable components, FPGA. 1. Interests and objectives 1.1. Grafcet

come L'archive ouverte pluridisciplinaire

The Automated Production Systems (APS) are composed of concurrent interacting entities. Then any model should exhibit parallel and sequential behaviours. The Grafcet is now well established in manufacturing to specify the awaited behaviour of the APS. The model qualities explain this success. Grafcet owns these operators and gives them a nice graphical representation. It keeps parallelism of the application. It tries to be as much as possible independent from technological and material aspects. Moreover the APS often integrate the characteristics of reactive real-time systems since all of them must react with determinism and in limited time.

In Grafcet, reactivity is expressed by the transition conditions (environment effect towards controller) and actions linked to step (controller effect towards environment). The model takes Petri nets away in spite of its historical link because each firable transition must be fired (called cleared in Grafcet) as soon as it becomes firable. The evolution rules give it some interesting deterministic features.

Implementation

Control systems are sequential and many people use logic hardware since thirty years. Nowadays we use programmable components which have lots of good specific properties. In particular it allows a modular design of the hardware circuits, with a reasonable cost of components. Moreover the localisation of functionalities in a single chip makes easier repairing and duplication.

Until now the classical way to implement controllers designed in Grafcet is to use Programmable Logic Controller (PLC). In this article we intend to study the hardware implementation of Grafcet models using programmable components. This approach has also hold the attention of authors [START_REF] Delanchy | Obtention des situations stables par calcul anticipé des transitions franchissables dans un grafcet[END_REF]. Obviously, our goal is not to replace PLC by a programmable component. We only think that the sequential core of the PLC could be replaced by the specific programmable component designed in grafcet and to keep power input/output of the PLC.

The following chapter presents several problems raised by this approach. Then the chapter 3 shows different possible solutions. We emphasize upon every good and bad aspects of different proposed methods. Finally, we advocate our preferred choice which allows some validations of properties about the specification.

Translation problems from Grafcet to VHDL

Grafcet

At the beginning, Grafcet was designed as a specification formalism for the control devices. Thus, the modelled command could be programmed (microprocessor, Programmable Logic Controller) or be wired with the most suitable technology (electric, hydraulic, pneumatic).

The expression power of Grafcet quickly lead industrials to develop on their own hardware a 'programming grafcet language'. None of these implementations has the same behaviour semantic. Especially these languages interpret the evolution rules and badly integrate the zero-delay assumption for the model evolution. This has multiple consequences. Firstly the users can confuse model and industrial languages. Secondly the grafcets are not compatible between manufacturers. Finally any systems specified in Grafcet is likely to be programmed in a different way with the grafcet language.

Facing down these problems, recent works concerning Grafcet semantics and compilation are on the way [START_REF] Lesage | Réactivité et déterminisme du comportement temporel du grafcet[END_REF][START_REF] Hery | Sémantique fonctionnelle et stabilité du grafcet sous l'hypothèse du synchronisme fort[END_REF]. The main idea is to translate in a systematic way the grafcet behaviour into a 'better' model which has either powerful mathematical aspect, or formal tools. In particular behavioral translation works was led towards the Petri networks [START_REF] David | Du GRAFCET aux réseaux de Petri[END_REF][START_REF] Aygalinc | Validation de modèles GRAFCET fonctionnels et évaluation de performances du système associé par l'utilisation des réseaux de petri[END_REF], towards the transition systems [START_REF] Leparc | Grafcet revisited with a synchronous data-flow language[END_REF], automata [START_REF] Roussel | Analyse de Grafcets par génération logique de l'automate équivalent[END_REF]. For example the generation of the transition system or automata allows the use of MEC tool [START_REF] Arnold | MEC: a system for constructing and analysing transition systems[END_REF] well-known in this domain.

Let us note, the approach by automaton is based on the exhaustive search of the reachable states usually used by the Grafcet users. With this idea our team has started some works to transform all grafcets into equivalent automata in an automatic way. At the beginning, we wished we could integrate the grafcet model into the synchronous software platform to profit by the associated validation tools. Here, we do not intend to present our method of Grafcet compilation, the interested reader will have to look at the specific papers [START_REF] Gaffé | Le modèle GRAFCET : réflexion et intégration dans une plate-forme multiformalisme synchrone[END_REF][START_REF] André | Evénements et conditions en GRAFCET[END_REF].

This article shows that State automaton is an imperative step between specification and hardware or software (VHDL) implementation.

VHDL

The birth of the VHDL Language [START_REF]IEEE Std[END_REF] is due to the quick technology evolution (wired, mono-chip, PLD, CPLD, FPGA) and to the growth of the integration rate. In order to manage this complexity, a novel approach based on a programmation language (VHDL) with some specific statements relative to hardware modelling was designed. VHDL has been standardised in 1987. Then we have a common language between design tools, simulation tools, synthesisers and silicium manufacturers.

Moreover, numerous tools exist for analysis, modelling, design and synthesis. But since VHDL has been designed to model hardware, it must be used with some specific patterns. The following section shows our different implementations in VHDL of Grafcet specifications using synthesisable patterns.

Multiple ways of translation

Case study

Let us consider the grafcet called 'sema' (cf. figure 1). It represents a producer-consumer pattern. The 'a' condition implies the production of an element and the 'b' condition leads to its consumption.

(t1) (t2) (t3) (t4) 1 N N 5 PROD CONS 2 3 4 a b not b not a

Figure 1. sema producer-consumer pattern

This example allows us to illustrate our different implementation choices.

Sequential Grafcet : Finite state machine

The first and simplistic way to translate a sequential grafcet specification into a VHDL program is to identify each grafcet step with a state. Each grafcet transition is considered as a transition of the finite state machine guarded by a transition condition. This is the classical implementation technique used by API. It does not follow the basic rule about transition firing and introduces some gliches on actions. The inopportune setting in motion of the operative part is likely to cause serious personal accident or destruction of the system. Moreover this approach could raise some technical translation problems with highly concurrent systems because of the exponential state growth and should be given up.

Local behaviour modelling

This approach consists in expressing local Grafcet evolution rules into concurrent equations. This is a very pedagogical way to understand Grafcet for students whose already know the VHDL language or another hardware description language. The translation is systematic and simple. Here are the five grafcet rules [START_REF] Iec | Preparation of Function Charts for control systems[END_REF] and the both following sections show two different implementations: Rule 1 : The initial situation is characterized by the initial steps which are by definition in the active state at the beginning of the operation. Rule 2 : A transition is either enabled or disabled. It is said to be enabled when all immediately preceding steps linked to its corresponding transition symbol are active, otherwise it is disabled. A transition cannot be cleared unless it is enabled and its associated transition condition is true.

Rule 3 : The clearing of a transition simultaneously leads to the active state of the immediately following step(s) and to the inactive state of the immediately preceding step(s).

Rule 4 : Several transitions simultaneously clearable are simultaneously cleared.

Rule 5 : If during operation, a step is simultaneously activated and de-activated, priority is given to the activation and the step remains active without interruption.

Work delegation to the Synthetiser

This approach simply consists in writing evolution rules as concurrent VHDL equations. The fourth evolution rule says that all simultaneously clearable transitions must be immediately and simultaneously cleared. Then for each transition 'ti' we can write a VHDL equation 'Ti' to represent clearability of the transition. As specified by the second evolution rule, it depends on transition condition 'Ri' and on conjonction of preceding steps 'pre(ti)'.

--A transition is clearable if and only if --all of the preceding steps are activated and --the transition condition is true.

Ti <= pre(ti) and Ri; --pre(ti) is the conjonction of activation state --of preceding steps. --Ri is the transition condition of ti.

The third evolution rule specifies consequences of a transition clearing on preceding steps (de-activated) and following steps (activated). Then we can write the activation equation 'Xi' about each step 'xi' as :

--A step must be activated if none of the following --transitions are clearable --and either the step was yet activated --or one of the preceding transition is clearable.

Xi <= not succ(xi) and (Xi or pre(xi)); --pre(xi) is the disjonction of the preceding --transition clearability. --succ(xi) is the conjonction of the following --transition clearability.

Obviously, those equations suppose the existence of a stable state and will have a non-deterministic behaviour otherwise. When one stable state exists, VHDL simulation rules guaranty a deterministic behaviour. Then one of the stable states will be reach in a bounded time (Number of state propagation delays into gates).

In order to be sure that actions are stable during a constant time and are always false during reset time we have to synchronise in a sequential process outputs.

Here is an abstract of the resulting VHDL program which behaves as the 'sema' grafcet (cf. figure 1). The clock frequency has to be sufficiently low to guaranty that one stable state is reached. The clock period should be higher or equal to the maximum of the reaction time.

Work delegation to specific tools

The main problem of the preceding solution is that we have to suppose that the stability state exists. But synchronous language like ESTEREL [START_REF] Berry | The Foundations of Esterel[END_REF] have already proposed some approaches in order to solve boolean stability problems. So we developed a compiler called g2e [START_REF] Gaffé | Le modèle GRAFCET : réflexion et intégration dans une plate-forme multiformalisme synchrone[END_REF] which translates a grafcet specification into an ESTEREL program. Esterel is based on a well-defined mathematical formalism which allows users to establish logical correctness of programs in a formal way. Then we can use every tools based on VHDL (simulator, code generator, model-checker). In particular some works to automatically generate hardware circuits was performed [START_REF] Berry | A hardware implementation of pure ESTEREL[END_REF].

The proposed translation considers each step as a reactive system. Each step is able to react instantaneously to state modifications processed by other steps. Thus, the third evolution rule of Grafcet applied to steps 3,4 and 5 of 'sema' can be written in Esterel as : where Xi SET and Xi RESET denotate respectively set and reset orders of activation about step xi. RTLi denotates the 'Ready to Leave' signal which is emitted by the step xi if it is active.

Moreover, this translation allows the integration of Grafcet model as an entry of the ESTEREL framework. The combination of Grafcet and ESTEREL has already and successfully been used to model and generate code of start and stop modes of a flexible production system [START_REF] André | Coopération GRAFCET/EST ÉREL[END_REF].

Lots of previous works [START_REF] David | Du GRAFCET aux réseaux de Petri[END_REF][START_REF] Bouteille | Le GRAFCET[END_REF][START_REF] Delanchy | Obtention des situations stables par calcul anticipé des transitions franchissables dans un grafcet[END_REF] encourage synchronous model designers to give up interpretation 'Without Search for Stability' because it badly respects the basic postulates of the model and is not in adequation with the continuous actions semantics. Then, we completely give up this interpretation method and advocate to completely process the set of accessible stability states in accordance with [START_REF] Roussel | Analyse de Grafcets par génération logique de l'automate équivalent[END_REF]. Finally, this set will have to be directly established in VHDL as performed in the following section.

Global behaviour modelling

Compiling a Grafcet specification consists in translating a grafcet into another formalism. This behaviour of the resulting program must respect the initial behaviour specification. With that idea some numerous works of compilation was already performed (finite state automata [START_REF] Roussel | Analyse de Grafcets par génération logique de l'automate équivalent[END_REF], petri nets [START_REF] Moalla | Réseaux de petri interprétés et grafcet[END_REF], transition systems and signal language [START_REF] Leparc | Grafcet revisited with a synchronous data-flow language[END_REF], Electre Language [START_REF] Roux | Du GRAFCET au langage réactif ELECTRE[END_REF]). We already developed our own compiler (G2OC). This compiler is able to compile any Grafcet specification corresponding to safe-defined subset of the Grafcet model [START_REF] André | Evénements et conditions en GRAFCET[END_REF][START_REF] Gaffé | Le modèle GRAFCET : réflexion et intégration dans une plate-forme multiformalisme synchrone[END_REF]. The compiler looks for the set of reachable states and then generates the corresponding finite state automata. As soon as the grafcet is computed not to be sta- ble, it is automatically rejected. Let us note, that the explicit research of all accessibles situations often leads to an exponential growth of the number of states to be studied. To avoid this bad behaviour, the compiler does not parse explicitely each input configuration but use a symbolic method based on binary decision diagrams (BDD) [START_REF] Bryant | Graph-based algorithms for boolean function manipulation[END_REF]) to compute boolean equations. Then the grafcet is said to be symbolically compiled. The complete and theoretical explanation about this method was already published in [START_REF] Gaffé | Le modèle GRAFCET : réflexion et intégration dans une plate-forme multiformalisme synchrone[END_REF].

Then, G2OC is able to generate a boolean automata composed of a boolean vector which represents the current state and a boolean matrix representing possible transitions. Then we can efficiently manage the exponential growth. Each grafcet situation is associated to a specific value of the state vector. Each state equation concludes in one step about activity of a specific step. This equation only depends on other step state and inputs.

In such a way, when the grafcet is accepted, the generate system can be seen as a combinatory system of equations which establish the next activation state for each step. This combinatory system is combined with a sequential synchronous process to update at each instant the state of each step and the corresponding outputs. This is illustrated by the figure 2.

Using the VHDL pattern for sequential Mealy machine we can easily implement computed boolean equations into a VHDL program.

Conclusion

In this paper, we showed the interest to compile a Grafcet specification into a VHDL representation in order to allow the realisation on a programmable component. After analysing of different constraints fixed by the Grafcet model and VHDL synthesisers, we mainly proposed two implementation possibilities. Both approaches attempt to give an automatic way to translate a Grafcet specification into a VHDL synthesisable program. Obviously only the 'global behaviour modelling' approach gives satisfiable answers to the following problems: Performs a complete analysis of reachable states in order to directly process the next stable state after each transition in terms of the previous state and inputs. This considerably reduce the processing time and the area (number of logical cells needed in components).

Allows some behaviour verification and validation of safety properties before synthesis.

In this paper, we studied the links between programmable components and the Grafcet world. We hope this paper has brought both communities closer together.

Figure 2 .

 2 Figure 2. the 'grafcet' machine

-

 -future computation X2next <= (a); X1next <= (not a); X3next <= (X1 and (X3 and X4)) or ...; --X3next <= F3(X1,X2,X3,X4,a,b); X5next <= (X1 and (X3 and b)) or ...; --X5next <= F5(X1,X2,X3,X4,a,b); X4next <= (X1 and (X3 and (not b))) or ...; --X4next <= F4(X1,X2,X3,X4,a,b); end sema2_a;