The Laplacian spread of a tree - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2008

The Laplacian spread of a tree

Résumé

The Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the second smallest eigenvalue of the Laplacian matrix of the graph. In this paper, we show that the star is the unique tree with maximal Laplacian spread among all trees of given order, and the path is the unique one with minimal Laplacian spread among all trees of given order.
Fichier principal
Vignette du fichier
714-3198-3-PB.pdf (121.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00972305 , version 1 (03-04-2014)

Identifiants

Citer

Yi-Zheng Fan, Jing Xu, Yi Wang, Dong Liang. The Laplacian spread of a tree. Discrete Mathematics and Theoretical Computer Science, 2008, Vol. 10 no. 1 (1), pp.79--86. ⟨10.46298/dmtcs.439⟩. ⟨hal-00972305⟩

Collections

TDS-MACS
142 Consultations
2322 Téléchargements

Altmetric

Partager

More