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Abstract: In this paper we present the benefits of using a multi-agents system to manage the data placement in a de-

centralized storage application. In our model, after a fragmentation step, each piece of data is associated to a

mobile agent making its own decisions. To manage agents placement, we apply flocking rules in a peer-to-peer

network called SCAMP. Each agent follows simple rules and the emerging behavior is a flock of fragments.

To provide an efficient load-balancing, agents drop pheromones among network peers. We made some exper-

iments to measure the cohesion degree of our flock and to measure the network coverage of a flock. We also

discuss about availability and reliability of our approach.

1 INTRODUCTION

The data storage in a peer-to-peer network needs an

efficient information scheme. First of all, informa-

tion must be robust and persistent. These properties

might be achieve by using erasure codes. In a such

system, the original data is split into m blocks. Af-

ter an encoding step, m + n fragments are generated.

In this case, the system tolerates n fragment losses.

When using erasure coding, a data can be recon-

structed from any m of the m + n fragments. One of

the most used erasure codes is Reed-Solomon (Plank,

1996). To achieve fault-tolerance and high reliability,

replication might be another solution. However era-

sure codes provides the same level of availability as

replication using less storage cost (Weatherspoon and

Kubiatowicz, 2002).

Reconstruction cost when using erasure codes can

become too heavy in a lot of cases. Hierarchical codes

(Duminuco and Biersack, 2008), a family of erasure

codes, propose a flexible trade-off between classi-

cal erasure codes and replication in terms of perfor-

mances to be used in peer-to-peer storage systems1.

1The fragmentation choice goes beyond the scope of this
study. We only focus on the placement of the information’s
fragments.

The second part of an efficient information

scheme is the fragments placement. The m + n frag-

ments generated by an erasure coding procedure must

be disseminated among peers. The reliability and per-

sistence of information relies on this placement. In

this paper we focus on a new scheme of information

placement based on a MAS (multi-agents system).

Each generated fragment is associated to a mobile

agent making its own decisions. In our approach, the

global information is then seen as a fragments flock

moving into the network.

We also provide load-balancing by using ants stig-

mergy capability. Generated fragments are able to

drop pheromones in the network to establish an in-

direct communication between agents.

After presenting the related work, we present our

architecture composed of two layers. In Section 3.1

we introduce the topology used to scatter our frag-

ments. In Section 3.2 we describe our agents and

their bio-inspired behavior. In Section 4 we present

first results of our approach. Finally we discuss about

security and dependability issues in a system using a

such placement of information.



2 RELATED WORK

Data placement and information availability are hot

topics in the field of peer-to-peer networks. Many

studies (Giroire et al., 2009; Douceur and Watten-

hofer, 2001; Lian et al., 2005) evaluate the cost of

data placement following various criteria (bandwidth,

Mean Time To Data Loss. . . ). We can observe two

main approaches to spread fragments of data in a net-

work. The first one scatters randomly the pieces of in-

formation. The random distribution allows to dissem-

inate fragments on distinct peers with a high proba-

bility in a high scale network. This property limits

the reconstruction cost in terms of bandwidth capac-

ity and the bottleneck effect on one peer. (Kubiatow-

icz et al., 2000) and (Ghemawat et al., 2003) use this

method of dissemination. In (Ghemawat et al., 2003)

a ”master” entity is responsible for data placement

and knows the state of the network but it is not reliable

due to a centralization of the offered service. Another

approach consists to place fragments following the

network topology. An information could be scattered

on all neighbors of a given peer. This method is used

in PAST (Druschel and Rowstron, 2001) and Glacier

(Haeberlen et al., 2005). In this strategy, peers and

data share the same name-space. A peer p is chosen

to be responsible for a given information (generally

the closest id to the data id) and fragments are stored

on neighbors of p. If p fails, the neighboring peers

can participate in data reparation. On the opposite of

a random placement, a fewer distinct peers number

can participate during a reconstruction step. This af-

fects the availability and reliability of data. However

this approach, generally based on top of an overlay us-

ing a Distributed Hash Table (DHT), provides a low

cost scheme of information management in terms of

routing and information placement.

These two methods don’t care about information

environment and its evolution during time. Our model

tries to get advantage of both methods by using a logi-

cal network as a medium for communication between

information fragments. Then we associate to each

data fragment, a mobile agent interacting with its en-

vironment. We manage agent’s movement with flock-

ing rules to keep a local cohesion between them. So

our flock of agents moves randomly in the network,

but the agents keep a high degree of locality.

3 A LAYERED ARCHITECTURE

Our model is built on two layers. The first one is in

charge of the overlay construction. The second one

provides behaviors for our mobile agents.

3.1 Peer-to-peer Network Management

Protocol

The network layer is based on the Scalable Mem-

bership Protocol (SCAMP) (Ganesh et al., 2001;

Ganesh et al., 2003), a fully decentralized peer to peer

lightweight membership protocol. Initially designed

to support reliable gossip-based multicast protocols,

we use it as our network layer for its good properties

in terms of scalability and fault-tolerance to achieve

the required reliability at network level.

In the Erdős and Rényi (Erdős and Rényi, 1960;

Erdős and Rényi, 1959) model, an undirected graph

Γn,Nk
is a random graph of n nodes and an average

of Nk edges if it exists an edge between each pair of

nodes with probability p =
Nk
(

n
2

) . Let P0(n,Nk) denote

the probability of Γn,Nk
being completely connected.

Erdős and Rényi shows that if:

Nk =
1

2
n log(n)+

1

2
k n (1)

then

lim
n→+∞

P0(n,Nk) = exp−exp−k

(2)

which means that if each node of Γn,Nk
has a degree of

size log(n)+k then the graph is connected with prob-

ability exp−exp−k
. This property is called a connectiv-

ity threshold. If we introduce edges redundancy over

this threshold we achieve fault-tolerance. Results in

(Kermarrec et al., 2003) shows that same threshold

exists for directed random graphs. SCAMP is based

on these results.

SCAMP constructs a random directed graph hav-

ing a mean degree converging to (c+1) log(n) with c

a design parameter. It permits the graph to stay con-

nected if the link failure probability is smaller than
c

c+1
(Ganesh et al., 2001). On top of that, the de-

gree size grows slowly with system size so the net-

work scales well in terms of neighborhood size.

3.2 Mobile Agent Layer

In order to propose a new placement of information

scheme in a decentralized storage application, we use

a multi-agents system in which each fragment of in-

formation is kept in an associated cognitive mobile

agent making its own decisions. This cognition al-

lows our agents to autonomously move from peers to

peers following flocking rules.

3.2.1 Flocking rules

We use flocking rules similar to those proposed by

Craig Reynolds (Reynolds, 1987), inspired by the



movements of birds. His motivation was to find sim-

ple rules, easily applicable to each agent, to reproduce

a flock of birds as an emergent behavior. Reynolds

identified three simple rules for each agent to follow:

• Cohesion: Steer to move toward the average po-

sition of local flockmates.

• Separation: Steer to avoid crowding local flock-

mates.

• Alignment: Steer towards the average heading of

local flockmates.

In this model, flocking is not a quality of any in-

dividual bird but an emergent behavior from interac-

tions between all agents. Our goal is to apply these

rules in a peer-to-peer network. In our case, agents

hold an information fragment, and the resulting emer-

gent behavior is a flock of fragments. Our objective

is to propose a data placement strategy using flocking

rules, in order to combine advantages of global and

local policies. In addition, our approach allows an ef-

ficient load-balancing among peers.

3.2.2 Flocking algorithm

By combining Reynolds rules with a maximal dis-

tance d between two elements in a network estimated

by the Round Trip Time (RTT), we can reproduce

flocking behavior between fragments. We have de-

fined rules to adapt the flocking model:

1. A given peer can only store one fragment per doc-

ument (separation rule).

2. Agents move in order to get closer to the most

distant agents (cohesion rule associated to a RTT

distance).

3. λ is the maximal distance between two fragments.

Fragments’ positions are given by peer identifiers

storing fragments.

Algorithm 1 allows an agent to move following

flocking rules. This algorithm consists in choosing a

peer from the neighborhood which does not violates

flocking rules.

The first step for a moving fragment is to find

neighboring peers hosting fragments from the same

file. Then, the fragment objective is to get closer to

the most distant peer found. To achieve that, it moves

on a free peer near the distant peer. By applying flock-

ing rules, we can deduce a storage location for a frag-

ment which do not violate the maximal distance be-

tween two fragments.

3.2.3 Load-balancing

In order to propose an efficient load-balancing

scheme, we introduce a pheromone deposit. Our

Algorithm 1: Flocking algorithm : moving

from a peer x to a peer p.

Input: A peer x, f ile a file, f f ile a fragment

∈ f ile, Vα peer α’s neighborhood, φα

the pheromones level of peer α
Output: A peer p where to store f f ile

Busy← peers ∈Vx storing fragments ∈ f ile;

foreach y ∈ Busy do

if d(x,y) < λ then
Remove y ∈ Busy

(violation of cohesion rule);

Free← peers ∈Vx storing fragments /∈ f ile;

foreach y ∈ Busy and z ∈ Free and y ∈Vz do

if d(y,z) > λ then
Remove z ∈ Free

(application of cohesion rule);

Choose a peer p ∈ Free such that φp is minimal;

move f f ile to p and increment φp;

agents have the capability to interact with the environ-

ment by dropping pheromones. In our case, stigmergy

allows an agent to put a pheromone deposit in the net-

work. So, other agents can detect this trace and then

adapt their storage location. A fragment marks its de-

parture from a peer to another one by a pheromone

deposit on a peer. It also marks its arrival by another

pheromone deposit. So, a given peer in the network

possess a pheromone level for each neighbor. A such

measure is only valid accompanied with an appropri-

ate evaporation rate.

4 EXPERIMENTAL RESULTS

We have deployed mobile agents, implemented with

the JavAct2 framework, in a network built with

SCAMP to measure the size of the flock generated.

We have set the c SCAMP parameter to 3, each agent

drops two units of pheromones for each move, and

the evaporation rate have been set to 0.1% per sec-

ond. We have disseminated flocks of 5, 10, and 20

agents. Figure 1 depicts results with a network build

with 50 computers and figure 2 shows results with a

network of 100 computers. In figure 1 and 2, curves

depict the number of non-isolated agents of a flock

during time. A non-isolated agent is an agent having

2http://www.javact.org/



at least one fragment in its neighborhood. These re-

sults allows us to validate the behavior of our agents.

In figure 1 flocks of 10 and 20 agents stay grouped

during time. These experiments show that the cohe-

sion of a flock is dependent of the number of agents.

This group behavior is also dependent of the network

configuration. In a small network, small flocks stay

also grouped. So it is necessary to adapt the flock size

to the network size.
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Figure 1: Cohesion of flocks of 5, 10, 15 and 20 agents in a
50 computers network.
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Figure 2: Cohesion of flocks of 5, 10, 15 and 20 agents in a
100 computers network.

We have experimented the network coverage. Fig-

ure 3 and figure 4 show results for 10 and 20 frag-

ments flocks on the same 100 hosts SCAMP net-

work. These curves show the number of visited hosts

during time where each fragment moves every sec-

onds. The dotted curve describes the network cover-

age when pheromones are disabled and the plain one

when they’re not. We clearly see the benefits of using

pheromones during the flocks motions which permits

to cover the quasi totality of this network instance. In

both cases, pheromones usage is helpful to discover

more peers in the network, and thus provides a better

efficiency for the mobility of a flock.
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Figure 3: Network’s average coverage by 10 fragments
flocks in a 100 computers network.
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Figure 4: Network’s average coverage by 20 fragments
flocks in a 100 computers network.

5 DEPENDABILITY ISSUES OF

THE MULTI-AGENTS

APPROACH

One of the main long-term goals of our approach

is to guaranty the availability of the data stored in

a faulty environment where faults can be correlated.

We define a correlated fault as a fault that is caused

by one another. In a peer-to-peer network, correla-

tions cause multiple nodes to become unavailable at

the same time. This is really problematic if these

nodes stores crucial data. The presence of correlations

comes from shared attributes between the nodes like



their : geographical location, physical network, vul-

nerable services and OS, system administrators, con-

figurations, etc. Those kind of faults are not negligi-

ble (Bakkaloglu et al., 2002) and should be consid-

ered. However, some studies (Weatherspoon and Ku-

biatowicz, 2002; Lin et al., 2004) uses the indepen-

dence hypothesis in their analysis due to the hardness

of taking the correlations into account.

A first idea to solve this problem is developed in

Glacier (Haeberlen et al., 2005), a decentralized stor-

age system. Glacier makes heavy use of erasure cod-

ing techniques coupled with a repair mechanism in

case of failure to ensure the required availability level

even if the system is severely damaged. However, the

fragments placement made by Glacier is key-based

and static into a DHT. As a consequence, an attacker

knowing the fragments’ keys could target their host-

ing nodes to make the data unrecoverable.

A second idea proposed in the literature is to cre-

ate a correlated faults model (Weatherspoon et al.,

2002; Bakkaloglu et al., 2002) from various obser-

vations of the overlay. The model is then used to cre-

ate clusters of correlated nodes. The idea is to adopt a

proactive approach in distributing a maximum of frag-

ments on different clusters to prevent the loss of mul-

tiple fragments after a fault.

From these observations, we propose a flexible ap-

proach to avoid the static key-based placement with-

out losing the ability to self-repair during the flock

lifetime. Our goal is to combine the massive fragmen-

tation approaches with proactive mobile-based ap-

proaches to solve the problem of the availability of

data in presence of correlated failures. More precisely

we think that:

1. In our architecture, each flock knows its compo-

sition (the number and the location of fragments)

and the environment it explores (the peers it dis-

covers), making it able to plan a repair when its

size has reached a given critical threshold. In

case of hierarchical codes (Duminuco and Bier-

sack, 2008) for example, the system can com-

pute P( f ailure|a), the probability of complete

data loss if other a fragments loses occur.

2. The second interest of a mobile-agents based ap-

proach is the faculty for the flock to change it’s

location when the environment evolves. If we

suppose a correlated faults model of the network,

the flock can search an optimal placement during

its motion which minimizes the inter-correlation

between its hosting nodes using techniques like

simulated-annealing. Since we are in a dynamic

environment, the flock searches a new optimal po-

sition every time the equilibrium is disturbed (typ-

ically after a fault or a node join into the neighbor-

hood of the flock).

3. In opposition with Glacier where an attacker

knowing the fragments’ keys could provoke an

unrecoverable failure, the flock’s location is not

accessible to attackers and its motion is quite un-

predictable making the setup of these kind of at-

tacks very difficult.

6 CONCLUSION

We presented in this paper the bases of a new ap-

proach to handle the problems of data placement and

its dependability in decentralized data storage sys-

tems. The described approach claims to be flexi-

ble and adaptable by using mobile agents moving in

flocks in a peer-to-peer network. Our experimenta-

tions show that cohesion of the flock is preserved dur-

ing its motion. However, this cohesion is dependent

of the network size and consequently of the number

of neighbors per peer. This is clearly a SCAMP re-

lated constraint where the neighborhood grows with

the network size. The pheromones deposit guaranties

that almost all network nodes are visited after sev-

eral flock motions. Those experimentations validate

to some extent our approach basis.

The next step of our work aims to make good use

of the flock’s knowledge and its environment to pro-

pose a proactive and optimal data placement guaran-

tying the required dependability level in presence of

correlated faults. Finally, we will measure the costs

of our approach in comparison to existing locals and

random data placements.
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Peer-to-peer membership management for gossip-
based protocols. IEEE Transactions on Computers,
52(2):139–149.

Ghemawat, S., Gobioffd, H., and Leung, S.-T. (2003). The
google file system. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, pages
29–43, New York, NY, USA.

Giroire, F., Monteiro, J., and Pérennes, S. (2009). P2P stor-
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