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Abstract10

The determination of the contact area is a key step to derive mechanical

properties such as hardness or an elastic modulus by instrumented indenta-

tion testing. Two families of procedures are dedicated to extracting this area:

on the one hand, post mortem measurements that require residual imprint

imaging, and on the other hand, direct methods that only rely on the load15

vs. the penetration depth curve. With the development of built-in scanning

probe microscopy imaging capabilities such as atomic force microscopy and

indentation tip scanning probe microscopy, last generation indentation de-

vices have made systematic residual imprint imaging much faster and more

reliable. In this paper, a new post mortem method is introduced and further20

compared to three existing classical direct methods by means of a numerical

and experimental benchmark covering a large range of materials. It is shown

that the new method systematically leads to lower error levels regardless of

the type of material. Pros and cons of the new method vs. direct methods are
1



also discussed, demonstrating its efficiency in easily extracting mechanical

properties with an enhanced confidence.

Keywords: Nanoindentation, Atomic force microscopy, Hardness, Elastic

behavior, Finite element analysis

1. Introduction5

Over the last two decades, Instrumented Indentation Technique (IIT) has

become a widespread procedure that is used to probe mechanical properties

for samples of nearly any size or nature. However, the intrinsic heterogeneity

of the mechanical fields underneath the indenter prevents from establishing

straightforward relationships between the measured load vs. displacement10

curve and any expected mechanical properties as it would be the case for a

tensile test. Many models have been published in the literature in order to

enable the measurement of properties such as an elastic modulus, hardness

or various plastic properties. Despite their diversity, most of these models

deeply rely on the accurate measurement of the projected contact area be-15

tween the indenter and the sample’s surface. The existing methods that are

dedicated to estimating the true contact area can be classified into two sub-

categories: the direct methods which rely on the sole load vs. displacement

curve [1, 2, 3] and the post mortem methods that use additional data ex-

tracted from the residual imprint left on the sample’s surface. For example,20

Vickers, Brinell and Knoop hardness scales rely on post mortem measure-

ments of the geometric size of the residual imprint. However, in the case of
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Vickers hardness, the contact area is only estimated through the diagonals of

the imprint, the possible effect of piling-up or sinking-in is then neglected.

Other post mortem methods use indent cross sections to estimate the pro-

jected contact area [4, 5]. In the 1990s, the development of nanoindentation

led to a growing interest in direct methods because they do not require time5

consuming post mortem measurement of micrometer or even nanometer scale

imprints, typically using Atomic Force Microscopy (AFM) or Scanning Elec-

tron Microscopy (SEM). Uncertainty level on direct measurements remains

high, mainly because of the difficulty to predict the occurrence of piling-up

and sinking-in. Oliver and Pharr have eventually considered this issue as one10

of the "holy grails" in IIT [2]. Recent development in Scanning Probe Mi-

croscopy (SPM) using the Indentation Tip (ITSPM) brought new interest in

post mortem measurements. Indeed, ITSPM allows systematic imprint imag-

ing without manipulating the sample or facing repositioning issues to find

back the imprint to be imaged. Yet ITSPM imaging technique suffers from15

drawbacks when compared to AFM: it is slower, it uses a blunter tip associ-

ated with a much wider pyramidal geometry and a higher force applied to the

surface while scanning. While the later may damage delicate material sur-

faces, the formers will introduce artifacts. Nonetheless, these artifacts will

not affect the present method. In addition, ITSPM only allows for contact20

mode imaging, non contact or intermittent contact modes are not possible.

As a consequence, only the techniques based on altitude images can be used

with ITSPM and there is a need for new methods as very recently reviewed
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by Marteau et al. [6]. This article introduces a new post mortem procedure

that relies only on the altitude image and that is therefore valid for most

types of SPM images, including ITSPM. In this paper, a benchmark based on

both numerical indentation tests as well as experimental indentation tests on

properly chosen materials to span all possible behaviors is first introduced.5

Then, the existing direct methods are reviewed and a complete description

of the proposed method is given. These methods are then confronted using

the above mentioned benchmark and the results are finally discussed.

2. Numerical and experimental benchmark

A typical instrumented indentation test features a loading step where the10

load P is increased up to a maximum value Pmax , then held constant in order

to detect creep and finally decreased during the unloading step until contact

is lost between the indenter and the sample. A residual imprint is left on the

initially flat surface of the sample. During the test, the load P as well as the

penetration of the indenter into the surface of the sample h is continuously15

recorded and can be plotted as shown in Figure 1. For most materials, the

unloading step can be cycled with only minor hysteresis, it is then assumed

that only elastic strains develop in the sample. As a consequence, the initial

slope S of the unloading step is called the elastic contact stiffness. Useful

data can potentially be extracted from both the load vs. displacement curve20

and the residual imprint. The contact area Ac is defined as the projection of

the contact zone between the indenter and the sample at maximum load on

the plane of the initially flat surface of the sample.
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2.1. Numerical approach

Finite element modeling (FEM) simulations are performed using a two-

dimensional axisymmetrical model represented in Figure 2. The sample is

meshed with 3316 four-noded quadrilateral elements. The indenter is con-

sidered as a rigid cone exhibiting an half-angle Ψ = 70.29˚ to match the the-5

oretical area function of the Vickers and modified Berkovich indenters [7].

The displacement of the indenter h is controlled and the force P is recorded.

The dimensions of the mesh are chosen to minimize the effect of the far-

field boundary conditions. The typical ratio of the maximum contact radius

and the sample size is about 2× 103. The problem is solved using the com-10

mercial software ABAQUS (version 6.11, 3ds.com). The numerical model is

compared to the elastic solution from [8] (see [9, 10]) using a blunt conical

indenter (Ψ = 89.5˚) to respect the purely axial contact pressure hypothesis

used in the elastic solution. The relative error is computed from the load

vs. penetration curve and is below 0.1%. Pre-processing, post-processing15

and data storage tasks are performed using a dedicated framework based

on the open source programming language Python 2.7 [11, 12, 13] and the

database engine SQLite 3.7 [14]. The indented material is assumed to be

isotropic, linearly elastic. The Poisson’s ratio ν has a fixed value of 0.3 and

the Young’s modulus is referred to as E. The contact between the inden-20

ter and the sample’s surface is taken as frictionless. Two sets of constitutive

equations (CE1 and CE2) are investigated in order to cover a very wide range

of contact geometries and materials:

5
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CE1 This first constitutive equation used in this benchmark is commonly

used in industrial studies and in research papers on metallic alloys

[15, 16, 17, 18]. It uses J2-type associated plasticity and an isotropic

Hollomon power law strain hardening driven by the tensile behavior

(stress σT , strain εT ) given by Eq. 1:5

σT =







EεT , for: σT ≤ σY T

σY T

�

EεT

σY T

�n

, for: σT > σY T

(1)

Plastic parameters are the tensile yield stress σY T and the strain hard-

ening exponent n.

CE2 The second constitutive equation is the Drucker-Prager law [19] which

was originally dedicated to soil mechanics but was also found to be

relevant on Bulk Metallic Glasses (BMGs)[20, 21, 22, 23] and some10

polymers [24]. The yield surface is given by Eq. 2 where q is the

von Mises equivalent stress in tension and p the hydrostatic pressure.

Perfect plasticity is used in conjunction with an associated plastic flow.

The plastic behavior is controlled by the compressive yield stress σY C

and the friction angle β that tunes the pressure sensitivity.15

q− p tanβ −
�

1− 1/3 tanβ
�

σY C = 0 (2)
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Dimensional analysis [25, 26, 27] is used to determine the influence of

elastic and plastic parameters on the contact area Ac:

Ac =







h2
max
ΠC E1(ν ,σY T/E, n)

h2
max
ΠC E2(ν ,σY C/E,β)

(3)

In this equation, hmax is the maximum value of penetration of the in-

denter into the sample’s surface. In both cases, the dimensionless functions

show that, since the Poisson’s ratio has a fixed value (ν = 0.3), only the5

yield strains (εY T = σY T/E, in the case of CE1 and εY C = σY C/E, in the

case of CE2) and the dimensionless plastic parameters (n in the case of CE1

and β in the case of CE2) have an influence on the contact area Ac. As a

consequence, the value of the Young’s modulus E has a fixed arbitrary value

E = 1 Pa and only the values of the yield stresses σY T and σY C , the harden-10

ing exponent n and the friction angle β are modified. The simulated range of

these parameters are given in Tables 1 and 2. After each simulation, a load

vs. displacement into surface curve and an altitude SPM like image using

the Gwyddion (http://gwyddion.net/) GSF format are extracted. The use of

such a procedure allows one to consider both numerical and experimental15

tests in the benchmark and to derive mechanical properties in the same way.

Since the simulations are two-dimensional axisymmetric, the contact area is

computed as Ac = πr2
c

where rc stands for the contact radius of the contact

zone (see Fig. 2).

7
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2.2. Experimental testing

The tested materials (see Table 3) are chosen in order to cover a very

wide range of contact geometries, from sinking-in (FQ), intermediate behav-

ior (WG), and to piling-up (BMG). Glasses are chosen over metallic alloys

because they exhibit negligible creep for temperatures well below the glass5

transition temperature, no visible size effect and are very homogeneous and

isotropic in the test conditions. The FQ and WG samples are tested as re-

ceived (please note the WG sample was test on it’s "air" side) whereas the

BMG sample is polished. Nanoindentation testing is performed using a com-

mercial Hysitron TI950 triboindenter. During each test, the load is increased10

up to Pmax = 10 mN with a constant loading rate dP/d t = 5 × 10−5 N/s.

The load is then held for 10 s and relieved with a constant unloading rate

dP/d t = −1 × 10−4 N/s. Four tests are performed on each sample and each

residual imprint is scanned with the built-in ITSPM device with an applied

normal force of 2 µN as summarized in Figure 3. Tests are load controlled15

and the maximum load is set to Pmax = 10 mN. The true contact area Ac is

not known as in the case of the numerical simulations. It is then estimated

through the Sneddon’s Eq. 4 [10, 2] and is called Ac,SN . Young’s moduli

E, and the Poisson’s ratios ν of each sample are known prior to indentation

testing from the literature or from ultrasonic echography measurements (cf.20

Table 3). Recalling that S is the initial unloading contact stiffness (cf. Figure
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1), we have:

Ac,SN =
π

4

S2

β2E2
eq

where:







Eeq =
E

1− ν2

β = 1.05

(4)

3. Methodology review

3.1. Direct methods

Direct methods rely on the sole load vs. penetration curve (P, h) to deter-

mine the contact height hc using equations given in Table 4. Let us recall that5

hc < h in the case of sinking-in (as seen in Fig. 2) and hc > h for piling-up.

Three direct methods are investigated in this paper :

DN The Doerner and Nix method [1] was one of the first to be published

(along with similar work done by Bulyshev et al. [28]) and it provided

the basic relationships later improved by the two other methods.10

OP The Oliver and Pharr method [29, 2] is an all-purpose method that is

widely used in the literature, commercial software and standards. The

main drawback of this method is that it cannot take piling-up into ac-

count.

LO The Loubet method [3] is an alternative to the OP method, especially for15

materials exhibiting piling-up.

Regardless of the chosen method, the value of hc is used to compute the

value of the contact area Ac thanks to the Indenter Area Function Ac(hc)
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(IAF). The IAF depends on the theoretical shape of the indenter as well and

on its actual defects which are measured during a calibration procedure. Dif-

ferent tip calibration methods are used in the literature:

• Measurement either of the indenter geometry or the imprint geome-

try made on soft materials for multiple loads using AFM or other mi-5

croscopy techniques [30].

• The IAF introduced by Oliver and Pharr [29, 2] requires a calibration

procedure on a reference material using only the (P, h) curve:

Ac,OP(hc) = C0h2
c
+ C1hc + C2h1/2

c
+ C3h1/4

c
+ . . .+ C8h1/128

c
(5)

Where the (Ci)0≤i≤8 factors are fitting coefficients obtained from a cal-

ibration procedure on fused quartz. For a given indenter, the value of10

the Ci coefficients depend on the penetration depth range used for the

calibration procedure. In the case of a perfect modified Berkovich tip,

C0 = 24.5 and Ci>0 = 0.

• The method introduced by Loubet (see [3]) :

Ac,LO(h) = k
�

hc +∆h
�2

(6)

It is assumed that the only origin of the defects is tip blunting. Then,15

k comes from the indenter’s theoretical shape (k = 24.5 here) and ∆h

is the offset caused by the tip defect and is calibrated using a linear fit
10



made on the upper portion of the (
p

P, h) curve. This procedure can be

performed on any material exhibiting neither significant creep nor size

effect, typically fused quartz. This method is intrinsically very efficient

when the penetration is high compared to ∆h.

In the experimental benchmark, all tests are performed at hmax ≥ 2505

nm using a diamond modified Berkovich tip that exhibits a truncated length

∆h= 17.8± 1.74 nm1. Theses values were calibrated on the FQ sample. As

a consequence, the IAF introduced by Loubet is used on every direct method.

By contrast, numerical simulations use a perfect tip so that the IAF is Ac(h) =

24.5h2.10

3.2. Proposed Method (PM)

SPM imaging grants access to a mapping of the altitude of the residual

imprint. It is assumed that the surface of the sample is initially plane and

remains unaffected far from the residual imprint. This plane is extracted

from the raw image using a disk shaped mask centered on the imprint and a15

scan by scan linear fit on the remaining zone. It is considered as the reference

surface and is subtracted to the raw image to remove the tilt of the initial sur-

face. Under maximum load, the contact contour can exhibit either sinking-in

and piling-up. In the first case, its altitude is decreased vis-à-vis the refer-

ence surface. This behavior is typical of high yield strength materials such20

1This value is the average value of ∆h on all the twelve tests performed on the three

samples used in the experimental benchmark and the error is the represented± one standard

deviation.
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as fused quartz. On the opposite, piling-up occurs when the the increased

and is typically triggered by unconfined plastic flow around the indenter as

usually observed on low strain hardening metallic alloys. When the inden-

ter is not axisymmetric (as it is the case for pyramids), both sinking-in and

piling-up may occur simultaneously. For example, pyramidal indenters can5

produce piling-up on their faces and sinking on their edges (or no piling-up

to the least). During the unloading step, the whole contact contour is pushed

upward with only minor radial displacement. A residual piling-up may form

even if sinking-in initially occurred under maximum load. We now focus on

a half cross-section of the imprint starting at the bottom of the imprint and10

formulate two assumptions:

1. The highest point of any half cross-section is the summit of the residual

piling-up.

2. The summit of the residual piling-up indicates the position of the con-

tact contour.15

As a consequence, the highest point of the cross-section gives the radial po-

sition of the contact zone boundary. However, from an experimental point of

view, the roughness of the sample’s surface may make the true position of the

residual piling-up’s summit unclear. This issue is particularly true for materi-

als exhibiting high levels of sinking-in such as fused quartz but also for most20

materials along the edges of pyramidal indenters. In order to limit the effect

of surface roughness on the radial localization of the contact zone boundary,

each profile is slightly rotated by a small angle value α along an axis per-

12



pendicular to the cross-section plane and running through the bottom of the

imprint (i. e. the lowest point of the profile). The whole contact contour is

then determined by repeating the process in all directions (θ = 0˚ to 360˚)

then the contact area Ac,PM is calculated. A graphical representation of key

steps of the method is made in Figure 4.5

[PLEASE INSERT FIGURE 4 HERE]

The optimum tilt value of the tilt angle α is chosen in order to deal with

three potential artifacts detailed below and emphasized using three experi-

mental residual imprints in Fig. 5:

1. Materials exhibiting low or no residual piling-up such as FQ cannot be10

treated with the proposed method when α = 0˚ because the positions

the highest points of each the extracted half cross sections are driven by

the roughness. In this case, positive values of the tilt angle (α ≥ 2.5˚)

fully address the issue.

2. The surface roughness of the sample affects the accuracy of the method,15

especially on materials that show no residual piling-up because there

is a competition between the is a competition between piling-up and

roughness in the highest point identification (see FQ and BMG on Fig.

5. Again, positive values of the tilt angle (α ≥ 2.5˚) solve the problem

by lowering the roughness peaks located outside the imprint as visible.20

3. A particular artifact is visible in the directions of the indenter’s edges.

Indeed, the residual piling-up is always very low in these directions

because the displacement field tends to push the material towards the

13



faces of the indenter. The attack angle between the edges and the

sample’s surface is also very low2 As a consequence, a high value of the

tilt angle such as α ≥ 5˚ creates artifacts in this zone as clearly visible

on FQ and WG.

Given the three above points, the optimum value of the tilt angle is found to5

be α= 2.5˚. The three values of the tilt angle have also been tested in on the

numerical simulations. Even if the overall effect of the tilt angle is lower in

this case because the simulations are two dimensional and also because the

numerical samples have no roughness, only the first issue is observed and the

optimum value is the same the one found experimentally.10

4. Results and discussion

4.1. FEM benchmark results

The four methods are confronted on the numerical benchmark and their

ability to accurately compute the contact area Ac is challenged. The results fo-

cus on the relative error e between Ac and the contact area predicted by each15

method. Please note that a 10% relative error on the contact area means

roughly a ≈ 10% relative error on hardness but only ≈ 5% on the elastic

modulus (see Eq. 4). The results are plotted in Figures 6 and 7 for constitu-

tive equations CE1 and CE2 respectively and a summary of the key statistics

is given in Table 5. For Fig. 6 and 7, (a) and (b) represent the relative error20

and its absolute value respectively. The later was chose to emphasize the

2 The angle is 13˚ in the case a of modified Berkovich tip.
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magnitude of the error while (c) indicates whether piling-up or sinking-in

occurs. It is also chosen to measure the success rate of the methods through

their ability to match Ac within a ±10% error. This value was chosen since

even if challenging, it is still realistic from an experimental point of view.

These data can be discussed individually for each method:5

• The DN method systematically tends to underestimate Ac regardless of

the type of constitutive equation and of the occurrence of piling-up or

sinking-in. The magnitude of the relative error is the highest among the

four tested methods. This lack of accuracy can be put into perspective

by recalling that the DN method states that the contact between the10

indenter and the sample behaves as if the indenter was a flat punch

during the first stages of the unloading process. This approach was later

proved to be too restrictive by Oliver and Pharr [29] who improved it

by taking into account the actual shape of the indenter through the ε

coefficient. As ε < 1 in the case of the modified Berkovich tip, the value15

of the contact depth hc is systematically increased (see Table 4).

• As stated above, the OP method drastically improves the overall perfor-

mances of the DN method. However, its error level depends strongly on

the type of contact behavior (i. e. piling-up or sinking-in) and the me-

chanical properties of the tested material. Typically, it performs well for20

the CE1 law when the strain hardening exponent n verifies n > 0.2. It

also performs well (relative errors below 10%) on materials exhibiting

very high yield strains (higher than 4%) in the case of CE2. The main
15



drawback of the method is its intrinsic inability to cope with piling-up

since hc/h can never be higher than 1. This is particularly visible for

low values of the strain hardening exponent (CE1: n ≤ 0.1) and with

CE2 when the compressive yield strain σC/E is lower than 3%. The OP

method has a low success rate (see Table 5) but this tendency has to5

be mitigated by the fact that it is very efficient for a large number of

metallic alloys, which can be described by CE1 and exhibit moderate

values of hardening exponents.

• The LO method allows hc/h > 1 values and is then recommended for

piling-up materials; it is overall very efficient with CE2 type materials.10

The drawback is that it tends to overestimate the contact area when

sinking-in occurs; this is particularly true in the case of CE1 with mod-

erate to high hardening exponents (n ≥ 0.1). These observations are

in agreement with the results of Cheng and Cheng [31] regarding the

influence of piling-up and sinking-in on the direct estimation of the15

contact depth. The success rate of this method is the highest among

the direct methods and it is clearly the best available direct method for

CE2 type materials and for low hardening CE1 type materials.

• The proposed method exhibits a 100% success rate (with the ±10 %

relative error target) and an average absolute relative error of 2.5%.20

The error level remains stable regardless of both the type of constitu-

tive equation and its parameters. This result highlights the fact that

when experimentally possible, the use of such a post mortem method
16



will improve drastically the overall error level of the contact area mea-

surement.

4.2. Experimental benchmark results

The results of the experimental benchmark are represented in Fig. 8.

The tendencies observed in the numerical benchmark are confirmed. The5

DN method systematically underestimates the contact area. The OP and LO

methods perform well only on a given spectrum of contact behaviors: both

methods give accurate results on the FQ sample; this is consistent with the

fact that both of them were optimized to use this material as a reference.

While the LO method also exhibits a low error level on the WG sample, the OP10

method leads to an unexpected high error level. It is supposed that even if the

WG sample has a very high yield strain, it has no strain hardening mechanism

and it is then out of the scope of the OP method. The BMG which exhibits

a large residual piling-up obviously leads the OP method to underestimate

drastically the contact area. The LO method performs better although it also15

underestimates the contact area. This later method systematically exhibits

relative errors of ±10% while the method proposed in this paper is even

more reliable with errors lower than 5%. We observe that the direct methods

overall performances are better than in the case of the numerical benchmark.

The contact friction, which is neglected in the numerical benchmark, may20

improve the accuracy of the direct methods without affecting the proposed

method.

17



4.3. Pros and cons

Both benchmarks highlight the precision gap between the new method

and the existing direct methods. However, the proposed method differs by

nature from the three direct methods it is compared to. This section empha-

sizes the pros and cons of this method:5

Disadvantages: • The proposed method relies on SPM imaging of the

residual imprint while direct methods do not. However, indenta-

tion devices tend to be equipped with ITSPM capability that can

be used automatically in conjunction with the indentation testing

itself with only a small increase in test duration.10

• The method relies on the assumption that the imprint is unchanged

between the end of the test and the imaging procedure. This

means that the proposed method should not be applied to materi-

als exhibiting time-dependent mechanical behavior such as poly-

mers (see [32]) and even pure metals. In order to demonstrate15

this limitation, nanoindentation tests have been run an electropol-

ished pure single crystal aluminum sample (Al) and a mechan-

ically polished pure tungsten sample (W). Those two materials

were chosen because of their low elastic anisotropy [33]. A load-

ing function similar to the one used in [29] was used to limit the20

effect of creep on the unloading stiffness S. The method appears

to work flawlessly on both samples as none of the three artifacts

mentioned in part 3.2 are observed. However, the value of the

18



contact area is systematically overestimated by a factor ≈ 1.6 and

≈ 2.7 respectively on the Al and W samples. The evolution of

the residual imprint after the indentation test is made possible by

creep caused by residual stress.

Advantages: • The proposed method can be run automatically, it re-5

quires no adjustable parameters and is user independent.

• Sample holder and machine stiffness affect the measurement of

the penetration into surface h as well as the measured contact

stiffness S and, as a consequence, they also affect all direct meth-

ods. The value of the machine stiffness can be measured once and10

for all while the sample holder’s stiffness may change between

two samples and requires systematic calibration. This concern is

particularly true in the case of small samples such as fibers as well

as very hard materials (such as carbides). The contact area mea-

surement provided by the proposed method does not rely on h and15

is then insensitive to the effect of those spurious stiffness issues.

Yet, let us note that while the value of the contact area Ac,PM is

unaffected by stiffness issues, the value of the contact stiffness S

is of course affected. As a consequence, the value of the hardness

probed with the proposed method is free from any stiffness con-20

cern (as H = Pmax/Ac) while the value of the reduced modulus E∗

still requires stiffness calibration (as E∗ ∝ S/
p

Ac).

• The method does not require any tip calibration procedure and is
19



compatible with all tip shapes.

• The method is unaffected by erroneous surface detection also be-

cause it does not rely on h.

5. Conclusion

We have proposed a new procedure to estimate the indentation contact5

area based on the residual imprint observation using altitude images pro-

duced by SPM. This area is the key component of instrumented indentation

testing for extracting mechanical properties such as hardness or elastic mod-

ulus. For the estimation of this contact area, the method has been confronted

with three widely used direct methods. We have showed, by means of an10

experimental and numerical benchmark covering a large range of contact

geometries and materials, that the proposed method is far more accurate

than its direct counterparts regardless of the type of material. We have also

discussed the fact that such post mortem procedures are indeed more time

consuming than direct methods; yet they are the future alternative to direct15

methods with the development of indentation tip scanning probe microscopy

techniques. We have also emphasized the fact that this new method has

numerous advantages: it can be automated, it is user independent, it is un-

affected by stiffness issues and does not require any indenter calibration.
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Parameter Description Range Number

σY T/E Tensile yield strain 0.001→ 0.01 10

n Strain hardening exponent 0.0→ 0.3 4

Table 1: Simulated range of the dimensionless ratios for the numerical simulations using the

constitutive equation CE1. The "Number" column stands for the number of values chosen as

simulation inputs in the given range.

Parameter Description Range Number

σY C/E Compressive yield strain 0.01→ 0.05 9

β Friction angle 0.0˚→ 30˚ 4

Table 2: Simulated range of the dimensionless ratios for using the constitutive equation CE2.

The "Number" column stands for the number of values chosen as simulation inputs in the

given range.

Label E (GPa) ν Provider/Description Ref.

FQ 73 0.16 Hysitron Inc.

WG 71.5 0.23 Planilux, Saint Gobain Inc. [34]

BMG 89.3 0.363 Zr55Cu35Al10, 385˚C annealed [35]

Table 3: Description of the three tested samples: a fused quartz sample (FQ), a window

glass sample (WG) and a zirconium based BMG. Materials properties used in this article

are detailed: Young’s modulus E, Poisson’s ratio ν . Reference to the literature are provided

when available. In the case of fused quartz, the properties are given by the provider and are

in agreement with the literature.

Method Contact depth Coeff. Ref.

DN hc,DN = hmax − Pmax/S ø [1]

OP hc,OP = hmax − εPmax/S ε= 0.72 [2]

LO hc,LO = α
�

hmax − Pmax/S
�

α= 1.2 [3]

Table 4: Equations used to compute the indentation contact depth hc for the three direct

methods used in this article.

25



Method min(e) [%] max(e) [%] |e| [%] |e| ≤ 10% [%]

DN -46.1 -10.4 26.3 0.0

OP -39.4 -4.9 16.8 30.2

LO -22.3 29.1 10.5 60.5

PM -5.7 8.9 2.5 100.0

Table 5: Numerical benchmark statistics of the three direct methods and the Proposed

Method (PM) on both CE1 and CE2. Please note that 40 simulations were run for CE1

and 36 for CE2. As a consequence, the weight of CE1 is slightly higher than the weight of

CE2 in the statistics. Mathematical notations are: e = (A− Ac)/Ac is the relative error on

the contact area A computed by each method relatively to the the true contact area Ac , |e|
is its absolute value and |e| the arithmetic mean value of its absolute value. The last row

displays the success rate of each method which is the proportion of the simulations on which

the relative error is in the ±10% range.
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Figure 1: Typical sharp indentation load on sample vs. displacement into surface curve. The

test is split into a loading step and an unloading step. The experimental curve generally also

includes an holding step which is not represented in this case. The contact stiffness S is the

unloading step’s initial slope. However, the direct determination of S via the upper part of

the step is unreliable as it uses only a small part of the curve. For increased accuracy, the

whole step is systematically fitted by a power law function which is used to compute back

the contact stiffness S as initially recommended in [2].
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Figure 2: Representation of the 2D axisymmetric FEM model including a rigid conical inden-

ter and a deformable elastic-plastic sample. In this particular case, the sample’s material is

based on CE1 (σY T/E = 0.07, n = 0.3). The model is represented at maximum penetration

into surface hmax . (a) The deformed mesh is plotted showing the finely meshed zone con-

taining the contact zone and most of the plastic zone. This zone is initially filled with square

shaped elements. The mesh is gradually coarsened away from the contact zone. The whole

mesh is not represented since its total size is about 103 times the size of the finely mesh

zone. (b) The gradient represents the ratio of the von Mises equivalent stress in tension q to

the tensile yield stress σY T with the corresponding scale given by the bottom color bar.
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Figure 3: Representation of the experimental tests carried out on the three selected materials

FQ, WG and BMG (Four tests per sample). (Left) The load vs. displacement into surface (P, h)

curves are plotted. The three loading steps are rather similar while the unloading steps are

very different. The FQ exhibits very high elastic recovery while the BMG has a low one.

(Right) ITSPM of one of the four tests is plotted for each material. Altitudes below 10 nm

are masked in order to emphasize the shape and size of the residual piling-up. There is no

visible residual piling-up on FQ, a low altitude circular one on WG and a higher altitude

one with summits on the faces on BMG. These observations justify the choice of the three

selected materials as they cover all possible contact geometries.
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Figure 4: Key steps of the proposed method exemplified on a Berkovich indent performed

on window glass with Pmax = 10 mN . (a) Raw ITSPM image on which the tilt has to be

corrected using a linear least squares fit on each individual scan with a circular mask around

the indented region. (b) An half cross section at a given angle θi is extracted. (c) The half

cross section z(r,θi) is rotated by a tilt angle α = 2.5˚ in order to isolate more efficiently

the edge of the contact zone. (d) The process is repeated for all required values of θi and

the whole contact zone is extracted (in black).

29



−1 0 1

−1

0

1 FQFQFQ

−1 0 1

Position, (x , y) [µm]

−1

0

1 WGWGWG

−1 0 1

−1

0

1 BMGBMGBMG

α= 0.0˚ α= 2.5˚ α= 5.0˚

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

Altitude, z [nm]

Figure 5: Contact contours produced by the proposed method on the three residual imprints

measured on each samples composing the benchmark. The imprints were produced using

the experimental protocol described in the section 2.2 and the Fig. 3. Three values of the tilt

angle α are investigated on each imprint: no tilt (α = 0˚), the proposed value (α = 2.5˚)

and last higher one (α= 5˚).
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Figure 6: Benchmark results of three direct methods and of the Proposed Method (PM) in the

case of CE1. Different combinations of the tensile yield strain σY T/E and the hardening ex-

ponent n are investigated (see Table 1). On each simulation, the true projected contact area

(Ac) computed by FEM, the contact areas estimated from the three direct methods (Ac,DN ,

Ac,OP and Ac,LO) and the contact area from the proposed method (Ac,PM ) are calculated. (a)

The relative error e between the true projected contact area and its four estimations is plot-

ted. Each plot represents a different value of the hardening exponent n. (b) The absolute

value of the the relative error |e| is represented in order to emphasize the accuracy of each

method (see Table 5). (c) The contact depth hc stands for the axial distance between the

edge of the contact zone and the the summit of the indenter. The relative difference be-

tween the contact depth and the penetration h is plotted to indicate where the piling-up

occurs ((hc − h)/h > 0) and when sinking-in occurs ((hc − h)/h < 0). This subplot helps in

understanding the relationships between the occurrence of piling-up and the accuracy of a

given method.
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Figure 7: Benchmark results of 3 direct methods and of the Proposed Method (PM) in the

case of CE2. See Figure 6 for the complete description of the structure of the figure.
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Figure 8: Experimental confrontation of the three direct methods and the Proposed Method

(PM) on the experimental benchmark. The relative error between the true projected contact

area computed by Eq. 4 and each method is plotted. Each subplot is dedicated to one sample

and each bar within each plot refers to one of the four methods. The error bars represent

the standard deviation obtained for four tests performed on each samples.
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