Emmanuel Gobet

Khushboo Surana

A new sequential algorithm for L 2 -approximation and application to Monte-Carlo integration ✩

Keywords: Sequential approximation, Monte-Carlo simulations, Stochastic algorithms, Spectral decomposition 2010 MSC: 65C05, 62Lxx, 74S25

We design a new stochastic algorithm (called SALT) that sequentially approximates a given function in L 2 w.r.t. a probability measure, using a finite sample of the distribution. By increasing the sets of approximating functions and the simulation effort, we compute a L 2 -approximation with higher and higher accuracy. The simulation effort is tuned in a robust way that ensures the convergence under rather general conditions. Then, we apply SALT to build efficient control variates for accurate numerical integration. Examples and numerical experiments support the mathematical analysis.

Introduction

The problem

Given a d-dimensional random variable Y and a measurable function f : R d → R such that E(f 2 (Y)) < +∞, we aim at computing the L 2 decom-✩ The first author research is part of the Chair Financial Risks of the Risk Foundation and the Finance for Energy Market Research Centre. This work has been partly done during the visit of the second author at Ecole Polytechnique during the spring 2013, with the support of International Exchange Programs of Ecole Polytechnique.

α ⋆ Centre de Mathématiques Appliquées, Ecole Polytechnique and CNRS, Route de Saclay, 91128 Palaiseau Cedex, France α ⋆ α ⋆ Indian Institute of Technology, Kanpur, Kalyanpur, U.P., India Email addresses: emmanuel.gobet@polytechnique.edu (Emmanuel Gobet), khushboosurana21@gmail.com (Khushboo Surana) 1 Corresponding author position of f on the vector space spanned by the functions (φ k) k≥0 according to the law induced by Y , i.e. finding coefficients (α ⋆ k) k≥0 (from now on, we assume they exist) such that

f (Y) = k≥0 α ⋆ k φ k (Y) in L 2 (1.1)
(assuming that E(φ 2 k (Y)) < +∞ for any k). To achieve this decomposition, we use a finite number of independent simulations of Y , say (Y m) 1≤m≤M , which serve to build a stochastic algorithm to compute (α ⋆ k) k≥0 . We aim at designing a scheme with robust convergence properties (robust w.r.t. f and the distribution of Y). Replacing f by an approximation on the basis functions is useful for instance in applications where the evaluation of f is particularly costly (e.g. the output of a complex computer program) and for some reasons, in a further step, we need to evaluate it many times which justifies the use of simpler and cheaper representations. The main application we develop below is the Monte-Carlo computation of E(f (Y)) (numerical integration) using the approximative decomposition (1.1) as control variating. Anther potential field of application is Uncertainty Quantification [START_REF] Le Maître | Spectral Methods for Uncertainty Quantification[END_REF] where the emulation of f serves to build statistics about the uncertainty f (Y).

Throughout the paper, we assume that (φ k) k≥0 are orthonormalized basis functions in the following sense:

(H1) E (φ k (Y)φ l (Y)) = δ k,l , for any k, l ≥ 0.

Therefore from (1.1), α ⋆ k = E(f (Y)φ k (Y)) and a naive Monte-Carlo estimator is

α M k = 1 M M m=1 f (Y m)φ k (Y m). (1.2)
Since f (Y)φ k (Y) is integrable (because each factor is square integrable), the strong law of large numbers yields the a.s.-convergence of α M k towards α ⋆ k for every k, as M → +∞. In other words

K k≥0 α M k φ k (.)
a.s.

-→

M →+∞ K k≥0 α ⋆ k φ k (.) L 2 (P•Y -1) -→ K→+∞ f (.).
Nevertheless, the global L 2 -convergence of the left hand side to the right one is a non-trivial issue since: i) there is no guarantee that each coefficient α M k belongs to L 2 (except under stronger assumptions ensuring that f (Y)φ k (Y) is square-integrable); ii) as usually in statistics with the analysis of the bias-variance trade-off, we have to appropriately tune the joint convergence of K and M to infinity, in order to let both estimation and statistical errors converge to 0.

In this work we design a sequential algorithm which n-th step provides an estimation of the coefficients (α ⋆ k) 0≤k≤Kn with non-decreasing order K n . Knowing the values of the former step coefficients helps in improving the evaluation at the next step: the algorithm takes the form of a sequential learning algorithm that we call SALT (Sequential Approximation in L-Two). The convergence is studied in L 2 : therefore, in view of the item i) above, we strengthen the hypothesis on the functions basis by assuming

(H2) for any k ≥ 0, there is a constant c k such 2 that |φ k (Y)| ≤ c k < +∞ a.s. .

Literature background and applications

In the last fifteen years, several important algorithms based on Monte-Carlo L 2 -approximations have been developed, they are popular owing to the flexibility of the Monte-Carlo simulations. Among them, we mention empirical regression methods that are now a standard approach to solve optimal stopping problems [START_REF] Longstaff | Valuing American options by simulation: A simple least squares approach[END_REF][START_REF] Egloff | Monte Carlo algorithms for optimal stopping and statistical learning[END_REF][START_REF] Bouchard | Monte-Carlo valuation of American options: facts and new algorithms to improve existing methods[END_REF], Backward Stochastic Differential Equations [START_REF] Gobet | A regression-based Monte Carlo method to solve backward stochastic differential equations[END_REF][START_REF] Lemor | Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations[END_REF][START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF]... They are several attempts to improve numerically L 2projections, in order to reduce statistical inaccuracies: see for instance [START_REF] Bender | Least-squares Monte Carlo for BSDEs[END_REF][START_REF] Ben Zineb | Preliminary control variates to improve empirical regression methods[END_REF]. Our current work is in this vein. However, a major difference is that our algorithm SALT works sequentially, in several steps, giving at each step a valuable approximation, which accuracy increases step after step: the computational effort increases coherently according to the number of steps, so that the algorithm can be stopped at any time to produce a solution, expected to be reasonably accurate given the computational effort. For the computation of E(f (Y)) with smooth functions f , we show in Section 3 that our algorithm achieves optimal convergence rates (about optimal numerical integration, see [START_REF] Atanassov | A new Monte Carlo method for calculating integrals of smooth functions[END_REF] or [START_REF] Atanassov | What Monte Carlo models can do and cannot do efficiently?[END_REF] and references therein). Some ideas related to the iteration of our algorithm are exposed in [START_REF] Maire | An iterative computation of approximations on Korobov-like spaces[END_REF][START_REF] Maire | Reducing variance using iterated control variates[END_REF] where iterative control variates are built to speed-up Monte-Carlo integration methods (extensions to stochastic processes are designed in [START_REF] Gobet | Sequential control variates for functionals of Markov processes[END_REF][START_REF] Gobet | Solving BSDE with adaptive control variate[END_REF]). But in [START_REF] Maire | An iterative computation of approximations on Korobov-like spaces[END_REF][START_REF] Maire | Reducing variance using iterated control variates[END_REF], essentially only the numerical integration error (i.e. about computing the expectation) is investigated and the number of control variates is fixed. Here, we consider the full L 2 -approximation and we aim at achieving an infinite number of basis functions, with a robust strategy ensuring the convergence in a rather general setting.

Organization of the paper

In Section 2, we present the algorithm and state the main convergence results. An application to numerical integration (computation of E(f (Y))) is then developed. In Section 3, examples of basis functions are discussed, with explicit convergence rates in the case of smooth functions f and random variables Y taking values in a cube. Despite these specific examples, we argue that our algorithm applies to more general settings. These examples show that we achieve rate-optimality in the computation of E(f (Y)). Section 4 is devoted to numerical tests showing the performance of the algorithm SALT, in particular for the Monte-Carlo evaluation of E(f (Y)). Intermediate results are proved in Appendix.

Extra notations.

• The residual at order K ≥ 0 of the approximation of f on the basis functions is defined by

r K (y) := f (y) - K k=0 α ⋆ k φ k (y). (1.3)
The identity (1.1) means

E(r 2 K (Y)) = +∞ k=K+1 [α ⋆ k] 2 → 0 as K → +∞.
The more appropriate the functions basis, the faster the convergence rate of the truncation error E(r 2 K (Y)). Examples are given later.

• The notation A ≤ c B means A ≤ CB for a generic constant C > 0 possibly changing from line to line, independent of the algorithm step number n. Similarly, A ≷ c B means A ≤ c B and B ≤ c A.

Algorithm SALT

Heuristics

The principle of our algorithm is to take advantage of the coefficients computed at steps i = 0, . . . , n -1 to speed-up those at step n, like a sequential learning algorithm.

We first expose the intuition of the algorithm. Consider that (non exact) coefficients (α 0 , . . . , α K) have been already computed, then write (owing to (H1))

α ⋆ k := α k + β k with β k := E f (Y) - K l=0 α l φ l (Y) φ k (Y) , 0 ≤ k ≤ K,
and replace the expectation by an empirical mean over M independent simulations of Y : this provides an approximated correction to the pre-computed value α k . The variance of this estimator is proportional to 1/M and to the variance of

Z k,K := (f (Y)-K l=0 α l φ l (Y))φ k (Y).
In particular, if K l=0 α l φ l (.) approximates well f (.), the random variable Z k,K and its variance are expected to be relatively small. Consequently the new estimation of α ⋆ k will be particularly accurate, and likely much more accurate compared to the previous step. Iterating the procedure and incorporating more and more coefficients to compute, we obtain the algorithm SALT described below.

Detailed algorithm

Let (K n) n≥1 be a non-decreasing sequence of integers, related to the number of basis functions used at each algorithm step. At step n, we compute the coefficients for the indices k = 0, . . . , K n using M n simulations: the k-th coefficient is to be denoted by α n,Mn k . The algorithm is initialized at n = 0 with α n,Mn k = 0 for any k. The step n ≥ 1 works as follows.

(Step n)-i) Generate a sample (Y n,m) 1≤m≤Mn of M n independent r.v.
with same distribution as Y , and independent of other simulations.

(Step n)-ii) Define the corrections (β n,Mn k
) k and the coefficients (α n,Mn k) k as follows:

                     β n,Mn k := 1 M n Mn m=1 f (Y n,m) - K n-1 l=0 α n-1,M n-1 l φ l (Y n,m) φ k (Y n,m) for 0 ≤ k ≤ K n , α n,Mn k := α n-1,M n-1 k + β n,Mn k for 0 ≤ k ≤ K n , β n,Mn k := α n,Mn k := 0 for k > K n .

Convergence results

For n ≥ 1, denote by E n-1 (•) and Var n-1 (•) the expectation and variance conditionally to the sigma-field generated by the random variables

(Y i,m : 1 ≤ m ≤ M i , i ≤ n -1).
To justify the algorithm convergence, we preliminarily analyse the conditional mean and variance of the coefficients. The proof of the above lemma is postponed to Appendix.

Lemma 2.1. Let n ≥ 1 and 0 ≤ k ≤ K n . We have E n-1 (α n,Mn k) = α ⋆ k , Var n-1 (α n,Mn k) ≤ c 2 k M n E[r 2 K n-1 (Y)] + K n-1 l=0 (α n-1,M n-1 l -α ⋆ l) 2 .
At step n of the algorithm, the function f (.) is approximated by

f n (.) := Kn k=0 α n,Mn k φ k (.) (2.4)
and the resulting quadratic error is given by

E n := E f n (Y) -f (Y) 2 = E(r 2 Kn (Y)) + Kn k=0 E (α n,Mn k -α ⋆ k) 2 . (2.5) Note that E 0 = E(f 2 (Y)). From Lemma 2.1, α n,Mn k estimates α ⋆ k without bias and the conditional expectation of α n,Mn k is constant: this implies E (α n,Mn k -α ⋆ k) 2 = Var(α n,Mn k) = E Var n-1 (α n,Mn k) ≤ c 2 k M n E n-1 . (2.6)
Combining (2.5) and (2.6), we establish Theorem 2.1 (Error propagation along algorithm steps). For any n ≥ 1, we have

E n ≤ E(r 2 Kn (Y)) + 1 M n Kn k=0 c 2 k E n-1 .
In case there exists an order K ⋆ < +∞ such that r K ⋆ (.) ≡ 0 (i.e. f can be linearly represented by a finite number of (φ k) k), it is enough to take K n = K ⋆ to directly obtain Corollary 2.1 (Finite-dimensional approximation). In the case of finite K ⋆ , we have

E n ≤ 1 M n K ⋆ k=0 c 2 k E n-1 .
In particular, choosing a simulation effort rate which is constant and large enough (in the sense

M n = M with ρ := 1 M K ⋆ k=0 c 2 k < 1)
, the convergence to 0 is geometric along steps, at rate ρ:

E n ≤ ρ n E(f 2 (Y)), n ≥ 0.
The global simulation effort after n steps being C = M n, the error is decreasing at most like exp(-αC) for some α > 0: therefore, when the L 2approximation problem is only finite-dimensional, the convergence is exponentially fast w.r.t. the computational effort. This is fully different from the naive Monte-Carlo procedure. Similar features have been reported in some Sequential Monte-Carlo algorithms, see [START_REF] Booth | Exponential convergence for Monte Carlo particle transport?[END_REF][START_REF] Baggerly | Exponential convergence of adaptive importance sampling for Markov chains[END_REF]. We do not elaborate further in this direction since the focus of this work is rather on the general case K * = +∞.

The next result easily follows from Theorem 2.1, we leave the proof to the reader.

Corollary 2.2 (Infinite-dimensional approximation, general convergence).

The choice

M n := ⌈2 Kn k=0 c 2 k ⌉ yields E n ≤ E(r 2 Kn (Y)) + 1 2 E n-1 , (2.7)
E n ≤ n k=1 2 k-n E(r 2 K k (Y)) + 2 -n E(f 2 (Y)). (2.8)
Thus, for any choice of non-decreasing unbounded sequence (K n) n (in particular K n → +∞ as n → +∞), we have E(r 2 Kn (Y)) → 0 and thus E n → 0. This specification of M n is very simple and depends only on the a priori knowledge of (c k) k and the choice of the sequence (K n) n : this yields robustness concerning the tuning of the local simulation effort.

Application to integration

We now turn to the important application to the computation of E(f (Y)). For this, assume that φ 0 ≡ 1: in view of (H1), it implies that φ k (Y) is a centered r.v. for k ≥ 1, and

α ⋆ 0 = E(f (Y)). Algorithm 1. A first possibility is to estimate E(f (Y)) simply by I (1)
n := α n,Mn 0 : it is unbiased (see Lemma 2.1) and leads to a quadratic error controlled by E |I (1) n -

E(f (Y))| 2 = E |α n,Mn 0 -α ⋆ 0 | 2 ≤ E n . (2.9)
Algorithm 2. A second possibility is to generate M other independent samples of Y serving to build a Monte-Carlo estimator of E(f (Y)) with control variates given by f n (Y) (removing the constant term): it writes

I (2) n := 1 M M m=1 f (Y m) - Kn k=1 α n,Mn k φ k (Y m) . (2.10)
As for the first algorithm, it is an unbiased estimator of E(f (Y)) and its quadratic error is given by

E |I (2) n -E(f (Y))| 2 = 1 M E Var n f (Y) - Kn k=1 α n,Mn k φ k (Y) = 1 M Kn k=1 E (α n,Mn k -α ⋆ k) 2 + +∞ k=Kn+1 [α ⋆ k] 2 ≤ E n M . (2.11)
Hence, once computed a "good" L 2 -approximation of f , it gives the possibility of more accurately evaluating its integral via Monte-Carlo simulations.

Comparison with a naive Monte-Carlo algorithm

A naive Monte-Carlo algorithm would consist in truncating the decomposition (1.1) at order K and in using M independent copies (Y m) 1≤m≤M with the same distribution as Y to approximate each coefficient α ⋆ k by α M k defined in (1.2). Then, the approximation of f writes

f Naive MC K,M (.) := K k=0 α M k φ k (.).
(2.12)

The related quadratic error is equal to

E f Naive MC K,M (Y) -f (Y) 2 = E(r 2 K (Y)) + K k=0 E (α M k -α ⋆ k) 2 = E(r 2 K (Y)) + K k=0 Var (φ k (Y)f (Y)) M ≤ E(r 2 K (Y)) + E (f 2 (Y)) M K k=0 c 2 k using (
E f Naive MC K,M (Y) -f (Y) 2 ≤ C ξ(K).
This result serves as a benchmark for the theoretical performance of sequential algorithms, see the discussion in Section 3.1.

Examples of Y and vector spaces

Chebyshev polynomials

Let us consider the case of d-dimensional random variable Y which distribution has the density

p(x) = d i=1 1 π 1 -x 2 i 1 (-1,1) d (x) (3.13)
with respect to the Lebesgue measure on R d . Its coordinates (Y 1 , . . . , Y d) are independent and each one can be simulated owing to the inversion method:

Y i d = sin(πU i -π/2
) where U i is uniformly distributed on (0, 1).

Chebyshev polynomials provide natural basis functions orthonormalized w.r.t. the law of Y . The one-dimensional polynomial of degree k ∈ N is defined by

T 0 (x) = 1 and T k (x) = √ 2 cos(k arccos(x)) for k ≥ 1, (3.14)
so that E(T k (Y)T l (Y)) = δ k,l for any k, l ≥ 0. For usual properties related to Chebyshev polynomials, we refer the reader to [11, Sections 1.5 and 2.2]. These polynomials have the advantage of being bounded (useful to check (H2)). The approximation of f on polynomial basis is often referred to as spectral method [START_REF] Funaro | Polynomial approximation of differential equations[END_REF][START_REF] Le Maître | Spectral Methods for Uncertainty Quantification[END_REF].

The multidimensional case is achieved by tensorization: for a multi-

integers k = (k 1 , . . . , k d) ∈ N d , set T k (x) = d i=1 T k i (x i). (3.15)
We readily check that the basis functions (T k) k∈N d satisfy (H1)and (H2) (with c k = 2 d/2).

First strategy for K n . Define |k| = max i=1,...,d k i : at the n-th step of the algorithm, we aim at approximating f by

k:|k|≤n α ⋆ k T k ,
i.e by taking all the polynomials with degree at most n in each variable: therefore,

K n = (n + 1) d . (3
(P • Y -1), we have E r 2 Kn (Y) ≤ Cn -2L , n ≥ 1, (3.17)
for a constant C independent on n. Then, the choice M n = ⌈2 k:|k|≤n c 2 k ⌉ = 2 d+1 (n + 1) d leads to the error estimate

E n ≤ c n k=1 2 k-n k -2L + 2 -n ≤ c n -2L
(the second inequality follows by easy computations exploiting the fast increase of 2 k compared to k 2L as k → +∞). The number of simulations used up to step n (representing the simulation effort) is equal

M n := n k=1 M k ≷ c n d+1 , therefore E n ≤ CM -2L d+1 n . (3.18)
We recover the curse of dimensionality effect, with a competition between the smoothness L and the dimension d. We mention that the effective algorithm complexity may be different from M n : it depends on the way the user encodes the evaluation of Chebyshev polynomials and the related finite approximation.

Second strategy for K n . Actually the factor d+1 in (3.18) can be improved into a factor d by choosing another numerical strategy with Exponentially Growing approximation space (denoted by EG or SALT-EG). For γ > 0, set

K n+1 = max(K n + 1, ⌊K n e γ ⌋)
for a given K 1 : the ordering of indices k of the polynomials that we incorporate at each step is not really important in our analysis, for instance in dimension 2 we can take 1,

x 1 , x 2 , x 1 x 2 , x 2 1 , x 2 1 x 2 , x 2 1 x 2 2 , x 1 x 2 2 , x 2 2 , x 3 1 ,
. . . and similarly in higher dimension. On the one hand, it is clear that K n ≤ c e γn . On the other hand, since K n+1 ≥ K n e γ -1 and K n+1 ≥ n + K 1 → +∞, we easily deduce e γn ≤ c K n . Hence, to summarize,

K n ≷ c e γn . (3

.19)

Denote by ñ the integer such that (ñ + 1) d ≤ K n < (ñ + 2) d : then, from (3.17) the residual at step n is bounded as

E r 2 Kn (Y) ≤ C ñ-2L ≷ c e -2L γ d n . (3.20)
Moreover, the number of simulations used up to step n can be estimated as

M n := n k=1 M k ≷ c n k=1 2 d+1 K k ≷ c e γn .
At last, after simple computations, we can show that the quadratic error (2.8) is estimated as follows:

E n ≤ c n k=1 2 k-n e -2L γ d k + 2 -n ≤ c      e -2L γ d n if γ < γ ⋆ := d log(2) 2L , n2 -n if γ = γ ⋆ , 2 -n if γ > γ ⋆ , (3.21) ≤ C        M -2L d n if γ < γ ⋆ , M -2L d n log(M n) if γ = γ ⋆ , M -log(2)/γ n if γ > γ ⋆ . (3.22)
A better convergence rate is thus obtained for γ small enough, smaller than the threshold γ ⋆ := d log(2) 2L ≈ 0.347 d L related to the smoothness of f and the dimension of Y . Comparing (3.18) and (3.22), observe that SALT-EG yields an improved convergence rate w.r.t. the total simulation effort M n , compared to SALT-PG.

Let us briefly compare the above accuracy result with the one obtained using a naive Monte-Carlo approach (see Section 2.5). From Proposition 2.1 and (3.17), we have ξ(K) = K -2L/d and M = ⌈2 d (K + 1)K 2L/d ⌉, which gives

E f Naive MC K,M (Y) -f (Y) 2 ≤ CM -2L d+2L .
The above rate is obviously worse than M -2L d in (3.22).

Application to the computation of E(f (Y)). Applying Algorithm 2 of Section 2.4 using the algorithm SALT-EG to the current setting (see Equality (2.10)) with M = M n extra simulations (which only doubles the total number of simulations), we get an accuracy in the evaluation of E(f (Y)) controlled by (see Inequality (2.11))

E |I

(2)

n -E(f (Y))| 2 ≤ CM -L d -1 2 n . (3.23)
Of course, this is a very significant improvement compared to the naive Monte-Carlo algorithm for which the above estimate is simply CM

-1 2 n . Remind that for the computation of α ⋆ 0 = E(f (Y))
when f is a smooth function, the optimal error using M n random evaluations of f is M

-L d -1
(see [START_REF] Atanassov | A new Monte Carlo method for calculating integrals of smooth functions[END_REF] or [START_REF] Atanassov | What Monte Carlo models can do and cannot do efficiently?[END_REF] for a review). Our SALT-EG achieves this optimal rate. We mention that in [START_REF] Atanassov | A new Monte Carlo method for calculating integrals of smooth functions[END_REF], the authors provide a different optimal algorithm in the case where Y is uniformly distributed on (-1, 1) d . Nevertheless, not only our SALT-EG algorithm is rate-optimal for the computation of E(f (Y)), but additionally we do compute all the coefficients sequence (α ⋆ k) k∈N d and not only α ⋆ 0 , which is a significant improvement.

Legendre polynomials

If Y is now uniformly distributed on the cube (-1, 1) d , a similar analysis can be derived using Legendre polynomials instead of Chebyshev ones. For related properties and approximation results, we refer to [11, Sections 1.4 and 2.2] and [9, Inequality (5.8.11), Section 5.8.2]. The main difference is that the orthonormalized polynomials are no more bounded independently of the degree. Indeed, we can easily check that in dimension 1, the orthonormalized Legendre polynomial L k with degree k is uniformly bounded by

√ k + 1 := c k . In dimension d, L k (x) = L k 1 (x 1) . . . L k d (x d) is bounded by c k = (k 1 + 1) . . . (k d + 1
). As for (3.16) with SALT-PG, we take K n = (n + 1) d (projecting on Legendre polynomials with degree at most n in each variable): then, for a function f with L-derivatives that are square integrable on (-1, 1) d , the rate in (3.17) is unchanged. Moreover, following Corollary 2.2, we take

M n = ⌈2 k:|k|≤n c 2 k ⌉ = 2 (n+1)(n+2) 2 d
, which gives

M n ≷ c n 2d+1
. The quadratic error of the algorithm is then

E n ≤ CM -2L 2d+1 n . (3.24)
Similar computations with the SALT-EG version leads to

E n ≤ c M -L d n .
The application to the computation of E(f (Y)) can be analyzed similarly, we leave the details to the reader.

Observe that the unboundedness of Legendre polynomials has a negative effect on the convergence rate which is similar to doubling the dimension: at least from theoretical viewpoint, the values of (c k) k in (H2) are an important concern of our algorithm.

Other distributions and approximations

We mention further extensions that we do not fully detail here. Our objective is rather to give, for the reader convenience, alternative ways to explore, that depend much on the examples to handle. Obtaining sparse polynomial approximations (i.e. a reduced size of the vector space while maintaining the same accuracy) is possible for functions f belonging to Korobov spaces, see for instance [START_REF] Maire | An iterative computation of approximations on Korobov-like spaces[END_REF]. Some transformations of the distribution of Y are also proposed to reduce to that case.

In the case of other distributions (in particular supported on non compact sets of R d), we can use damped polynomials (of Laguerre or Hermite type, the damping ensures that (H2) is met) when we have to handle exponential or Gaussian distributions for Y . Alternatively, one can reduce to one of the previous cases by a change of variable Y = ϕ(Z) (and then compute the L 2 projection of f • ϕ w.r.t. the probability measure P • Z -1).

It is also standard to use a one-to-one mapping ϕ : (-1, 1) d → R d , to reduce to the cube; for related discussions on ϕ, see [9, Section 2.7]. Besides, we argue that the cube case (like (-1, 1) d or (0, 1) d) is quite frequent in probabilistic applications, since usually a simulation algorithm maps a r.v. uniformly distributed on a cube into the target random variable Y .

If the distribution of Z = ϕ -1 (Y) has a bounded density p Z (.) on (-1, 1) d , then, for any g,

E(g 2 (Y)) = (-1,1) d g 2 (ϕ(z))p Z (z)dz ≤ |p Z | ∞ π d (-1,1) d g 2 (ϕ(z)) dz π d (1 -z 2 1) . . . (1 -z 2 d)
, meaning that the L 2 (P • Y -1)-norm is controlled (up to a constant) by the L 2 -norm w.r.t. Chebyshev weights. Hence, computing the approximation of f • ϕ in the latter norm is sufficient to derive a L 2 approximation of f w.r.t. the law of Y . So far, we have mainly mentioned global polynomial approximations which take well advantage of global smoothness properties, but the use of local approximations (local polynomials for instance) may be relevant in practice. The combination with sparse grids [START_REF] Bungartz | Sparse grids[END_REF] may be a source of significant improvement as well.

Numerical experiments

We present numerical results performed when the distribution of Y has the density (3.13), in dimension d = 1 and d = 2. We use the Chebyshev 2-3-4-5-6) Table 1 Table 2 Table 3 Table 4 Table 5 0.134 0.0727 0.144 0.0338 0.337 polynomials as exposed in Section 3.1, with various SALT-steps n and different strategies for increasing the approximation space (either PG or EG). In the results reported below (Tables 2-3-4-5-6), we indicate:

• The size of the vector space K n at the final step n: for PG it is equal to K n = (n + 1) d , and for EG it is given by K 0 = 1, K n+1 = max(K n + 1, ⌊K n e γ ⌋) for a parameter γ specified later.

• The total amount of simulations M n = n k=1 M k used up to step n. • The quadratic error E n , which is computed using the formula (2.5) as an empirical average of

f n (Y) -f (Y) 2 .
The integration over Y is made with M n extra independent simulations, and the one over f n with 10 independent runs of SALT.

• The Alg.2 Error is defined by the half-width of the 95%-confidence interval using the Algorithm 2 for the computation of E(f (Y)), i.e. using the SALT-approximation as a control variate, see the estimator Mn . • The Improvement Factor (IF) is defined by the ratio between the halfwidth of the 95%-confidence interval of the standard Monte-Carlo method using the same number of simulations M n , and Alg.2 Error, whence

IF = 1.96 Var(f (Y)) M n /Alg.2 Error = Var(f (Y))
Var(I

. Restated in terms of numerical efficiency, obtaining for instance IF = 2 is equivalent to a requirement of 2 2 = 4 times fewer simulations for the same accuracy. The variances Var(f (Y)) have been computed numerically, their values are reported in Table 1.

We first illustrate the phenomenon of geometric convergence stated in Corollary 2.1, by taking the function f as a polynomial (see Tables 2 and5). As soon as the size K n is large enough so that the approximation space includes f , we have r Kn (Y) = 0 and the estimates of Corollary 2.2 lead to a geometric convergence of the error to 0. This is clearly observed in Tables 2 and5.

Second, when the function f is in none of the approximation spaces, the convergence is presumably not geometric. In Table 3, we take f (x) = (x +) 2 , for which the regularity may be considered equal to L = 2, yielding γ * ≈ 0.173 (see definition (3.21)). We experiment both strategies PG and EG (γ = 0.05 < γ *) for increasing the size of approximation space. PG and EG coincide for n small since γ is rather small, and they differ only for n large. Observe that the accuracy is similar after n = 50 steps with PG and n = 40 steps with EG. The advantage of EG here is that we have used a reduced number of simulations, since by increasing faster K n , we increase faster M n and the overall computational effort is smaller. In Table 4 where f (x) = (sin(10x)) + , the observation is similar. We have experienced larger γ, with analogous features, but there is no clear picture to us of which values of γ are better.

Third, we observe that the convergence rate seemingly worsens as the regularity of the function f deteriorates, see Table 4 with f (x) = (sin(10x)) + which is only once (almost-everywhere) differentiable with large derivative (due to the factor 10) and Table 6 with f (x, y) = (x + y) + . SALT still enables to speed-up the computation of E(f (Y)) but the improvement is less significant compared to smooth cases. This is coherent with the previous theoretical analysis, in particular that leading to the estimate (3.23) which illustrates the effect of regularity on the convergence order.

Although the significance of the improvement varies from one example to another, the SALT appears as an interesting scheme for L 2 -approximation and variance reduction, since the tuning of its parameters can be made in a robust way, leading to convergence in quite general situations (see Corollary 2.2). Because of independence between steps,

E n-1 (β n,Mn k) = E(f (Y)φ k (Y))- K n-1 l=0 α n-1,M n-1 l E(φ l (Y)φ k (Y)) = α ⋆ k -α n-1,M n-1 k , thus E n-1 (α n,Mn k) = α n-1,M n-1 k + α ⋆ k -α n-1,M n-1 k = α ⋆ k .
We now turn to the variance analysis. By bounding the variance by the second moment and using (H2), we obtain

 H2) and bounding the variance by the second moment. By appropriately tuning M in order to balance both contributions, we obtain Proposition 2.1. Let K ≥ 0 and assume that E(r 2 K (Y)) ≤ ξ(K) for an explicit positive function ξ(.) that measures the accuracy of the L 2 -approximation w.r.t. the order K. For M := ⌈ K k=0 c 2 k ξ(K) ⌉, the quadratic error of the naive Monte-Carlo estimator (2.12) is at most equal (up to a constant C independent of K) to the truncation error:

(2 .

 2 10); thus we set Alg.2 Error = 1.96 Var(I (2) n)

Table 6 :

 6 Results in dimension d = 2 for f (x, y) = (x + y) + , using SALT-PG 294 × 10 -2 3.487 × 10 -3 5,13 20 441 26488 1.274 × 10 -3 3.782 × 10 -4 18,5 30 961 83328 3.437 × 10 -4 1.258 × 10 -4 31,3 40 1681 190568 1.569 × 10 -4 5.625 × 10 -5 46,3 Appendix A. Proof of Lemma 2.1

Var n- 1 (

 1 φ l (Y))φ k (Y)

Table 1 :

 1 Variance of f (Y) in each case (Tables

Table 2 :

 2 Results in dimensiond = 1 for f (x) = (1x 2)4 using SALT-PG 10 -12 9.936 × 10 -8 2.38 × 10 5 30 31 1984 2.914 × 10 -17 2.375 × 10 -10 6.78 × 10 7 40 41 3444 1.399 × 10 -20 3.950 × 10 -12 3.10 × 10 9 50 51 5304 2.210 × 10 -22 4.001 × 10 -13 2.46 × 10 10 70 71 10224 3.294 × 10 -25 1.112 × 10 -14 6.38 × 10 11 100 100 20604 3.458 × 10 -28 2.539 × 10 -16 1.97 × 10 13

	n 10 11 K n 20 21	M n 264 3.667 × 10 -5 7.305 × 10 -4 Alg. 2 Error E n 924 2.374 ×	IF 6.05 × 10 1

Table 3 :

 3 Results in dimension d = 1 for f (x) = (x +) 2 = 0.05) 11 264 9.812 × 10 -43.779 × 10 -3 8,60 20 PG 21 924 1.539 × 10 -4 7.999 × 10 -4 21,7 EG (γ = 0.05) 21 924 1.253 × 10 -4 7.217 × 10 -4 24,1 30 PG 31 1984 4.426 × 10 -5 2.927 × 10 -4 40,5 EG (γ = 0.05) 32 1988 4.741 × 10 -5 3.027 × 10 -4 39,1 40 PG 41 3444 1.508 × 10 -5 1.297 × 10 -4 69,4 EG (γ = 0.05) 53 3712 8.086 × 10 -6 9.147 × 10 -5 94,8 50 PG 51 5304 7.485 × 10 -6 7.118 × 10 -5 102 EG (γ = 0.05) 87 6532 1.868 × 10 -6 3.315 × 10 -5 197

	n 10	SALT PG EG (γ	K n M n 11 264 9.430 × 10 -4 3.704 × 10 -3 8,78 Alg. 2 Error IF E n

Table 4 :

 4 Results in dimension d = 1 for f (x) = (sin(10x)) +

	n 10 20 30 40 50	SALT PG EG (γ = 0.05) 11 264 2.761 × 10 -1 6.338 × 10 -2 0,72 K n M n Alg.2 Error IF E n 11 264 3.107 × 10 -1 6.724 × 10 -2 0,68 PG 21 924 2.193 × 10 -2 9.543 × 10 -3 2,57 EG (γ = 0.05) 21 924 2.500 × 10 -2 1.019 × 10 -2 2,40 PG 31 1984 5.812 × 10 -3 3.355 × 10 -3 4,98 EG (γ = 0.05) 32 1988 6.261 × 10 -3 3.478 × 10 -3 4,80 PG 41 3444 1.898 × 10 -3 1.455 × 10 -3 8,72 EG (γ = 0.05) 53 3712 1.283 × 10 -3 1.115 × 10 -3 11,0 PG 51 5304 1.367 × 10 -3 9.951 × 10 -4 10,3 EG (γ = 0.05) 87 6532 2.411 × 10 -4 3.765 × 10 -4 24,5

Table 5 :

 5 Results in dimensiond = 2 for f (x, y) = (1x 2) 4 (1y 2) 4 using SALT-PG 10 -51.186 × 10 -4 4.77 × 10 1 20 441 26488 6.604 × 10 -14 3.090 × 10 -9 7.16 × 10 5 30 961 83328 9.212 × 10 -18 2.061 × 10 -11 6.06 × 10 6 40 1681 190568 3.656 × 10 -20 8.585 × 10 -13 9.61 × 10 8

	n 10 121 K n	M n 4048 1.529 × E n	Alg.2 Error	IF

observe that c k ≥ 1 since E(φ 2 k (Y)) = 1; in some cases, c k does not depend on k, see Section

n

using (1.3) and (H2) at the last equality.