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ABSTRACT
This paper presents a novel nonlinearity correction algo-

rithm for wideband frequency modulated continuous wave

(FMCW) radars based on high-order ambiguity functions

(HAF) and time resampling. By emphasizing the polynomial-

phase nature of the FMCW signal, it is shown that the HAF is

an excellent tool for estimating the sweep nonlinearity poly-

nomial coefficients. The estimated coefficients are used to

build a correction function which is applied to the beat signal

by time resampling . The nonlinearity correction algorithm is

tested by simulation and validated on real data sets acquired

with an X-band FMCW radar.

Index Terms— Frequency Modulated Continuous Wave

(FMCW), Nonlinearity Correction, High-Order Ambiguity

Function (HAF), Time Resampling.

1. INTRODUCTION

The frequency modulated continuous wave (FMCW) radar

principle is currently used in applications such as radio-

altimeters, navigation systems [1] or in sensors for inhomo-

geneity identification on transmission lines [2]. A classical

problem of this type of radar is that the voltage controlled

oscillator (VCO) adds a certain degree of nonlinearity which

leads to a deteriorated resolution by spreading the target

energy through different frequencies [3]. This problem is

usually solved either by hardware [4] or software [5, 6, 7]

approaches. The simplest hardware correction is the use of a

predistorted VCO control voltage to have a linear frequency

modulation output. However, this approach does not work

when the external conditions (e.g. temperature, supply volt-

age) change. Software solutions typically use an additional

path in the transceiver with a known propagation delay for

estimating the nonlinearities. The estimation is done either

by breaking the beat signal into several sub-bands and com-

puting the frequency peaks [7] or by extracting the phase

information from the analytical signal [5, 6].

This paper proposes a novel nonlinearity correction algo-

rithm for large bandwidth nonlinearities. The method is de-

signed for nonlinearities that can be described by a polyno-

mial expression which leads to a polynomial-phase FMCW

signal. The coefficients of the polynomial-phase signal (PPS)

are estimated using the high-order ambiguity function (HAF)

[8] on a reference response which can be either a delay line

or a high reflectivity target whose propagation delay should

be roughly known. Afterwards, with the estimated coeffi-

cients the nonlinearity correction function is built and applied

through a time resampling procedure. The correction algo-

rithm is tested by simulation and validated on real data from

an X-band FMCW radar.

The algorithm presented in this paper differs from previ-

ous works in two ways. On one hand, a typical nonlinear-

ity estimation method (used for example in Vossiek’s work

[5]) based on the determination of the instantaneous phase

of a precision radar reference path is valid only for a single

component response, while the HAF-based estimation can ex-

tract the nonlinearity coefficients from a multi-component re-

sponse if there is one highly reflective target relative to other

scatterers. On the other hand, the correction method pro-

posed in [6] by Meta et al. needs to up-sample the beat signal

in order to satisfy the Nyquist condition for the nonlinearity

bandwidth and consequently this method is not well suited for

large bandwidth nonlinearities (up to gigahertz). In the algo-

rithm proposed in this paper the processing is applied to the

beat frequency signal, so the bandwidth of the nonlinear term

from the transmitted signal doesn’t impose the sampling rate.

The rest of this paper is organized as follows. Section 2

presents the nonlinearity correction algorithm. The nonlinear

FMCW signal model is introduced first. Then, the estimation

method of the FMCW signal coefficients is described. The

time resampling based correction procedure is exposed in the

last part of the second section. Simulation results demonstrate

the efficiency of the algorithm in Section 3. Section 4 shows

results of the developed nonlinearity correction algorithm ap-

plied to real data collected with a FMCW radar demonstrator

system. Finally, the conclusions are stated in Section 5.
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2. NONLINEARITY CORRECTION ALGORITHM

In [9] it is mentioned that the slope of the frequency-voltage

characteristic for some VCOs may be reasonably approx-

imated by a quadratic curve. However, a more general

approach is to assume a polynomial frequency-voltage de-

pendence. With this assumption, for a linear tuning voltage

sweep, the transmitted analytical signal in a sweep period Tp

can be written as:

sT (t) = exp

[
j2π

(
f0t+

1

2
α0t

2 +

K∑
k=2

βk

k + 1
tk+1

)]
,

(1)

where f0 is the initial frequency, α0 is the linear chirp rate

in the origin and βk with k = 2,K are the nonlinearity co-

efficients. In the following, it is considered that the reflected

signal comes from N different targets. The signal received

from these targets can be expressed as a sum of delayed and

attenuated versions of the transmitted signal with a certain

complex amplitude:

sR(t) =

N∑
i=1

AisT (t− τi), (2)

where τi and Ai are the propagation delay and amplitude of

the signal received from target i.
By mixing the transmitted and received signals, the beat

signal is written as:

sb(t) =

N∑
i=1

AisT (t)s
∗
T (t− τi). (3)

Due to the fact that the propagation delay τ is typically a

few orders of magnitude smaller than the sweep period, the

higher-order terms in τ can be neglected. In consequence the

beat signal becomes a sum of polynomial-phase signals:

sb(t) =

N∑
i=1

sb(t, τi), (4)

where

sb(t, τi) = Ai exp

[
j2π

(
f0 + α0t+

K∑
k=2

βkt
k

)
τi

]
. (5)

If the range profile is computed as the Fourier transform of the

multi-component PPS signal in (4), the energy of each target

would be spread and the resolution deteriorated.

The algorithm proposed in this paper aims to eliminate

this effect by turning the multi-component PPS into a sum of

N complex sinusoids. In this way each target appears as a

sinc function in the range profile. The correction algorithm

consists of two steps: an estimation of the FMCW signal co-

efficients (linear chirp rate α0 and nonlinearity coefficients

βk) using the high-order ambiguity function and a correction

of the beat signal by time resampling.

2.1. Estimation of the FMCW signal coefficients

The estimation is based on the presence of a reference target

response (with amplitude Aref and propagation delay τref )

in the FMCW signal. This particular PPS component can

be extracted by bandpass filtering the beat signal around the

beat frequency corresponding to τref (which means selecting

a certain range interval centered on the reference target). The

filtered signal can be written as:

sb,f (t) = sb,f (t, τref ) +

M∑
m=1

sb,f (t, τm), (6)

where M is the number of significant PPS components lo-

cated near the reference response in the filter’s pass band

which cannot be eliminated. In the estimation, is considered

that the reference target is highly reflective relative to the

remaining M components. Although the filtered signal has

other components besides the reference response, the FMCW

signal coefficients can be estimated using the high-order

ambiguity function due to its ability to deal with multiple

component PPS’s if the highest order phase coefficients of

the components are not the same [10, 11] (as happens for the

FMCW signal because each component is linked to a target

with a certain propagation delay).

The estimation procedure starts from the high-order in-

stantaneous moment (HIM), which can be defined for a signal

s(t) as [8]:

HIMk[s(t); τ ] =

k−1∏
i=0

[
s(∗i)(t− iτ)

](k−1
i )

, (7)

where k is the HIM order, τ is the lag and s(∗i) is an operator

defined as:

s(∗i)(t) =
{

s(t) if i is even,
s∗(t) if i is odd,

(8)

where i is the number of conjugate operator ”*” applications.

The high-order ambiguity function (HAF) is defined as the

Fourier transform of the HIM.

If we assume a PPS model for the analyzed signal, i.e.:

sPPS(t) = A exp

[
j2π

k∑
m=0

amtm

]
, (9)

the essential property of the HIM is that, the kth order HIM

is reduced to a harmonic with amplitude A2k−1

, frequency f̃k
and phase Φ̃k:

2
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HIMk[sPPS(t); τ ] = A2k−1

exp
[
j
(
2πf̃kt+ Φ̃k

)]
, (10)

where

f̃k = k!τk−1ak. (11)

So the HAF of this HIM should have a spectral peak at

the frequency f̃k. Based on this result, an algorithm that es-

timates sequentially the coefficients ak was proposed in [12].

Starting with the highest order coefficient, at each step, the

spectral peak is determined, and an estimation value âk of ak
is computed from (11). With this value, the phase term of the

higher order is removed:

sPPS
(k−1)(t) = sPPS

(k)(t) exp
(−j2πâkt

k
)

(12)

and the procedure repeats iteratively. A classical problem of

this nonlinear method is the propagation of the approximation

error from one higher order to the lower ones, but in the case

of typical frequency-voltage VCO characteristics this effect

is not critical because an approximation order of only 3 or

4 is required. Still, if a higher order is necessary a warped-

based polynomial order reduction as described in [13] could

be employed.

After applying this iterative algorithm to the FMCW refer-

ence signal and obtaining the polynomial phase coefficients,

the linear chirp rate and the nonlinearity coefficients can be

computed as:

α0 = â1

τref

βk = âk

τref
, k = 2,K.

(13)

2.2. Time Resampling

The frequency-voltage characteristic of a VCO is bijective

which means that for a linear voltage sweep the resulting

polynomial phases of the beat signal components are bijec-

tive functions for t ∈ [0, Tp]. Therefore, the beat signal in (4)

can be rewritten as:

sb(t) =

N∑
i=1

Ai exp {j2π [f0 + α0θ(t)] τi} , (14)

where

θ(t) = t

(
1 +

K∑
k=2

βk

α0
tk−1

)
(15)

is a bijective function of time t, which can be interpreted as

a new time axis. Hence, if the time axis is changed to θ, the

beat signal becomes a sum of N complex sinusoids, which

was the scope of the correction algorithm. Moreover, in the

context of radar detection, the highly correlated clutter from

a nonlinear range profile gets decorrelated in a range profile

computed for the new time axis.

Notice that in the definition of θ the nonlinearity coef-

ficients βk are normalized to the linear chirp rate α0 which

means that the exact value of the reference propagation delay

is not needed. Nevertheless, an approximate value is required

for the estimation section in order to extract the reference re-

sponse.

From the implementation point of view, the beat signal is

a digital signal sb[n] uniformly sampled at the moments tn,

n = 0, Ns − 1 where Ns is the number of samples. However,

the samples sb[n] of the beat signal related to the moments

θn = θ(tn) of the θ time axis lead to a non-uniformly sampled

signal. It can be shown that the average sampling interval of

θ is:

θS =
α

α0
Ts, (16)

where α is the mean chirp rate and Ts the uniform sampling

interval. According to [14], for a nonuniformly sampled sig-

nal, the average sampling rate must respect the Nyquist con-

dition. For α > α0, this condition can be fulfilled if the beat

signal is oversampled (the chirp rate in the origin and the av-

erage chirp rate typically have the same order of magnitude,

so an oversampling of at most 10 is enough). If the signal is

alias-free it can be resampled with an interpolation procedure

(e.g. with spline functions) in order to obtain a uniformly

sampled signal in relation with the θ time axis. Afterwards,

the range profile is computed by applying the discrete Fourier

transform to the resampled signal.

The nonlinearity correction algorithm is summarized in

the block diagram from Fig. 1.

sb (t)

Reference response
selection

sb,f (t)

HAF-based estimation of
FMCW coefficients

(α0, β2,…, βK)

K

k

kk ttt
2

1

0

1)( Time
Resampling sb (θ)

Range

|FFT{sb (t)}|

|FFT{sb (θ)}|

Range

Fig. 1: Wideband nonlinearity correction algorithm based on

high-order ambiguity functions and time resampling.
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3. SIMULATION RESULTS

The range profiles of a FMCW radar based on an X-band

VCO with 15% linearity (according to the linearity defini-

tion given in [15]) were simulated. The chirp bandwidth was

4GHz, the sweep rate 50Hz and the sampling frequency

1MHz. The responses of six stationary targets with differ-

ent amplitudes were considered. The reference target was the

one located at 50m. The nonlinear and corrected range pro-

files are shown in Fig. 2. In the nonlinear range profile the

targets can’t be distinguished due to the overlapping of the

frequency spread responses of each target. The correction al-

gorithm enhances the −3dB resolution up to the theoretical

limit (around 4.9cm for a Hamming window), although in

the filtered signal used for estimating the FMCW coefficients

there are four other targets close to the reference response.

This result is in keeping with the capability of the HAF esti-

mation method to extract the maximum amplitude PPS com-

ponent if the ratio to the other components is above a certain

threshold (around 10dB). Besides the dramatically enhanced

resolution, the correction algorithm improves the peak level

of each target which leads to an increase of the signal to noise

ratio with over 20dB.

4. REAL DATA VALIDATION

The nonlinearity correction algorithm was tested for a FMCW

radar based on a RFVC1800 X-band VCO. The calibration

curve of the VCO was measured prior to the data acquisi-

tion. The range profile obtained with a predistorted command

signal based on the measured calibration curve was consid-

ered as reference. A few data sets were collected using as

targets two delay lines with air-equivalent lengths of 30cm
and respectively 240cm. The longer delay line was used as

the reference response for the correction algorithm. The chirp

bandwidth was 4GHz (centered on 10GHz) and the sweep

interval 100ms. Fig. 3 shows three range profiles: the profile

resulted after applying the nonlinearity correction algorithm

to the linear sweep data, the one corresponding to a predis-

torted sweep and the nonlinear range profile obtained for the

linear voltage sweep. The profile obtained with the correc-

tion algorithm is very similar to the one for the predistorted

sweep, but a clear advantage of the algorithm-based correc-

tion is that the FMCW signal coefficients are computed for

each sweep and can include various frequency drifts (due to

temperature, frequency pushing, etc.) that can occur between

data acquisitions.

In order to validate the HAF-based nonlinearity estima-

tion method for a multi-component response, a data set was

acquired for a scene containing three main scatterers: one

highly reflective metal disc and two vertical metal bars. The

range profiles obtained in this case are shown in Fig. 4. The

nonlinearity coefficients are computed on the 1.2 − 5.2m
range interval taking as reference target the metal disc. While
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Fig. 2: Range profiles simulation results: (a) 0-100m range,

(b) detailed 47-51m range. In the nonlinear range profile five

targets are completely indistinguishable. The corrected range

profile leads to a resolution near the theoretical limit and im-

proves the signal to noise ratio.

on the initial nonlinear range profile obtained for the linear

voltage sweep appears only a large continuous target, on the

corrected profile the three targets are clearly highlighted. No-

tice that the power reflected by the metal disc is more than 10

dB higher in comparison to the other scatterers which is in

agreement with the HAF method applicability threshold.

5. CONCLUSION

A novel wideband nonlinearity correction algorithm for

FMCW radars is proposed. The algorithm estimates the

nonlinearity coefficients using the HAF-based method on the

beat signal corresponding to a delay line or a highly reflec-

tive target. Afterwards, a correction function is built and

applied to the beat signal by time resampling. The algorithm

was tested by simulations and validated on real data from an

X-band FMCW radar.
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Fig. 3: Experimental range profiles for two delay lines. The

range profile obtained with the nonlinearity correction algo-

rithm is compared with the predistorted sweep range profile

and with the nonlinear range profile corresponding to the lin-

ear voltage sweep.
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Fig. 4: Experimental range profiles for a scene containing

two metal bars and one highly reflective metal disc. On the

corrected range profile the three targets are clearly separated,

while in the nonlinear range profile the scatterers can’t be dis-

tinguished.
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