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A new type of flow induced oscillation has been observed by placing a tethered cylinder
in a Hele Shaw cell. This novel instability is studied numerically and experimentally as
function of the Reynolds number and as function of the mass of the cylinder in Hele
Shaw cell such that the cylinder diameter to cell aperture ratio: D = 0.66). The cylinder
is found to oscillates above a Reynolds number Rec ≃ 20. This critical Re is much lower
than the threshold for Bénard–Von Kármán vortex shedding behind a fixed cylinder in the
same configuration. Close to the threshold, the growth rate of the amplitude varies like
(Re − Rec)

1/2 and the lack of hysteresis demonstrate that the process is a supercritical
Hopf bifurcation. The adjustement of the position of the cylinder by a Van der Pol
equation allows for the identification of the stiffness, the amplification coefficient and to
study the effect of the total mass: Forced oscillation is used to study their behavior and
their physical meaning is discussed using the pressure field. For dense cylinder, the CIV
is observed to end abruptly and new oscillations are observed when the Re is increased
above 110; this oscillation corresponds to Vortex Induced Vibration (VIV). If the mass
falls below a critical value, the CIV is not observed to vanish.

Flow–structure coupling, oscillatory instability

1. Introduction

Flow induced oscillations of slender structures facing a flow are of interest in many
domains of engineering such as the design of tubular structures of offshore platforms,
heat exchangers or chemical reactors (see for instance ??). Most previous experimental
and numerical fundamental studies often considered a rigid circular cylinder transverse to
a fluid flow with no lateral confinement and with only one degree of freedom perpendicular
to both the flow and to the axis of the cylinder (see for instance ???).

The present work deals, in contrast, with a tethered cylinder strongly confined between
two parallel plane walls: the confinement, characterised by the ratio between the cylinder
diameter D̄ and the cell aperture h̄, is equal to 0.66. This configuration corresponds to
important recent applications at lower Reynolds numbers such as the enhancement of
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mixing or heat exchange in microfluidic circuits (see ?) or the design of energy-harvesting
devices on a chip (?). Our experiments show that, when sufficiently confined, a cylinder
oscillates spontaneously when Re ≃ 20 (where the Reynolds number Re is defined using
the mean velocity and the aperture h̄). This is well below the threshold for Bénard–Von
Kármán vortex shedding (111 for this particular geometry).

This implies that the instability mechanism in the present experiments differs from
that of vortex induced vibrations reported in early studies. The latter considered dense
cylinders constrained elastically: their transverse position satisfies a forced damped har-
monic oscillator equation in which the driving force term is associated to the fluctuating
lift induced by vortex shedding.

Recent studies investigated related effects either at Reynolds numbers below the vor-
tex shedding threshold or for structures without a natural frequency. In the first case,
oscillations have been predicted numerically by ? and ?, but only if an external elastic
restoring force was present. In the second, ? considered a massless cylinder with no
restoring force: however, the Reynolds number was higher than here (100) so that vortex
shedding took place. Still at high Reynolds numbers and with no restoring force, exper-
iments by ? demonstrated that large amplitude vibrations occur below a critical value
of the mass; the same observation was made on transverse motions of the trajectory of
light cylinders rising in a stationary fluid by ?.
The effect of a weak confinement has been studied numerically by ? in the case where

the fluid is allowed to slip at the walls, and by ? in the no-slip case. In the latter study, a
slight amplitude decrease and a large frequency variation was observed. In a recent work,
? investigated numerically the effect of the confinement by studying the displacement
of a square cylinder strongly confined between two parallel walls (ratio between the side
of the cylinder and the distance between walls equal to 0.4). Regular oscillations are
observed for cylinders dense enough and are accounted for by vortex shedding; below
a critical mass, there is a second regime in which the motion is highly irregular with a
near continuum spectrum. No quantitative interpretation of these results was however
attempted.

The present study is focused on a thorough description and modelling of the instabil-
ity of a tethered circular cylinder in a strongly confined Hele-Shaw cell geometry and at
Reynolds numbers below the vortex shedding threshold. The experimental setup is de-
scribed in § 2 and the numerical procedure in § 3. The characteristics of the oscillations,
in both the permanent and transient regimes, are discussed in § 4. A dynamical system
approach is then used in § 5 to analyse these results: we found that the properties of the
system are well described quantitatively by the non linear Van der Pol equation. In § 6
these results are compared quantitatively to the free oscillations in the permanent and
transient regimes and the influence of the control parameters on the instability threshold
is investigated. Finally, § 7 is devoted to the physical interpretation of the coefficients
of the Van der Pol model: the coexistence of viscous and inertial effects is found to be a
key element leading to this hydrodynamic instability.

2. Experimental setup

The experimental setup is shown in figure 1: it consists of a Hele-Saw cell made of
two transparent parallel Plexiglas plates, inside which a fluid flows vertically downwards.
The lateral sides of the cell are also transparent allowing for the visualisation in the gap
of the cell. It has a constant aperture h̄ = 4.9 ± 0.1 mm and width W̄ = 90 ± 0.1 mm.
Note that, in this article, dimensional variables are displayed with an overbar (W̄ , h̄,...)
in contrast with dimensionless ones.
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Figure 1. Schematic view of the experimental setup.

A Plexiglas cylinder of diameter D̄ = 3.2 ± 0.1 mm is placed horizontally in the gap.
Its density ρ̄s = 1190 kgm−3 is close to that of water in order to reduce buoyancy
effects (see § 4 for a detailed discussion of the gravity effects). In order to minimise the
bypass flow at the ends of the cylinder, its length L̄ is almost equal to the width of the
cell (L̄/W̄ > 0.98) (see ?). The ends of the cylinder are attached by nylon threads of
diameter 0.1 mm to a fixed suspension point located close to the inlet (see figure 1). The
distance between this point and the cylinder is L̄s = 150 mm, i.e. much larger than the
aperture h̄ of the cell. In this way, the cylinder can only move in the direction y normal
to the cell walls (but the displacement can vary along z).

The motion of the cylinder in the aperture of the Hele-Shaw cell is analysed by a Pix-
elink computer controlled video camera at a constant frame rate of 22 fps (the resolution
is 20 pixels per mm). The displacement of the centre of the cylinder is determined using
the method of virtual image correlation (see ?). A virtual image of a disc is first created,
with a radius larger than the one of the cylinder in the experimental image and with a
grey level varying continuously from 1 (maximal value) at the centre to 0 at its border.
The location of the centre of the cylinder is then assumed to correspond to that of the
virtual disc when the correlation between the experimental image and the virtual image
is optimal. In some experiments, a second video camera was placed on the other lateral
side of the cell to verify that the axis of the cylinder remains parallel to the z axis. The
absence of rotation around the cylinder axis z has also been verified by observing the
motion of defects of the cylinder surface.

The fluid is sucked at the bottom of the cell at a constant flow rate by a gear pump
(Ismatec MCP-Z) and is then reinjected into the open bath at the top. The mean flow
is perpendicular to the axis of the cylinder (x direction) and the maximal flow rate is
500 mLmin−1. Two fluids are used: water and an aqueous solution containing 1 gL−1

of natrosol. The fluids have the same density but different viscosities. The viscosity
of water was estimated using a temperature measurement and tabulated values (see ?),
and is equal to µ̄ = 0.88 ± 0.05 mPa s. A Contraves low shear 30 viscosimeter was used
to measure the viscosity and to check the Newtonian nature of the natrosol solution.
In the range of shear rates accessible by the rheometer, i.e. 1 to 100 s−1, the viscosity
was found to be constant and equal to µ̄ = 1.28 ± 0.05 mPa s. In order to increase the
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Figure 2. Schematic two-dimensional representation of the numerical configuration.

optical contrast between the fluids and the transparent cylinder, a small amount of dye
(nigrosin, 0.1 gL−1) is added to the fluids.

3. Numerical procedure

The velocity and pressure fields as well as the forces on the cylinder were computed by
two-dimensional numerical simulations. A schematic view of the numerical configuration
is shown on figure 2.

The fluid is modelled using the incompressible Navier–Stokes equations with no-slip
boundary conditions on the walls and on the surface of the cylinder. A Poiseuille
parabolic velocity profile, constant in time, is imposed at the inlet and a stress-free
condition at the outlet. Like in the experiment, the motion of the cylinder is restricted
to the y direction. The cylinder is a rigid body and is not allowed to rotate. The motion
of the cylinder is given by the component along y of Newton’s second law (along x, the
hydrodynamic force is balanced by the tension of the thread).

These equations are solved in a strongly coupled way, using a method similar to the one
developed by ? and ?. In order to take suitably into account the fluid–cylinder coupling,
a single variational form is written on the whole domain, including both the fluid and the
cylinder. The constraint due to the rigid motion of the cylinder is handled by penalty,
and that due to the suspension threads by duality (the Lagrange multiplier corresponds
to the thread tension). In order to deal with the moving rigid domain, the problem is
written in an Arbitrary Lagrangian-Eulerian formulation (see ?). The advection term is
treated using a method of characteristics (see ?), and the variational problem obtained
is solved by means of the finite element solver FreeFem++ (see ?).

The aperture h̄, the mean velocity of the fluid Ū and the density of the fluid ρ̄f are
used to define the Reynolds number Re = ρ̄f Ū h̄/µ̄ and to make the equation and the
results dimensionless: the dimensionless diameter D is, for instance, equal to the ratio
D̄/h̄, and the dimensionless cylinder density ρs is the ratio of the density of the cylinder
by the density of the fluid. The dimensionless frequency f is defined by f = f̄ h̄/Ū and
is equal to the Strouhal number of the phenomenon when h̄ is used as the characteristic
length.

The size of the domain in the direction of the flow ranges from x = −5h to x = 7h
and it contains more than 6 000 nodes. In order to accurately describe the shape of the
cylinder and its evolution in time, the mesh exactly follows the motion of the cylinder
along the y−direction. Inside the fluid domain, the mesh is subjected to a displacement
which satisfies the right boundary conditions and ensures the non-degeneration of mesh
cells.



5

95

90

85

80

75

70

65

G
y
 (

p
ix

e
ls

)

43210
Time (s)

90

80

70

G
y
 (

p
ix

e
ls

)

43210
Time(s)

(a) (b)

Figure 3. Experimental variation of the transverse co-ordinate ȳ of the centre of the cylinder as
a function of time for two different Re. (a): Re = 25, (b): Re = 50. Continuous line: fit of the
experimental variation by a sine wave. Horizontal dotted lines: maximum possible amplitude
of the oscillation (cylinder getting in contact with the walls).

4. Observation and characterisation of the instability

Experimentally, when the flow rate is progressively increased from zero, the cylinder
moves towards a stable position half way between the walls. Then, for a Reynolds number
Re above 20, it starts to oscillate spontaneously in the y direction with its axis remaining
parallel to z. Figure 3 displays the experimental variation with time of the location ȳ of
the axis of the cylinder. The oscillation is regular and stable, and well fitted by the sine
function:

y(t) = A sin(2πft+ ϕ), (4.1)

where A and f are the amplitude and frequency of the oscillation (the phase ϕ takes
any value depending on the time origin). Even for Re well above 20 (see figure 3b),
the oscillation is still accurately fitted by a sine wave. The same fit is also valid for the
numerical results.

We tested experimentally the effect of of the gravity and of the drag component along
y by reducing the length to L̄s = 65 mm. The frequency at Re = 20 changes by less than
5%, and the amplitude by less than 10% (the discrepancies decrease with Re). We also
performed numerical simulation where both the gravity (along x) and the finite length
(L̄s = 150 mm) of the threads are taken into account. At Re = 20, the frequency increase
and the amplitude decrease compared to the simulations without gravity and with an
infinite thread length are less than 6% (the discrepancies also decrease with Re). This
confirm that gravity and the drag on the cylinder have only a small influence in our
experiments.

Figure 4 displays the variations of the dimensionless amplitude and frequency (or
Strouhal number) of the oscillations as a function of Re. Using this normalisation, the
experimental measurements performed with the two fluids collapse onto a single curve,
which is confirm that the normalisation is relevant. The numerical threshold and fre-
quency (solid lines in Fig. 4) also agree within 25% with the experimental measurements
without requiring any adjustable parameter. This difference may be partly accounted for
the three-dimensional effects: the shearing of the thin fluid layer between the lateral wall
and the end of the cylinder results in a viscous force on the latter. Drag forces (along
y) on the suspension threads may also influence the dynamics of the cylinder. Gravity
and drag on the cylinder can only explain a small part of this discrepancy, as discussed
in the previous paragraph.

The amplitude of the oscillations increases steeply with Re above the threshold and
then tends towards a constant value reflecting its limitation by the walls, for the density of
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Figure 4. Dimensionless amplitude A and frequency f measured experimentally and numer-
ically at ρs = 1.19. ◦: experiments using water, �: experiments using an aqueous natrosol
solution, solid line: numerical results. Dotted line: maximal possible amplitude of the oscilla-
tion.
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Figure 5. Time variation of the displacement y in the transient regime. Experiments: (a) Re

is reduced from 27 to 17 at t = 0; (b): Re is increased from 17 to 27 at t = 0. Numerical
simulations: (c) Re = 14, (d) Re = 22. Horizontal dotted lines: maximal possible amplitude.
Grey dotted lines in (c) and (d): fit with (4.2)

the cylinder ρs = 1.19 corresponding to the experiments (for other density, see figure 12).
The Strouhal number decreases weakly with Re which corresponds to a nearly linear
increase of the dimensional frequency f̄ with the mean flow velocity (or equivalently
with the flow rate).

The dynamics of the instability has been investigated by decreasing or increasing step-
wise the flow rate (and therefore Re) and studying the subsequent transient regime (see
figures 5a and b). Equivalent information is obtained from the numerical simulations by
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Figure 6. Variation as a function of Re of the frequency of the transient regime fl and growth
rate ξ of the free oscillations as obtained from numerical simulations; ▽: direct simulation of free
oscillations; N : values deduced from the characteristics of forced oscillations; vertical dashed
line: resonance frequency. Density of the cylinder ρs = 0.01.

assuming that the cylinder is released from an off-centre position at a Reynolds number
Re < Rec (see figure 5c) or in the mid-plane of the cell for Re > Rec (see figure 5d).

Below Rec, damped oscillations of the cylinder are observed and it finally comes to
rest half way between the walls. At a Reynolds number larger than Rec, the cylinder
oscillates spontaneously with an amplitude increasing initially with time before reaching
a constant value. In the experiments, there is, in addition, a small (still unexplained)
overshoot at the end of the initial phase (see figure 5b).

When the amplitude is small (i.e. less than 10% of the aperture), the variation of y
during the initial phase can be fitted by:

y(t) = A0 sin(2πflt+ ϕ) exp(ξt), (4.2)

in which fl and ξ are respectively the frequency in the linear regime and the growth rate.
The coefficients A0 and ϕ depend on the choice of the time origin and have no physical
meaning. The variation of the parameters fl and ξ as a function of the Reynolds number
have been obtained from the numerical simulations described above and are shown in
figure 6 (▽ symbols). The frequency fl is almost independent of Re while the growth
rate increases monotonously with Re from negative to positive values. These different
features show that, close to Rec, the system can be considered as a weakly non linear
oscillator with a well defined instability threshold.

The most common mechanism accounting for such flow induced oscillations in open
geometries is the Bénard–Von Kármán vortex shedding instability. The possibility of
its occurrence has been tested in the present case by keeping the cylinder at a fixed
position and visualising the flow by means of a fluorescent dye (eosin) injected in a half
section; a laser sheet perpendicular to the cylinder axis illuminates the downstream part
of the flow. In these latter experiments, flow oscillations occur only above a threshold
Reynolds number ReBVK = 120± 10. Numerically, the corresponding threshold is equal
to 111, which is similar to the value ReBVK = 116 inferred from the interpolation of
the numerical data obtained by ?. The confinement increases therefore significantly the
threshold of the Bénard–Von Kármán instability compared to its value in open flows
(ReBVK = 47). This confirms previous results by, for instance, ???. To conclude, ReBVK

is much larger than the threshold values Rec ≃ 20 measured here, so that a mechanism
involving vortex shedding is unlikely; in § 7 we will confirm that the instability is not
due to vortex shedding.
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of the frequency f obtained from numerical simulations of the forced oscillations of the cylinder.
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5. Dynamical system approach in forced oscillations regime.

In this §, we use a dynamical system approach to account for these observations. More
precisely, we establish a differential equation satisfied by y and depending on a small
number of parameters: these are determined by the results of numerical simulations of
forced oscillations at different frequencies. This technique has been widely used both
experimentally (see for example ??) and numerically (see for example ??). Practically,
the displacement of the centre of the cylinder is forced to vary sinusoidally with time
(y(t) = A sin(2πft)) and the simulations allow one to compute the total hydrodynamic
lift force Fy(t) on the cylinder. All numerical simulations are performed at a same
Reynolds number Re = 20 (slightly above the numerical value of Rec).

5.1. Force response to a small amplitude excitation

We first study the case in which the amplitude A is small enough (5 × 10−4) to remain
in the linear regime. In this case, the lift force Fy varies also sinusoidally with:

Fy = F1 sin(2πft+ φ1). (5.1)

The phase φ1 is chosen such that F1 > 0. The variations of the amplitude F1 and of the
phase φ1 of the force Fy as a function of the frequency f are displayed in figure 7.

In the low frequency limit, the instantaneous lift force Fy tends toward that of a fixed
cylinder at the same location. The limiting value φ1 = π of the phase (see right part
of figure 7) implies that, for small amplitudes A, Fy is in a direction opposite to the
displacement and proportional to it. In this case, the relation between Fy and y may be
written:

Fy = −ky. (5.2)

The parameter k represents the effective stiffness of the system and its value deduced
from the numerical simulations is equal to 95. Figure 8 displays the variation of Fy with
y obtained from a set of simulations for a fixed cylinder: it confirms the above results
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and shows that equation (5.2) is valid up to y ≃ 2 × 10−2 (vertical lines). For larger
displacements, the modulus of the force levels off and then decreases.

In the opposite high frequency limit, F1 is approximately proportional to f2 (thick
solid line in figure 7) while the phase shift φ1 becomes zero. In the linear regime, Fy is
therefore proportional to the second derivative of y, i.e. to the transverse acceleration of
the cylinder, with :

Fy = −maÿax. (5.3)

The proportionality coefficient ma in equation (5.3) represents an added mass associated
to the kinetic energy of the fluid; ma is related to F1 and A by: F1 = ma(2πf)

2A.
Using a regression on the four last high frequency points in Fig. 8 leads to ma = 0.68 or
equivalently to an additional density ρa = 2.0.

The mass and stiffness force terms do not induce any net exchange of energy between
the flow and the cylinder: the average over one period of the product of either of these
terms by ẏax (representing the mean power exchanged) is indeed equal to zero. If no
other term is present, the phase φ1 can only be equal to 0 or π, which is not in agreement
with figure 7: additional dissipative force terms must therefore be introduced. A logical
choice is to add a term proportional to the velocity ẏax: we assume therefore the following
expression of the global lift force:

Fy = −maÿax − α0ẏax − ky. (5.4)

The coefficient α0 is determined by equating the expressions of the average energy ex-
change over one period deduced from equations 5.4 and 5.1. One obtains:

α0 =
F1

2πfA
sin(φ1), (5.5)

in which F1 and φ1 are given by the simulations of forced oscillations. The sign of α0 is
therefore the same as that of sin(φ1) and characterises the stability of the system: for
α0 > 0, the energy of the cylinder increases during one period (unstable case) while,
for α0 < 0, it loses energy (stable case). In the phase variation curve in figure 7, one
sees that sin(φ1) (and therefore α0) is negative at high frequencies (above f ≃ 1.4) and
positive at lower ones.
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α

Figure 9. Variation of the amplification coefficient α with the amplitude A of a forced oscillation
of the cylinder. Oscillation frequency f = 1.46; Re = 20. N: numerical simulation results, solid
line: parabolic fit.

5.2. Force response to a large amplitude excitation

As the amplitude A is increased, the response of the lift force becomes non-linear and
equation 5.4 is no longer valid. In order to analyse its variation with time, the force is
decomposed into a Fourier series:

Fy(t) =
∞
∑

q=1

Fq sin(2πqft+ φq), (5.6)

in which the phases φq are chosen so that Fq > 0.

As for the linear regime, the coefficient α generalising α0 is estimated numerically
by computing the average power transferred to the cylinder over one period. Using the
decomposition of Fy into a Fourier series leads to: α = (F1/2Aπf) sin(φ1). The variation
of α with A, determined by numerical simulations for a fixed frequency, is displayed in
figure 9; it is well fitted by:

α = α0 − (β/4)A2, (5.7)

in which α0 is the value in the low amplitude regime. The force term α0ẏax of equation 5.4
becomes then, still for sine wave forced oscillations:

Fy = (α0 − βy2)ẏax. (5.8)

At different frequencies, the variation of α with respect to the amplitude A is similar: in
all cases, the coefficient characterising the gain of energy decreases with the amplitude
up to a critical value above which energy must be input externally to keep A constant.

As the amplitude A increases, the stiffness k also varies. Figure 8 shows that, outside
the linear domain sketched by the two vertical dotted lines, the effective stiffness k
decreases with A. However, this variation is small enough to change quantitatively but
not qualitatively the dynamics of the cylinder. It is shown in the following sections
that the characteristics of the oscillation are well approximated by assuming a constant
stiffness k.



11

60x10
-3

50

40

30

20

10

0

A

2220181614
Re

Figure 10. Amplitude of the free oscillations in the stationary regime as a function of Re for
ρs = 0.01. ▽: numerical simulation results for free oscillations; N: predictions from the Van der
Pol equation (6.5); solid line: fit by a square root variation.

6. Free oscillations.

6.1. Equation of motion of a free cylinder and Van der Pol oscillator.

For a free cylinder, the global hydrodynamic force Fy on the cylinder is related to its
acceleration ÿax by Newton’s second law:

msÿax = Fy. (6.1)

Moreover, the relations (5.4) and (5.8) between Fy and the displacement y and its time
derivatives remain valid. Equation 6.1 becomes then:

(ma +ms)ÿax − (α0 − β(y)2)ẏax + ky = 0, (6.2)

which shows that the position of the cylinder verifies the classical Van der Pol equation
(see for example ??). Close to the threshold, the oscillation is quasi-sinusoidal. The
frequency fl and the growth rate ξ of the oscillations predicted by equation (6.2) are
then related to its parameters by:

fl =
1

2π

√

k

ma +ms
, (6.3)

and:

ξ =
α0

2(ma +ms)
. (6.4)

Note that, due to the influence of the mass ms of the cylinder, the frequency fl of the free
oscillations is lower than the resonance frequency fr =

√

k/m/(2π) for forced oscillations
and decreases with ms.

The frequency fl and the growth rate ξ can then be predicted by using in (6.3) and
(6.4) the values of k, ma and α0 deduced in section 5 from the simulations of forced
oscillations. These values are compared in figure 6(a,b) to those obtained from direct
simulations of free oscillations in transient regimes (see figures 5c-d). The two sets of
values are in good agreement without requiring any adjustable parameter; this confirms
the validity of the above description.

In the Van der Pol equation, the sign of α0 determines whether the system tends
towards a fixed point or a limit cycle in the permanent regime: if α0 < 0, the cylinder
remains motionless half way between the walls, and if α0 > 0, it oscillates spontaneously.
In this latter case, the amplitude A of the oscillation is then limited by the non-linear
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term −β(y)2ẏax of (6.2). In the quasi-sinusoidal stationary regime, A is given by:

A = 2
√

α0/β. (6.5)

Like fl and ξ, the amplitude may therefore be computed by using in equation (6.5)
values of α0 and β obtained from numerical simulations of forced oscillations. In the
same range of Reynolds numbers as above, these values have a similar variation as those
corresponding to free oscillations (figure 10). Above the threshold, the variation of A is
well-fitted by a variation proportional to

√
Re − Rec.

Overall, the free oscillations of the cylinders display several clear-cut features: weak
variation of the frequency near Rec, continuous increase of ξ from negative values below
Rec to positive ones above and amplitude increasing as

√
Re − Rec. These features are

all characteristic of a supercritical Hopf bifurcation, which is the usual bifurcation for a
system described by a Van der Pol equation.

The expressions of the frequency, growth rate and amplitude given above are only
valid in the quasi-sinusoidal regime. It is possible to verify that the oscillations are
quasi-sinusoidal directly from the Van der Pol equation, by computing the quality factor
Q = 2πfrma/α0. Near the threshold, the quality factor is very high (Q = 23 at Re = 20)
as expected and the oscillation is quasi-sinusoidal at the frequency fl both in the transient
and permanent regime. For Re farther from the threshold, the quality factor decreases
(Q = 2.4 at Re = 30) but remains large enough to obtain quasi-sinusoidal oscillations.

It must finally be pointed out that the Van der Pol equation involves directly the
transverse displacement y from equilibrium and its first and second time derivatives
instead of a typical velocity of a wake like in the study of vortex-induced vibrations by
?.

6.2. Influence of the mass of the cylinder on the stability of the free oscillation.

As mentioned above, a free cylinder oscillates spontaneously at the frequency fl =
1/2π

√

k/(ma +ms) only if α0 > 0 (or equivalently sin(φ1) > 0). The range of values of
Re for which this condition is satisfied and its dependence on ms may be inferred from
figure 11 representing sin(φ1) as a function of frequency at different Reynolds numbers.
For Re = 14 (case a), sin(φ1) is always negative even if the frequency fl is shifted

toward lower values by increasing the mass ms: the cylinder remains therefore at rest
regardless of ms.

For Re = 16.5 (case b), one has still sin(φ1) < 0 at fr thus a massless cylinder does
not oscillate. However, when fl is reduced by increasing ms, sin(φ1) becomes positive
and the oscillations appear. This means that the increased inertia of denser cylinders
reduces the threshold Reynolds number Rec.

Increasing again Re to 20 (figure 7) or 30 (figure 11c), sin(φ1) is positive at all fre-
quencies lower than fr: the cylinder oscillates regardless of its density.

For Re = 50 (case d), sin(φ1) is positive for f = fr and negative at low frequencies.
In contrast with case b, dense cylinders remain stable while the massless one oscillates.
The effect of the mass on the oscillation is also illustrated in Fig 12 which shows the

variations of the amplitude and frequency as function of the Reynolds number. As men-
tioned in the previous paragraph, cylinders with a density above 4 (triangles, crosses and
diamonds in Fig 12) stop to oscillate when the flow velocity is increased. This regime
ends when the Reynolds number meets the critical Re above which vortex shedding ap-
pears (110 for this geometry). The cylinder then oscillates anew but with a much lower
amplitude (A ∼ 0.1). In the same time, the frequencies lock in with the natural frequency
of the system and the reduced frequency f becomes constant and close to 1.
The extent of the regime over which an extinction of the oscillation is observed increases
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Figure 11. Variation of the amplitude F1 (•) and the sine of the phase φ1 (�) of the hydro-
dynamic force as a function of the forced oscillation frequency f at different Reynolds numbers
Re. Amplitude A = 5× 10−4. (a): Re = 14, (b): Re = 16.5, (c): Re = 30, (d): Re = 50.

Figure 12. Influence of the mass of the cylinder on the variation of the amplitude and the
frequency of the free oscillations as a function of Re (from numerical simulations). (a): ampli-
tude, (b): frequency (only defined if the amplitude is not vanishing). �: ρs = 0.01; ◦: ρs = 1.19;
×: ρs = 4; ⋄: ρs = 5, +: ρs = 7, △: ρs = 15. Dashed horizontal line: maximum possible
amplitude. •: frequency of the instability flow downstream a fixe cylinder.

with the cylinder mass. Below a critical density, the oscillations are not found to stop; a
continuous increase of A and decrease of f are observed. In these cases, the oscillations
are not found to lock in with the natural frequency.
The different behavior of the cylinder with the flow conditions and its mass are displayed
in Fig.13. The extinction domain separating the confined (filled circles) and vortex
(crosses) induced vibration regimes (empty circles in Fig.13) clearly highlight the exis-
tence of a critical mass below which both regimes coexist (for ρs between 4 and 6) or
only the CIV regime.

The variations of the amplitude and the frequency are displayed in figure 12, for both
the low Re (< 50) on which this article focuses and higher Re up to above the instability
downstream a fixe cylinder. At low Re, this figure illustrates the results of the forced
oscillations discussed in this §: the threshold Reynolds number decreases from 19 to 15
as the density ρs varies from 0 to 15, and the frequency decreases when the density
increases (see (6.3)). For Re between 20 and 30, the amplitude follows the same trend
for all densities. For the densest cylinder (ρs = 15), the amplitude reaches a maximum
for Re ≃ 30 and the cylinder is again stable for Re > 50. The disappearance of the
oscillations also occurs for ρs = 5 and ρs = 7 at a Re which decreases when the density
increases. At a Re close (but lower than) the threshold of the oscillation of the flow
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Figure 13. Phase diagram of the behaviour of the cylinder for different Re and ρs, obtained
numerically. ◦: cylinder stable in the midplane of the walls, •: confined regime oscillations, +:
oscillations induced by vortex emission. The grey regions are guide for the eye.

downstream a fixe cylinder, these cylinders oscillate again, at a very low amplitude and,
importantly, at a frequency very close to the one of the flow instability. This is in
contrast with the behaviour of the cylinders of low density (ρs = 0.01 and Re = 1.19)
which oscillate for all frequencies above the (first) threshold Rec, and which seems to be
unaffected by the flow instability. The difference of the behaviour at low (< 50) and high
Re confirms that the instability on which we focus in this article is not linked to a flow
instability downstream a fixe cylinder.

The figure 12 allows us to define three different behaviours of the cylinder. The cylin-
der may remain stable in the midplane of the walls, or may oscillate. Two regimes of
oscillations are observed: a first one, called here ’confined regime oscillations’, has a fre-
quency which depends on the density in agreement with (6.3), and a second one, called
here ’vortex shedding induced oscillations’, where the frequency is almost constant for
all density and linked directly to the flow downstream a fixe cylinder. The behaviour of
the cylinder as a function of Re and ρs is displayed in figure 13. The cylinder is stable
at very low (<∼ 15) Re and at intermediate Re for high densities. The confined regime
oscillations is observed at low Re (between ∼ 17 and ∼ 40) for all densities, and at all
the reported Re for low densities (< 3). At high densities and Re, the cylinder oscillates
due to the instability (or the low stability) of the flow downstream a fixe cylinder. Fig-
ure 13 is a first attempt to determine the behaviour at high Re ; the transitions to the
restabilisation and to the vortex shedding emission will be addressed in a future study.

7. Hydrodynamic interpretation of the coefficients of the Van der Pol

equation.

The equation (6.2) accounts well for the growth (or decay) of the oscillations with time
and for the relation between measurements on forced and free oscillations. However, this
global dynamical system approach does not provide information on the physics of the
flow at the local scale. In this part, we investigate the relation between the coefficients
of the equation and the characteristics of the flow field.

7.1. Origin of the stiffness coefficient

The stiffness coefficient - defined by equation (5.2)- characterizes the restoring force exerts
on a fixed cylinder away from the center of the Hele Shaw cell. As seen in figure 8, the
total force Fy is mainly due the pressure component: its value can be interpreted from
the pressure field displayed in figure 14(b,d) for Re = 1 and 20. The pressure variation
is particularly important in the region separating the cylinder and the walls, referred to
as channels in the following.

For Re = 1, there is a fore-aft symmetry of both the velocity and the pressure gradient
(see figure 14a,b) because the viscous effects are dominant. Due to this symmetry, the
lift force Fy vanishes (almost), regardless to the position of the cylinder in the gap. This
is no longer the case for Re = 20 (see figure 14c,d). In that case, the pressure on the
surface of the cylinder is higher in the upper (narrower) channel than in the lower (larger)
channel, for all values of x (between −D/2 and D/2). As a result, the global resultant
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Figure 14. Numerical simulation of the flow (from left to right) around a fixed cylinder at
Re = 1 and Re = 20. (a) Colour bar (resp. grey levels) velocity component vx at Re = 1;
continuous lines: streamlines. (b) Colour bar (resp. grey levels) pressure field at Re = 1. (c)
Colour bar (resp. grey levels) velocity component vx at Re = 20; continuous lines: streamlines.
(d) Colour bar (resp. grey levels) pressure field at Re = 20.

force is non zero and oriented downwards: it acts as a restoring force, in agreement with
figure 8.

Because the pressure is almost uniform upstream and downstream the cylinder, the
higher pressure at a given x in the upper (narrower) channel can be explained by the
fact that the pressure gradient is more symmetrical about the axis x = 0 in this later
channel. The asymmetry along y in a channel is indeed due to inertial effects, and is
more pronounced when Re increases. The local Re is significantly higher in the lower
(larger) channel than in the upper (narrower) one due to larger local width and velocity,
which explains the observed pressure field at Re = 20.
At lower values of the dimensionless diameter D, the result might have been different

as shown by ? for D = 0.2. In this case, a contribution to the force due to the curvature
of the velocity profile leads to two symmetrical additional equilibrium positions which
are not in the mid-plane between the walls.

7.2. Added mass

Forces proportional to the acceleration of a solid body in a fluid are classical in fluid
dynamics. Such forces are partly due to the acceleration of the fluid, and are thus
observed even in irrotational flows. For an irrotational fluid without base flow, the
additional density can be estimated numerically, and is equal to ρa = 1.44 at y = 0. This
is lower than the values ρa = 3 calculated from the stiffness and the resonance frequency.
It also differs from the value ρa = 2 deduced from the forced oscillations at f = 10 (using
ma = F1/(A(2πf)

2)). These differences may be due to the relatively low value of Re or
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Figure 15. (Colour online) Maps of the pressure perturbation δp(x, y) induced by an upwards
motion of the cylinder at a velocity ẏax = 0.013, as a function of Re (from numerical simulations
of forced oscillations at f = 0.2). (a) Re = 1, (b): Re = 20, (c): Re = 50, (d): Bernoulli’s
pressure difference term for Re = 20.

to the influence of the base flow. Other authors have also reported values of the added
mass differing from the potential case for vortex-induced vibrations (see ?).

7.3. Destabilising force term.

Here, we analyse the origin of the term α0ẏax by considering the variations of pressure
δp(x, y) = p(x, y)− p0(x, y) between the case of a forced oscillation (p(x, y)) and that of
a static cylinder p0(x, y). The frequency f = 0.2 is low enough so that the influence of
the added mass is negligible; the pressure field corresponds to a transverse location y = 0
of the cylinder at which the stiffness term ky becomes zero. Figures 15a-c display the
pressure perturbations corresponding to three different Reynolds numbers (the force Fy

on a fixed cylinder at y = 0 vanishes due to the symmetry, and the use of the perturbation
of the pressure δp instead of the pressure p is justified by the clarity of the figure).

At the lowest Reynolds number Re = 1 (case a), δp is positive above the cylinder
and negative below it (see figure 15a): the orientation of the resultant force is therefore
opposite to the cylinder velocity so that α0 is negative and the system is stable. In this
case, due to the linearity of Stokes equation, the force is equal to the Stokes drag on a
cylinder moving in a fluid at rest, which always opposes the motion.

For Re = 20 (case b), two additional lobes appear downstream the cylinder: their
signs are opposite to that of the previous ones and the magnitude of the corresponding
pressure variation is larger: the resultant force is then in the same direction as the
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cylinder velocity. In this case, α0 is positive (for f = 0.2) and the oscillation is amplified
(at least if fl = f).

For Re = 50 (case c), the downstream lobes disappear while the upstream ones are still
present. The pressure is therefore again higher above the cylinder than below, leading
to a resultant force in the direction opposite to the cylinder velocity. As a result, α0 < 0
(for f = 0.2) and the cylinder is again stable if fl = f , which corresponds to a cylinder
of a large mass. The reduction of the downstream lobes may be due to the recirculation
zone present behind the cylinder in the base flow.

These results show that the pressure distribution strongly depend on the Reynolds
number and, therefore, on the influence of inertia. As a first approach, we tried to
estimate its effect by the Bernoulli pressure theorem leading to: δpB ≃ −V b.v in which
V b and v are the velocities for the base and the perturbated flows respectively (this is
only a rough approximation because of the influence of viscous forces, in contrast with the
assumptions of the theorem). Low and high pressure regions of the same sign as in the
downstream lobes for Re = 20 appear indeed. However, no upstream lobes are observed
and, moreover, this effect should be stronger for Re = 50 instead of disappearing. More
refined models taking into account viscous forces are therefore needed.

It is worth noticing that the interpretation of the destabilising term, like that of the
effective stiffness and the added mass, does not involve vortex shedding.

8. Conclusion

This paper reports an experimental and numerical study demonstrating the existence
of a novel hydrodynamic instability observed when a tethered cylinder is placed in narrow
gap. This instability appears above a critical Reynolds number Rec of the order of 20: this
threshold far below the critical Reynolds number above which vortex induced vibration is
observed. Close to the instability threshold, the position of the cylinder y verifies a Van
der Pol equation, with a linear dissipative term that changes of sign at the threshold.
The lack of hysteresis, the square root variation of the amplitude and the continuous
increase of the growth rate with Re demonstrate the Hopf like nature of the bifurcation.

The motion of the cylinder is described by three parameters: a stiffness, a mass and
a destabilizing terms. The stiffness term has a purely hydrodynamic origin and results
from the confinement of the flow. The mass term includes the mass of the cylinder (which
may be zero without suppressing the oscillations) and the hydrodynamic added mass.
The oscillatory regime is determined by the sign of the third term which is proportional
to the velocity.

At low Reynolds numbers, one has only a dissipative viscous drag force leading to
damping. At higher Re values, the term changes sign and oscillations may appear: this
results from inertial effects but simple explanations in terms of a Bernoulli pressure do
not provide a satisfactory picture. Contrary to vortex shedding, the destabilizing force
results from subtle tiny variations of the local pressure distribution in the region between
the cylinder and the walls. These variations reflect a subtle balance between inertial and
viscous effects which depends on the Reynolds number.

For dense cylinder, the confined induced regime ends abruptly and, if the Reynolds
increases, new oscillations are observed as soon as the BVK vortex shedding appears.
Below a critical mass, oscillations are not observed to stop: future work will study the
effect of the vortex shedding on this regime.

As mentioned above, the present work deals with a confined cylinder at low Reynolds
number. Further studies should attempt to relate these effects to other works using
less confined geometries and/or involving vortex shedding. This may be achieved by
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increasing the Reynolds number beyond the onset of the Bénard–Von Kármán instability
and to reduce the confinement by decreasing the diameter of the cylinder.
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