
HAL Id: hal-00972016
https://hal.science/hal-00972016

Submitted on 3 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new sequential algorithm for L2-approximation and
application to Monte-Carlo integration

Emmanuel Gobet, Khushboo Surana

To cite this version:
Emmanuel Gobet, Khushboo Surana. A new sequential algorithm for L2-approximation and applica-
tion to Monte-Carlo integration. 2014. �hal-00972016�

https://hal.science/hal-00972016
https://hal.archives-ouvertes.fr

A new sequential algorithm for L2-approximation and

application to Monte-Carlo integration✩

Emmanuel Gobet1,α⋆

, Khushboo Suranaα
⋆α⋆

Abstract

We design a new stochastic algorithm (called SALT) that sequentially ap-
proximates a given function in L2 w.r.t. a probability measure, using a finite
sample of the distribution. By increasing the sets of approximating functions
and the simulation effort, we compute a L2-approximation with higher and
higher accuracy. The simulation effort is tuned in a robust way that ensures
the convergence under rather general conditions. Then, we apply SALT to
build efficient control variates for accurate numerical integration. Examples
and numerical experiments support the mathematical analysis.

Keywords: Sequential approximation, Monte-Carlo simulations, Stochastic
algorithms, Spectral decomposition
2010 MSC: 65C05, 62Lxx, 74S25

1. Introduction

1.1. The problem

Given a d-dimensional random variable Y and a measurable function
f : Rd 7→ R such that E(f 2(Y)) < +∞, we aim at computing the L2 decom-

✩The first author research is part of the Chair Financial Risks of the Risk Foundation

and the Finance for Energy Market Research Centre. This work has been partly done
during the visit of the second author at Ecole Polytechnique during the spring 2013, with
the support of International Exchange Programs of Ecole Polytechnique.

α
⋆

Centre de Mathématiques Appliquées, Ecole Polytechnique and CNRS, Route de
Saclay, 91128 Palaiseau Cedex, France
α

⋆
α

⋆

Indian Institute of Technology, Kanpur, Kalyanpur, U.P., India
Email addresses: emmanuel.gobet@polytechnique.edu (Emmanuel Gobet),

khushboosurana21@gmail.com (Khushboo Surana)
1Corresponding author

position of f on the vector space spanned by the functions (φk)k≥0 according
to the law induced by Y , i.e. finding coefficients (α⋆

k)k≥0 (from now on, we
assume they exist) such that

f(Y) =
∑

k≥0

α⋆
kφk(Y) in L2 (1.1)

(assuming that E(φ2
k(Y)) < +∞ for any k). To achieve this decomposition,

we use a finite number of independent simulations of Y , say (Y m)1≤m≤M ,
which serve to build a stochastic algorithm to compute (α⋆

k)k≥0. We aim
at designing a scheme with robust convergence properties (robust w.r.t. f
and the distribution of Y). Replacing f by an approximation on the basis
functions is useful for instance in applications where the evaluation of f is
particularly costly (e.g. the output of a complex computer program) and
for some reasons, in a further step, we need to evaluate it many times which
justifies the use of simpler and cheaper representations. The main application
we develop below is the Monte-Carlo computation of E(f(Y)) (numerical
integration) using the approximative decomposition (1.1) as control variating.
Anther potential field of application is Uncertainty Quantification [16] where
the emulation of f serves to build statistics about the uncertainty f(Y).

Throughout the paper, we assume that (φk)k≥0 are orthonormalized basis
functions in the following sense:

(H1) E (φk(Y)φl(Y)) = δk,l, for any k, l ≥ 0.

Therefore from (1.1), α⋆
k = E(f(Y)φk(Y)) and a naive Monte-Carlo estimator

is

αM
k =

1

M

M
∑

m=1

f(Y m)φk(Y
m). (1.2)

Since f(Y)φk(Y) is integrable (because each factor is square integrable), the
strong law of large numbers yields the a.s.-convergence of αM

k towards α⋆
k for

every k, as M → +∞. In other words

K
∑

k≥0

αM
k φk(.)

a.s.−→
M→+∞

K
∑

k≥0

α⋆
kφk(.)

L2(P◦Y −1)−→
K→+∞

f(.).

Nevertheless, the global L2-convergence of the left hand side to the right one
is a non-trivial issue since:

2

i) there is no guarantee that each coefficient αM
k belongs to L2 (except un-

der stronger assumptions ensuring that f(Y)φk(Y) is square-integrable);

ii) as usually in statistics with the analysis of the bias-variance trade-off, we
have to appropriately tune the joint convergence of K and M to infinity,
in order to let both estimation and statistical errors converge to 0.

In this work we design a sequential algorithm which n-th step provides an esti-
mation of the coefficients (α⋆

k)0≤k≤Kn
with non-decreasing order Kn. Knowing

the values of the former step coefficients helps in improving the evaluation at
the next step: the algorithm takes the form of a sequential learning algorithm
that we call SALT (Sequential Approximation in L-Two). The convergence
is studied in L2: therefore, in view of the item i) above, we strengthen the
hypothesis on the functions basis by assuming

(H2) for any k ≥ 0, there is a constant ck such2 that |φk(Y)| ≤ ck < +∞
a.s. .

1.2. Literature background and applications

In the last fifteen years, several important algorithms based on Monte-
Carlo L2-approximations have been developed, they are popular owing to
the flexibility of the Monte-Carlo simulations. Among them, we mention
empirical regression methods that are now a standard approach to solve op-
timal stopping problems [18, 10, 7], Backward Stochastic Differential Equa-
tions [13, 17, 15]... They are several attempts to improve numerically L2-
projections, in order to reduce statistical inaccuracies: see for instance [5, 4].
Our current work is in this vein. However, a major difference is that our
algorithm SALT works sequentially, in several steps, giving at each step a
valuable approximation, which accuracy increases step after step: the com-
putational effort increases coherently according to the number of steps, so
that the algorithm can be stopped at any time to produce a solution, ex-
pected to be reasonably accurate given the computational effort. For the
computation of E(f(Y)) with smooth functions f , we show in Section 3 that
our algorithm achieves optimal convergence rates (about optimal numerical
integration, see [1] or [2] and references therein).

2observe that ck ≥ 1 since E(φ2
k
(Y)) = 1; in some cases, ck does not depend on k, see

Section 3.

3

Some ideas related to the iteration of our algorithm are exposed in [19, 20]
where iterative control variates are built to speed-up Monte-Carlo integration
methods (extensions to stochastic processes are designed in [14, 12]). But
in [19, 20], essentially only the numerical integration error (i.e. about com-
puting the expectation) is investigated and the number of control variates is
fixed. Here, we consider the full L2-approximation and we aim at achieving
an infinite number of basis functions, with a robust strategy ensuring the
convergence in a rather general setting.

1.3. Organization of the paper

In Section 2, we present the algorithm and state the main convergence
results. An application to numerical integration (computation of E(f(Y)))
is then developed. In Section 3, examples of basis functions are discussed,
with explicit convergence rates in the case of smooth functions f and random
variables Y taking values in a cube. Despite these specific examples, we argue
that our algorithm applies to more general settings. These examples show
that we achieve rate-optimality in the computation of E(f(Y)). Section 4 is
devoted to numerical tests showing the performance of the algorithm SALT,
in particular for the Monte-Carlo evaluation of E(f(Y)). Intermediate results
are proved in Appendix.

Extra notations.

• The residual at order K ≥ 0 of the approximation of f on the basis
functions is defined by

rK(y) := f(y)−
K
∑

k=0

α⋆
kφk(y). (1.3)

The identity (1.1) means

E(r2K(Y)) =
+∞
∑

k=K+1

[α⋆
k]

2 → 0

as K → +∞. The more appropriate the functions basis, the faster the
convergence rate of the truncation error E(r2K(Y)). Examples are given
later.

• The notation A ≤c B means A ≤ CB for a generic constant C > 0
possibly changing from line to line, independent of the algorithm step
number n. Similarly, A ≷c B means A ≤c B and B ≤c A.

4

2. Algorithm SALT

2.1. Heuristics

The principle of our algorithm is to take advantage of the coefficients com-
puted at steps i = 0, . . . , n− 1 to speed-up those at step n, like a sequential
learning algorithm.

We first expose the intuition of the algorithm. Consider that (non exact)
coefficients (α0, . . . , αK) have been already computed, then write (owing to
(H1))

α⋆
k := αk + βk with βk := E

(

[

f(Y)−
K
∑

l=0

αlφl(Y)

]

φk(Y)

)

, 0 ≤ k ≤ K,

and replace the expectation by an empirical mean over M independent sim-
ulations of Y : this provides an approximated correction to the pre-computed
value αk. The variance of this estimator is proportional to 1/M and to the
variance of Zk,K := (f(Y)−

∑K
l=0 αlφl(Y))φk(Y). In particular, if

∑K
l=0 αlφl(.)

approximates well f(.), the random variable Zk,K and its variance are ex-
pected to be relatively small. Consequently the new estimation of α⋆

k will
be particularly accurate, and likely much more accurate compared to the
previous step. Iterating the procedure and incorporating more and more
coefficients to compute, we obtain the algorithm SALT described below.

2.2. Detailed algorithm

Let (Kn)n≥1 be a non-decreasing sequence of integers, related to the num-
ber of basis functions used at each algorithm step. At step n, we compute
the coefficients for the indices k = 0, . . . , Kn using Mn simulations: the k-th
coefficient is to be denoted by αn,Mn

k .
The algorithm is initialized at n = 0 with αn,Mn

k = 0 for any k. The step
n ≥ 1 works as follows.

(Step n)-i) Generate a sample (Y n,m)1≤m≤Mn
of Mn independent r.v.

with same distribution as Y , and independent of other simu-
lations.

(Step n)-ii) Define the corrections (βn,Mn

k)k and the coefficients (αn,Mn

k)k
as follows:

5











































βn,Mn

k :=
1

Mn

Mn
∑

m=1

(

f(Y n,m)−
Kn−1
∑

l=0

α
n−1,Mn−1

l φl(Y
n,m)

)

φk(Y
n,m)

for 0 ≤ k ≤ Kn,

αn,Mn

k := α
n−1,Mn−1

k + βn,Mn

k for 0 ≤ k ≤ Kn,

βn,Mn

k := αn,Mn

k := 0 for k > Kn.

2.3. Convergence results

For n ≥ 1, denote by E
n−1(·) and Varn−1(·) the expectation and variance

conditionally to the sigma-field generated by the random variables (Y i,m : 1 ≤
m ≤ Mi, i ≤ n − 1). To justify the algorithm convergence, we preliminarily
analyse the conditional mean and variance of the coefficients. The proof of
the above lemma is postponed to Appendix.

Lemma 2.1. Let n ≥ 1 and 0 ≤ k ≤ Kn. We have

E
n−1(αn,Mn

k) = α⋆
k,

Varn−1(αn,Mn

k) ≤ c2k
Mn

(

E[r2Kn−1
(Y)] +

Kn−1
∑

l=0

(α
n−1,Mn−1

l − α⋆
l)

2
)

.

At step n of the algorithm, the function f(.) is approximated by

fn(.) :=
Kn
∑

k=0

αn,Mn

k φk(.) (2.4)

and the resulting quadratic error is given by

En := E

(

[

fn(Y)− f(Y)
]2
)

= E(r2Kn
(Y)) +

Kn
∑

k=0

E

(

(αn,Mn

k − α⋆
k)

2
)

. (2.5)

Note that E0 = E(f 2(Y)). From Lemma 2.1, αn,Mn

k estimates α⋆
k without bias

and the conditional expectation of αn,Mn

k is constant: this implies

E

(

(αn,Mn

k − α⋆
k)

2
)

= Var(αn,Mn

k) = E

(

Varn−1(αn,Mn

k)
)

≤ c2k
Mn

En−1. (2.6)

Combining (2.5) and (2.6), we establish

6

Theorem 2.1 (Error propagation along algorithm steps). For any n ≥
1, we have

En ≤ E(r2Kn
(Y)) +

1

Mn

[

Kn
∑

k=0

c2k

]

En−1.

In case there exists an order K⋆ < +∞ such that rK⋆(.) ≡ 0 (i.e. f can
be linearly represented by a finite number of (φk)k), it is enough to take
Kn = K⋆ to directly obtain

Corollary 2.1 (Finite-dimensional approximation). In the case of fi-
nite K⋆, we have

En ≤ 1

Mn

[

K⋆
∑

k=0

c2k

]

En−1.

In particular, choosing a simulation effort rate which is constant and large
enough (in the sense Mn = M with ρ := 1

M

∑K⋆

k=0 c
2
k < 1), the convergence to

0 is geometric along steps, at rate ρ:

En ≤ ρnE(f 2(Y)), n ≥ 0.

The global simulation effort after n steps being C = Mn, the error is de-
creasing at most like exp(−αC) for some α > 0: therefore, when the L2-
approximation problem is only finite-dimensional, the convergence is expo-
nentially fast w.r.t. the computational effort. This is fully different from the
naive Monte-Carlo procedure. Similar features have been reported in some
Sequential Monte-Carlo algorithms, see [6, 3]. We do not elaborate further
in this direction since the focus of this work is rather on the general case
K∗ = +∞.

The next result easily follows from Theorem 2.1, we leave the proof to
the reader.

Corollary 2.2 (Infinite-dimensional approximation, general convergence).
The choice Mn := ⌈2∑Kn

k=0 c
2
k⌉ yields

En ≤ E(r2Kn
(Y)) +

1

2
En−1, (2.7)

7

En ≤
n
∑

k=1

2k−n
E(r2Kk

(Y)) + 2−n
E(f 2(Y)). (2.8)

Thus, for any choice of non-decreasing unbounded sequence (Kn)n (in par-
ticular Kn → +∞ as n → +∞), we have E(r2Kn

(Y)) → 0 and thus En → 0.

This specification of Mn is very simple and depends only on the a priori
knowledge of (ck)k and the choice of the sequence (Kn)n: this yields robust-
ness concerning the tuning of the local simulation effort.

2.4. Application to integration
We now turn to the important application to the computation of E(f(Y)).

For this, assume that φ0 ≡ 1: in view of (H1), it implies that φk(Y) is a
centered r.v. for k ≥ 1, and α⋆

0 = E(f(Y)).

Algorithm 1. A first possibility is to estimate E(f(Y)) simply by I
(1)
n :=

αn,Mn

0 : it is unbiased (see Lemma 2.1) and leads to a quadratic error
controlled by

E
(

|I(1)n − E(f(Y))|2
)

= E

(

|αn,Mn

0 − α⋆
0|2
)

≤ En. (2.9)

Algorithm 2. A second possibility is to generate M other independent sam-
ples of Y serving to build a Monte-Carlo estimator of E(f(Y)) with con-
trol variates given by fn(Y) (removing the constant term): it writes

I(2)n :=
1

M

M
∑

m=1

(

f(Y m)−
Kn
∑

k=1

αn,Mn

k φk(Y
m)

)

. (2.10)

As for the first algorithm, it is an unbiased estimator of E(f(Y)) and
its quadratic error is given by

E
(

|I(2)n − E(f(Y))|2
)

=
1

M
E

(

Varn
(

f(Y)−
Kn
∑

k=1

αn,Mn

k φk(Y)
)

)

=
1

M

(

Kn
∑

k=1

E

(

(αn,Mn

k − α⋆
k)

2
)

+
+∞
∑

k=Kn+1

[α⋆
k]

2

)

≤ En
M

. (2.11)

Hence, once computed a "good" L2-approximation of f , it gives the
possibility of more accurately evaluating its integral via Monte-Carlo
simulations.

8

2.5. Comparison with a naive Monte-Carlo algorithm
A naive Monte-Carlo algorithm would consist in truncating the decom-

position (1.1) at order K and in using M independent copies (Y m)1≤m≤M

with the same distribution as Y to approximate each coefficient α⋆
k by αM

k

defined in (1.2). Then, the approximation of f writes

fNaive MC
K,M (.) :=

K
∑

k=0

αM
k φk(.). (2.12)

The related quadratic error is equal to

E

(

[

fNaive MC
K,M (Y)− f(Y)

]2
)

= E(r2K(Y)) +
K
∑

k=0

E
(

(αM
k − α⋆

k)
2
)

= E(r2K(Y)) +
K
∑

k=0

Var (φk(Y)f(Y))

M

≤ E(r2K(Y)) +
E (f 2(Y))

M

K
∑

k=0

c2k

using (H2) and bounding the variance by the second moment. By appropri-
ately tuning M in order to balance both contributions, we obtain

Proposition 2.1. Let K ≥ 0 and assume that E(r2K(Y)) ≤ ξ(K) for an ex-
plicit positive function ξ(.) that measures the accuracy of the L2-approximation

w.r.t. the order K. For M := ⌈
∑K

k=0 c
2
k

ξ(K)
⌉, the quadratic error of the naive

Monte-Carlo estimator (2.12) is at most equal (up to a constant C indepen-
dent of K) to the truncation error:

E

(

[

fNaive MC

K,M (Y)− f(Y)
]2
)

≤ C ξ(K).

This result serves as a benchmark for the theoretical performance of sequen-
tial algorithms, see the discussion in Section 3.1.

3. Examples of Y and vector spaces

3.1. Chebyshev polynomials
Let us consider the case of d-dimensional random variable Y which dis-

tribution has the density

p(x) =
d
∏

i=1

(

1

π
√

1− x2
i

)

1(−1,1)d(x) (3.13)

9

with respect to the Lebesgue measure on R
d. Its coordinates (Y1, . . . , Yd) are

independent and each one can be simulated owing to the inversion method:

Yi
d
= sin(πUi − π/2) where Ui is uniformly distributed on (0, 1).
Chebyshev polynomials provide natural basis functions orthonormalized

w.r.t. the law of Y . The one-dimensional polynomial of degree k ∈ N is
defined by

T0(x) = 1 and Tk(x) =
√
2 cos(k arccos(x)) for k ≥ 1, (3.14)

so that E(Tk(Y)Tl(Y)) = δk,l for any k, l ≥ 0. For usual properties related
to Chebyshev polynomials, we refer the reader to [11, Sections 1.5 and 2.2].
These polynomials have the advantage of being bounded (useful to check
(H2)). The approximation of f on polynomial basis is often referred to as
spectral method [11, 16].

The multidimensional case is achieved by tensorization: for a multi-
integers k = (k1, . . . , kd) ∈ N

d, set

Tk(x) =
d
∏

i=1

Tki(xi). (3.15)

We readily check that the basis functions (Tk)k∈Nd satisfy (H1)and (H2)
(with ck = 2d/2).

First strategy for Kn. Define |k| = maxi=1,...,d ki: at the n-th step of the
algorithm, we aim at approximating f by

∑

k:|k|≤n

α⋆
k
Tk,

i.e by taking all the polynomials with degree at most n in each variable:
therefore,

Kn = (n+ 1)d. (3.16)

This numerical strategy with Polynomially Growing approximation space is
referred to in the sequel as PG (or SALT-PG). The convergence rate of
E(r2Kn

(Y)) can be analyzed by standard approximation results in the field
of spectral methods, see for instance [9, Inequality (5.8.29), Section 5.8.4].
Namely, if f is L-times differentiable (L ≥ 1) with derivatives in L2(P◦Y −1),
we have

E
(

r2Kn
(Y)
)

≤ Cn−2L, n ≥ 1, (3.17)

10

for a constant C independent on n. Then, the choice Mn = ⌈2∑
k:|k|≤n c

2
k⌉ =

2d+1(n+ 1)d leads to the error estimate

En ≤c

n
∑

k=1

2k−nk−2L + 2−n ≤c n
−2L

(the second inequality follows by easy computations exploiting the fast in-
crease of 2k compared to k2L as k → +∞). The number of simulations used
up to step n (representing the simulation effort) is equal Mn :=

∑n
k=1 Mk ≷c

nd+1, therefore

En ≤ CM− 2L
d+1

n . (3.18)

We recover the curse of dimensionality effect, with a competition between
the smoothness L and the dimension d. We mention that the effective al-
gorithm complexity may be different from Mn: it depends on the way the
user encodes the evaluation of Chebyshev polynomials and the related finite
approximation.

Second strategy for Kn. Actually the factor d+1 in (3.18) can be improved
into a factor d by choosing another numerical strategy with Exponentially
Growing approximation space (denoted by EG or SALT-EG). For γ > 0, set

Kn+1 = max(Kn + 1, ⌊Kne
γ⌋)

for a given K1: the ordering of indices k of the polynomials that we in-
corporate at each step is not really important in our analysis, for instance
in dimension 2 we can take 1, x1, x2, x1x2, x

2
1, x

2
1x2, x

2
1x

2
2, x1x

2
2, x

2
2, x

3
1, . . . and

similarly in higher dimension. On the one hand, it is clear that Kn ≤c e
γn.

On the other hand, since Kn+1 ≥ Kne
γ − 1 and Kn+1 ≥ n +K1 → +∞, we

easily deduce eγn ≤c Kn. Hence, to summarize,

Kn ≷c e
γn. (3.19)

Denote by ñ the integer such that (ñ + 1)d ≤ Kn < (ñ + 2)d: then, from
(3.17) the residual at step n is bounded as

E
(

r2Kn
(Y)
)

≤ Cñ−2L ≷c e
−2L γ

d
n. (3.20)

11

Moreover, the number of simulations used up to step n can be estimated as
Mn :=

∑n
k=1 Mk ≷c

∑n
k=1 2

d+1Kk ≷c eγn. At last, after simple computa-
tions, we can show that the quadratic error (2.8) is estimated as follows:

En ≤c

n
∑

k=1

2k−ne−2L γ

d
k + 2−n ≤c











e−2L γ

d
n if γ < γ⋆ := d log(2)

2L
,

n2−n if γ = γ⋆,

2−n if γ > γ⋆,

(3.21)

≤ C















M− 2L
d

n if γ < γ⋆,

M− 2L
d

n log(Mn) if γ = γ⋆,

M− log(2)/γ
n if γ > γ⋆.

(3.22)

A better convergence rate is thus obtained for γ small enough, smaller than
the threshold γ⋆ := d log(2)

2L
≈ 0.347 d

L
related to the smoothness of f and

the dimension of Y . Comparing (3.18) and (3.22), observe that SALT-EG
yields an improved convergence rate w.r.t. the total simulation effort Mn,
compared to SALT-PG.

Let us briefly compare the above accuracy result with the one obtained
using a naive Monte-Carlo approach (see Section 2.5). From Proposition 2.1
and (3.17), we have ξ(K) = K−2L/d and M = ⌈2d(K+1)K2L/d⌉, which gives

E

(

[

fNaive MC
K,M (Y)− f(Y)

]2
)

≤ CM− 2L
d+2L .

The above rate is obviously worse than M− 2L
d in (3.22).

Application to the computation of E(f(Y)). Applying Algorithm 2 of
Section 2.4 using the algorithm SALT-EG to the current setting (see Equal-
ity (2.10)) with M = Mn extra simulations (which only doubles the total
number of simulations), we get an accuracy in the evaluation of E(f(Y))
controlled by (see Inequality (2.11))

√

E

(

|I(2)n − E(f(Y))|2
)

≤ CM−L
d
− 1

2
n . (3.23)

Of course, this is a very significant improvement compared to the naive

Monte-Carlo algorithm for which the above estimate is simply CM− 1
2

n .
Remind that for the computation of α⋆

0 = E(f(Y)) when f is a smooth

function, the optimal error using Mn random evaluations of f is M−L
d
− 1

2
n

12

(see [1] or [2] for a review). Our SALT-EG achieves this optimal rate. We
mention that in [1], the authors provide a different optimal algorithm in the
case where Y is uniformly distributed on (−1, 1)d.

Nevertheless, not only our SALT-EG algorithm is rate-optimal for the
computation of E(f(Y)), but additionally we do compute all the coefficients
sequence (α⋆

k
)k∈Nd and not only α⋆

0, which is a significant improvement.

3.2. Legendre polynomials

If Y is now uniformly distributed on the cube (−1, 1)d, a similar anal-
ysis can be derived using Legendre polynomials instead of Chebyshev ones.
For related properties and approximation results, we refer to [11, Sections
1.4 and 2.2] and [9, Inequality (5.8.11), Section 5.8.2]. The main differ-
ence is that the orthonormalized polynomials are no more bounded inde-
pendently of the degree. Indeed, we can easily check that in dimension
1, the orthonormalized Legendre polynomial Lk with degree k is uniformly
bounded by

√
k + 1 := ck. In dimension d, Lk(x) = Lk1(x1) . . . Lkd(xd) is

bounded by ck =
√

(k1 + 1) . . . (kd + 1). As for (3.16) with SALT-PG, we
take Kn = (n+1)d (projecting on Legendre polynomials with degree at most
n in each variable): then, for a function f with L-derivatives that are square
integrable on (−1, 1)d, the rate in (3.17) is unchanged. Moreover, following

Corollary 2.2, we take Mn = ⌈2∑
k:|k|≤n c

2
k
⌉ = 2

(

(n+1)(n+2)
2

)d
, which gives

Mn ≷c n
2d+1. The quadratic error of the algorithm is then

En ≤ CM− 2L
2d+1

n . (3.24)

Similar computations with the SALT-EG version leads to En ≤c M
−L

d
n . The

application to the computation of E(f(Y)) can be analyzed similarly, we
leave the details to the reader.

Observe that the unboundedness of Legendre polynomials has a negative
effect on the convergence rate which is similar to doubling the dimension: at
least from theoretical viewpoint, the values of (ck)k in (H2) are an important
concern of our algorithm.

3.3. Other distributions and approximations

We mention further extensions that we do not fully detail here. Our
objective is rather to give, for the reader convenience, alternative ways to
explore, that depend much on the examples to handle.

13

Obtaining sparse polynomial approximations (i.e. a reduced size of the
vector space while maintaining the same accuracy) is possible for functions
f belonging to Korobov spaces, see for instance [19]. Some transformations
of the distribution of Y are also proposed to reduce to that case.

In the case of other distributions (in particular supported on non compact
sets of Rd), we can use damped polynomials (of Laguerre or Hermite type,
the damping ensures that (H2) is met) when we have to handle exponential
or Gaussian distributions for Y . Alternatively, one can reduce to one of the
previous cases by a change of variable Y = ϕ(Z) (and then compute the L2

projection of f ◦ ϕ w.r.t. the probability measure P ◦ Z−1).
It is also standard to use a one-to-one mapping ϕ : (−1, 1)d 7→ R

d, to
reduce to the cube; for related discussions on ϕ, see [9, Section 2.7]. Besides,
we argue that the cube case (like (−1, 1)d or (0, 1)d) is quite frequent in
probabilistic applications, since usually a simulation algorithm maps a r.v.
uniformly distributed on a cube into the target random variable Y .

If the distribution of Z = ϕ−1(Y) has a bounded density pZ(.) on (−1, 1)d,
then, for any g,

E(g2(Y)) =

∫

(−1,1)d
g2(ϕ(z))pZ(z)dz

≤ |pZ |∞πd

∫

(−1,1)d
g2(ϕ(z))

dz

πd
√

(1− z21) . . . (1− z2d)
,

meaning that the L2(P ◦ Y −1)-norm is controlled (up to a constant) by the
L2-norm w.r.t. Chebyshev weights. Hence, computing the approximation of
f ◦ϕ in the latter norm is sufficient to derive a L2 approximation of f w.r.t.
the law of Y .

So far, we have mainly mentioned global polynomial approximations
which take well advantage of global smoothness properties, but the use of
local approximations (local polynomials for instance) may be relevant in prac-
tice. The combination with sparse grids [8] may be a source of significant
improvement as well.

4. Numerical experiments

We present numerical results performed when the distribution of Y has
the density (3.13), in dimension d = 1 and d = 2. We use the Chebyshev

14

Table 1: Variance of f(Y) in each case (Tables 2-3-4-5-6)

Table 1 Table 2 Table 3 Table 4 Table 5
0.134 0.0727 0.144 0.0338 0.337

Table 2: Results in dimension d = 1 for f(x) = (1− x2)4 using SALT-PG

n Kn Mn En Alg. 2 Error IF
10 11 264 3.667× 10−5 7.305× 10−4 6.05× 101

20 21 924 2.374× 10−12 9.936× 10−8 2.38× 105

30 31 1984 2.914× 10−17 2.375× 10−10 6.78× 107

40 41 3444 1.399× 10−20 3.950× 10−12 3.10× 109

50 51 5304 2.210× 10−22 4.001× 10−13 2.46× 1010

70 71 10224 3.294× 10−25 1.112× 10−14 6.38× 1011

100 100 20604 3.458× 10−28 2.539× 10−16 1.97× 1013

polynomials as exposed in Section 3.1, with various SALT-steps n and dif-
ferent strategies for increasing the approximation space (either PG or EG).
In the results reported below (Tables 2-3-4-5-6), we indicate:

• The size of the vector space Kn at the final step n: for PG it is equal
to Kn = (n+1)d, and for EG it is given by K0 = 1, Kn+1 = max(Kn+
1, ⌊Kne

γ⌋) for a parameter γ specified later.

• The total amount of simulations Mn =
∑n

k=1 Mk used up to step n.

• The quadratic error En, which is computed using the formula (2.5) as

an empirical average of
[

fn(Y) − f(Y)
]2

. The integration over Y is
made with Mn extra independent simulations, and the one over fn
with 10 independent runs of SALT.

• The Alg.2 Error is defined by the half-width of the 95%-confidence
interval using the Algorithm 2 for the computation of E(f(Y)), i.e.
using the SALT-approximation as a control variate, see the estimator

(2.10); thus we set Alg.2 Error = 1.96

√

Var(I
(2)
n)

Mn
.

15

Table 3: Results in dimension d = 1 for f(x) = (x+)
2

n SALT Kn Mn En Alg. 2 Error IF
10 PG 11 264 9.430× 10−4 3.704× 10−3 8,78

EG (γ = 0.05) 11 264 9.812× 10−4 3.779× 10−3 8,60
20 PG 21 924 1.539× 10−4 7.999× 10−4 21,7

EG (γ = 0.05) 21 924 1.253× 10−4 7.217× 10−4 24,1
30 PG 31 1984 4.426× 10−5 2.927× 10−4 40,5

EG (γ = 0.05) 32 1988 4.741× 10−5 3.027× 10−4 39,1
40 PG 41 3444 1.508× 10−5 1.297× 10−4 69,4

EG (γ = 0.05) 53 3712 8.086× 10−6 9.147× 10−5 94,8
50 PG 51 5304 7.485× 10−6 7.118× 10−5 102

EG (γ = 0.05) 87 6532 1.868× 10−6 3.315× 10−5 197

Table 4: Results in dimension d = 1 for f(x) = (sin(10x))+

n SALT Kn Mn En Alg.2 Error IF
10 PG 11 264 3.107× 10−1 6.724× 10−2 0,68

EG (γ = 0.05) 11 264 2.761× 10−1 6.338× 10−2 0,72
20 PG 21 924 2.193× 10−2 9.543× 10−3 2,57

EG (γ = 0.05) 21 924 2.500× 10−2 1.019× 10−2 2,40
30 PG 31 1984 5.812× 10−3 3.355× 10−3 4,98

EG (γ = 0.05) 32 1988 6.261× 10−3 3.478× 10−3 4,80
40 PG 41 3444 1.898× 10−3 1.455× 10−3 8,72

EG (γ = 0.05) 53 3712 1.283× 10−3 1.115× 10−3 11,0
50 PG 51 5304 1.367× 10−3 9.951× 10−4 10,3

EG (γ = 0.05) 87 6532 2.411× 10−4 3.765× 10−4 24,5

16

• The Improvement Factor (IF) is defined by the ratio between the half-
width of the 95%-confidence interval of the standard Monte-Carlo method
using the same number of simulations Mn, and Alg.2 Error, whence

IF = 1.96

√

Var(f(Y))

Mn

/Alg.2 Error =

√

Var(f(Y))

Var(I
(2)
n)

.

Restated in terms of numerical efficiency, obtaining for instance IF =
2 is equivalent to a requirement of 22 = 4 times fewer simulations
for the same accuracy. The variances Var(f(Y)) have been computed
numerically, their values are reported in Table 1.

We first illustrate the phenomenon of geometric convergence stated in
Corollary 2.1, by taking the function f as a polynomial (see Tables 2 and
5). As soon as the size Kn is large enough so that the approximation space
includes f , we have rKn

(Y) = 0 and the estimates of Corollary 2.2 lead to a
geometric convergence of the error to 0. This is clearly observed in Tables 2
and 5.

Second, when the function f is in none of the approximation spaces, the
convergence is presumably not geometric. In Table 3, we take f(x) = (x+)

2,
for which the regularity may be considered equal to L = 2, yielding γ∗ ≈
0.173 (see definition (3.21)). We experiment both strategies PG and EG
(γ = 0.05 < γ∗) for increasing the size of approximation space. PG and
EG coincide for n small since γ is rather small, and they differ only for n
large. Observe that the accuracy is similar after n = 50 steps with PG and
n = 40 steps with EG. The advantage of EG here is that we have used a
reduced number of simulations, since by increasing faster Kn, we increase
faster Mn and the overall computational effort is smaller. In Table 4 where
f(x) = (sin(10x))+, the observation is similar. We have experienced larger
γ, with analogous features, but there is no clear picture to us of which values
of γ are better.

Third, we observe that the convergence rate seemingly worsens as the
regularity of the function f deteriorates, see Table 4 with f(x) = (sin(10x))+
which is only once (almost-everywhere) differentiable with large derivative
(due to the factor 10) and Table 6 with f(x, y) = (x + y)+. SALT still
enables to speed-up the computation of E(f(Y)) but the improvement is less
significant compared to smooth cases. This is coherent with the previous
theoretical analysis, in particular that leading to the estimate (3.23) which
illustrates the effect of regularity on the convergence order.

17

Although the significance of the improvement varies from one example to
another, the SALT appears as an interesting scheme for L2-approximation
and variance reduction, since the tuning of its parameters can be made in a
robust way, leading to convergence in quite general situations (see Corollary
2.2).

Table 5: Results in dimension d = 2 for f(x, y) = (1− x2)4(1− y2)4 using SALT-PG

n Kn Mn En Alg.2 Error IF
10 121 4048 1.529× 10−5 1.186× 10−4 4.77× 101

20 441 26488 6.604× 10−14 3.090× 10−9 7.16× 105

30 961 83328 9.212× 10−18 2.061× 10−11 6.06× 106

40 1681 190568 3.656× 10−20 8.585× 10−13 9.61× 108

Table 6: Results in dimension d = 2 for f(x, y) = (x+ y)+, using SALT-PG

n Kn Mn En Alg.2 Error IF
10 121 4048 1.294× 10−2 3.487× 10−3 5,13
20 441 26488 1.274× 10−3 3.782× 10−4 18,5
30 961 83328 3.437× 10−4 1.258× 10−4 31,3
40 1681 190568 1.569× 10−4 5.625× 10−5 46,3

Appendix A. Proof of Lemma 2.1

Because of independence between steps,

E
n−1(βn,Mn

k) = E(f(Y)φk(Y))−
Kn−1
∑

l=0

α
n−1,Mn−1

l E(φl(Y)φk(Y)) = α⋆
k−α

n−1,Mn−1

k ,

thus E
n−1(αn,Mn

k) = α
n−1,Mn−1

k + α⋆
k − α

n−1,Mn−1

k = α⋆
k. We now turn to the

variance analysis. By bounding the variance by the second moment and using
(H2), we obtain

Varn−1(αn,Mn

k) =
1

Mn

Varn−1

[

(f(Y)−
Kn−1
∑

l=0

α
n−1,Mn−1

l φl(Y))φk(Y)

]

18

≤ c2k
Mn

E
n−1

[

(f(Y)−
Kn−1
∑

l=0

α
n−1,Mn−1

l φl(Y))2

]

=
c2k
Mn

(

E[r2Kn−1
(Y)] +

Kn−1
∑

l=0

(α
n−1,Mn−1

l − α⋆
l)

2

)

using (1.3) and (H2) at the last equality. �

References

[1] E. Atanassov, I. Dimov, A new Monte Carlo method for calculating
integrals of smooth functions, Monte Carlo Methods Appl. 5 (1999)
149–167.

[2] E. Atanassov, I. Dimov, What Monte Carlo models can do and cannot
do efficiently?, Applied Mathematical Modelling 32 (2008) 1477–1500.

[3] K. Baggerly, D. Cox, R. Picard, Exponential convergence of adaptive
importance sampling for Markov chains, J. Appl. Prob. 37 (2000) 342–
358.

[4] T. Ben Zineb, E. Gobet, Preliminary control variates to improve em-
pirical regression methods, Monte-Carlo methods and Applications 19
(2013) 331–354.

[5] C. Bender, J. Steiner, Least-squares Monte Carlo for BSDEs, in: R. Car-
mona, P. Del Moral, P. Hu, N. Oudjane (Eds.), Numerical Methods in
Finance, Series: Springer Proceedings in Mathematics, Vol. 12, 2012,
pp. 257–289.

[6] T. Booth, Exponential convergence for Monte Carlo particle transport?,
Trans. Amer. Nucl. Soc. 50 (1985) 267–268.

[7] B. Bouchard, X. Warin, Monte-Carlo valuation of American options:
facts and new algorithms to improve existing methods., in: R. Carmona,
P. Del Moral, P. Hu, N. Oudjane (Eds.), Numerical Methods in Finance,
Series: Springer Proceedings in Mathematics, Vol. 12, 2012, pp. 215–255.

[8] H.J. Bungartz, M. Griebel, Sparse grids., Acta Numerica 13 (2004) 147–
269.

19

[9] C. Canuto, M. Hussaini, A. Quarteroni, T. Zang, Spectral methods:
fundamentals in single domains, Springer-Verlag, New York, 2006.

[10] D. Egloff, Monte Carlo algorithms for optimal stopping and statistical
learning, Ann. Appl. Probab. 15 (2005) 1396–1432.

[11] D. Funaro, Polynomial approximation of differential equations, volume 8
of Lecture Notes in Physics. New Series m: Monographs, Springer-
Verlag, Berlin, 1992.

[12] E. Gobet, C. Labart, Solving BSDE with adaptive control variate, SIAM
Numerical Analysis 48 (2010) 257–277.

[13] E. Gobet, J.P. Lemor, X. Warin, A regression-based Monte Carlo
method to solve backward stochastic differential equations, Annals of
Applied Probability 15 (2005) 2172–2202.

[14] E. Gobet, S. Maire, Sequential control variates for functionals of Markov
processes, SIAM Journal on Numerical Analysis 43 (2005) 1256–1275.

[15] E. Gobet, P. Turkedjiev, Linear regression MDP scheme for discrete
backward stochastic differential equations under general conditions, In
revision for Mathematics of Computation (2013).

[16] O. Le Maître, O. Knio, Spectral Methods for Uncertainty Quantifica-
tion. With Applications to Computational Fluid Dynamics, Scientific
Computation, Springer, 2010.

[17] J.P. Lemor, E. Gobet, X. Warin, Rate of convergence of an empirical re-
gression method for solving generalized backward stochastic differential
equations, Bernoulli 12 (2006) 889–916.

[18] F. Longstaff, E. Schwartz, Valuing American options by simulation:
A simple least squares approach, The Review of Financial Studies 14
(2001) 113–147.

[19] S. Maire, An iterative computation of approximations on Korobov-like
spaces, J. Comput. Appl. Math. 157 (2003) 261–281.

[20] S. Maire, Reducing variance using iterated control variates, The Journal
of Statistical Computation and Simulation 73 (2003) 1–29.

20

	Introduction
	The problem
	Literature background and applications
	Organization of the paper

	Algorithm SALT
	Heuristics
	Detailed algorithm
	Convergence results
	Application to integration
	Comparison with a naive Monte-Carlo algorithm

	Examples of Y and vector spaces
	Chebyshev polynomials
	Legendre polynomials
	Other distributions and approximations

	Numerical experiments
	Proof of Lemma ??

