On quadratic residue codes and hyperelliptic curves - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2008

On quadratic residue codes and hyperelliptic curves

Résumé

For an odd prime p and each non-empty subset S ⊂ GF(p), consider the hyperelliptic curve X_S defined by y^2 = f_s(x), where f_s(x) = \P_{a2S} (x-a). Using a connection between binary quadratic residue codes and hyperelliptic curves over GF(p), this paper investigates how coding theory bounds give rise to bounds such as the following example: for all sufficiently large primes p there exists a subset S ⊂ GF(p) for which the bound |X_S(GF(p))| > 1.39p holds. We also use the quasi-quadratic residue codes defined below to construct an example of a formally self-dual optimal code whose zeta function does not satisfy the "Riemann hypothesis."
Fichier principal
Vignette du fichier
606-3223-3-PB-1.pdf (193.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00972302 , version 1 (03-04-2014)

Identifiants

Citer

David Joyner. On quadratic residue codes and hyperelliptic curves. Discrete Mathematics and Theoretical Computer Science, 2008, Vol. 10 no. 1 (1), pp.129--146. ⟨10.46298/dmtcs.429⟩. ⟨hal-00972302⟩

Collections

TDS-MACS
43 Consultations
1521 Téléchargements

Altmetric

Partager

More