Total domination in K₅- and K₆-covered graphs
Résumé
A graph G is Kr-covered if each vertex of G is contained in a Kr-clique. Let $\gamma_t(G)$ denote the total domination number of G. It has been conjectured that every Kr-covered graph of order n with no Kr-component satisfies $\gamma_t(G) \le \frac{2n}{r+1}$. We prove that this conjecture is true for r = 5 and 6.
Domaines
Mathématique discrète [cs.DM]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...