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Abstract 

A symmetrized version of the recently developed refined Robert-Bonamy formalism (Q. Ma, 

C. Boulet and R.H. Tipping, J. Chem. Phys. 139,034305 (2013) ) is proposed. This model 

takes into account line coupling effects and hence allows the calculation of the off-diagonal 

elements of the relaxation matrix, without neglecting the rotational structure of the perturbing 

molecule. The formalism is applied to the isotropic Raman spectra of autoperturbed N2 for 

which a benchmark quantum relaxation matrix has recently been proposed. The consequences 

of the classical path approximation are carefully analyzed. Methods correcting for effects of 

inelasticity are considered. While in the right direction, these corrections appear to be too 

crude to provide off diagonal elements which would yield, via the sum rule, diagonal 

elements in good agreement with the quantum results. In order to overcome this difficulty, a 

re-normalization procedure is applied, which ensures that the off-diagonal elements do lead to 

the exact quantum diagonal elements. The agreement between the (re-normalized) semi-

classical and quantum relaxation matrices is excellent, at least for the Raman spectra of N2, 

opening the way to the analysis of more complex molecular systems. 
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I. INTRODUCTION 

As is well known, within the binary collision and impact approximations, the spectral 

density may be written in terms of a relaxation matrix W, which contains all the dynamics of 

the active molecule-bath interactions and which is generally not diagonal within the line 

space.1 At low perturber pressures, when the isolated line approximation is applicable, only 

the diagonal elements are important; these define the Lorentzian line widths ( k ) and shifts. 

At higher pressures (depending on the distance between adjacent components), the lines 

overlap and the off-diagonal elements of the W matrix can no longer be neglected since they 

lead to line mixing effects, i.e. transfer of intensity among the various lines. 

Therefore, determination of the whole relaxation matrix W (i.e. including its non-

diagonal elements) is essential. Most of the theoretical analyses have been based on fitting or 

scaling laws, and calculations from first principles starting from a given potential energy 

surface appeared only recently, thanks to progress in computing power. Of course, a full 

quantum theory, at the Close Coupling (CC) level is the most accurate approach. However the 

very large number of coupled channels involved render CC calculations unfeasible for 

complex molecular systems except for those consisting of two diatomic molecules (in limited 

situations2,3) or even simpler ones.4-6 In an attempt to overcome this difficulty, alternative 

approximate theories have been developed, either purely classical7 or semi-classical.8-10 

However, it can be reasonably claimed that the calculation of the whole relaxation matrix for 

complex molecular systems, starting from the knowledge of the intermolecular potential 

remains an open problem. 

If one considers only the diagonal elements of W, until recently, it was believed that the 

ultimate refinement of the Anderson-Tsao-Curnutte theory, known as the Robert-Bonamy 

formalism,11 can treat molecule-molecule systems reasonably well. However a recent series of 

papers have shown that this can been achieved only if the intermolecular potential is adjusted. 
12,13 When there is no room to adjust the potential (as in those cases where the potentials are 

accurately known), the RB formalism significantly overestimates the halfwidths, at least for 

the systems investigated in these works. In a recent paper,14 we have shown that part of that 

deficiency was due to an oversimplification of the RB formalism: the neglect of the non 

diagonality (within the line space) of the matrix elements of the cumulant expansion of the 

Liouville scattering operator . By removing this approximation, i.e. by including line 

coupling into the formalism one obtains better results, at least for the calculated halfwidths of 

the Raman Q lines of the N2-N2 pair, for which benchmarking CC results were available. 12,15 
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Moreover it becomes possible, with this new formalism to calculate not only the diagonal 

elements of W but also its off-diagonal elements as well, giving us an opportunity to propose a 

method allowing line mixing effects to be considered for complex molecular systems (like a 

mixture of polyatomic molecules). In the present paper, we will still test the new formalism 

on the Raman isotropic spectra of N2 which is now possible after recent fully quantum 

calculations of W.16 

Sec. II gives a brief summary of the symmetrized refined RB formalism which is then 

applied to the N2-N2 system with a particular emphasis on the various rules that must be 

verified by the non-diagonal elements. As will be shown, the semi-classical frame leads to 

some deficiencies in the formalism. Sec. III and IV propose a number of correction schemes 

in order to obtain a very reasonable agreement with the quantum data. 

 

II. THEORY 

A. General expressions 

As is well known, within the binary collision and impact approximations, the spectral 

density can be written as:1 

, 0

1 1
( ) Im l k k

k l

F d l k d
L iW

 
 


   (1) 

where 
(2 1) i

k

i
Ek

k

j
e

Z
 

   is the population of the initial level of the transition  ≡ → , 

dk the reduced matrix element of the tensor coupling matter and light (assumed to be real) and 

L0 the diagonal matrix of transition frequencies. Eq. (1) which was used in the quantum study 

presented in the Ref. 16 is based on the Gordon’s convention4 since the population k  

appears in that equation. Conversely, the formalism developed in Ref. 14 is based on the Ben-

Reuven’s convention17 and uses, for example, the matrix element of the density operator, 

exclusive of the degeneracy factor /
i
kE

k e Z  . Moreover, in the following, we will 

consider a symmetrized version of the formalism previously developed in Ref. 14. With a 

symmetrization of the density matrix,18 Eq. (1) can also be written as: 

, 0

1 1
( ) Im l l k k

k l

F d l k d
L iW

  
 


      (2) 

The correspondence between the two conventions may be quickly retrieved as shown in 

Appendix A. In the following, numerical calculations will be made starting from Eq. (2), ,l kW  
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matrix elements will be then transformed into ,  elements in order to compare with the 

quantum results of Ref. 16. 

We have shown in Ref. 14 that a correct way of applying the cumulant expansion, based 

on a new choice of the implied average, allows line coupling effects to be taken into account. 

Following Ben-Reuven17 we define a basic vector of the line space by: 

    -
| , (-1) ( , - ) |

i f

i ij m

J f i f i J f i
m m

fi JM C j j J m m M fm mk i . (3) 

Then, a matrix element of the relaxation matrix  may be expressed in terms of the average 

of the Liouville scattering operator  over the internal degrees of the bath molecule: 

,min

' ', , 2
0

1 ˆ2 ( ) { , | | , }.
2 ( )

kin

c

Eb
f i fi l k kin kin c i i f f J J

B cr

n v db
W W dE E e b dr f i JM S f i JM

c k T dr
   



 


           

 (4) 

As detailed in appendices A and B of Ref. 14, Ŝ   is expressed via a second order 

cumulant expansion and a refined definition of the average <…>. This definition must be 

adapted to the symmetrized version of the formalism. We give this in appendix B together 

with some elements allowing to build the symmetrized formalism by following the procedures 

detailed in Ref. 14. 

 

B. Application to the autoperturbed N2 isotropic Raman Q branch 

Recently, we have reported a quantum calculation of the corresponding W matrix based 

on the potential energy surface (PES) of Ref. 19. Using the same potential, we can check the 

accuracy of the new formalism by comparing our results with those of Ref. 16. Since the PES 

of Ref. 19 does not contain any vibrational dependences, S1 disappears. Moreover for 

isotropic Raman Q branches (labelled here by a single quantum number since ji = jf ≡ ), 

within the rigid rotor approximation, S2 is purely real, so that a matrix element of  may be 

simply written as: 

   


     ' ' '2
1 1 1 1 1 1 1 1
, ; ( ) ( ) ' , ;

2

n v
W j j T Q j W Q j j W j j j T

c
 (5) 

where the cross-section , ; 	 includes a Boltzmann average over the initial relative 

kinetic energy: 

 1 1 1 12 0

1
( ' , ; ) ( ' , ; ) exp( / )kin kin B kin kin

B

j j T j j E E k T E dE
k T

 


    (6) 
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Cross-sections were calculated over a large grid of kinetic energies , Ekin/kB : 50, 100, 150, 

200, 250, 296, 300, 350, 400, 450, 500, 600, 800, 1000, 1200, 2080 and 2400 K. 

For a given kinetic energy, the cross-section contains an average over all collisional 

trajectories labelled by the distances of closest approach rc : 

1 1( ' , ; )kinj j E    


   2

1 1

,

( , )

' 1 1
2 ( ) ' | |c kin

c min

S r E

c j j
r c

db
dr b j e j

dr
. (7) 

As detailed in the previous paper,14 after all the matrix elements of 2Se  within the line space 

are available, it is easy to calculate the whole relaxation matrix. The intermolecular potential, 

and consequently 2Se do not allow interconversion between ortho and para species. As a 

result one can divide the whole line space into two independent subspaces corresponding 

respectively to even and odd j1 lines. By setting their limits respectively to j1 = 30 and j1 = 31 

we have calculated two 16x16 sub-matrices of W . Here we only present matrices 

corresponding to ortho-N2. Table 1 gives the matrix elements 1 1( ' , ; )kinj j E  for a given 

kinetic energy. 

As expected the matrix is symmetric. Consequently, after averaging over the kinetic 

energy (cf. Eq. (6)), the non -diagonal elements will verify the detailed balance relation (Eq. 

(A-10) in the symmetrized form). As may be shown by comparing with the initial 

(unsymmetrized) version of the model,14 this is a consequence of the use of a symmetrized 

formalism, which automatically provides a matrix verifying the detailed balance principle. 

We present in Fig. 1 a comparison between some semi-classical off-diagonal cross-

sections and the CC/CS results of Ref. 16 for some given values of j1. Note here that Eq. (A-

7) which gives the correspondence between the conventions of Gordon and Ben Reuven has 

to be written within the semi-classical approximation. Indeed, our semi-classical formalism is 

a “classical path” formalism where the rotational degrees of freedom are treated quantum 

mechanically while translation is treated classically, neglecting any exchange of energy 

between translation and rotation, by assuming that: 

1 1

1
'

1

( ' )

( )j j B

j
E E k T

j




  



1. (8) 

Inserting Eq. (8) into Eq. (A-7) gives: 

1
1 1 1 1

1

(2 ' 1)
( ' , ; ) ( ' , ; )

(2 1)SC

j
j j T j j T

j
 




 . (9) 
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From Fig. 1, it appears that even if the rotational distribution is reproduced reasonably 

well, the agreement is not so good, particularly for upward cross-sections ( '

1 1
j j ), which 

correspond precisely to the greater inelasticity. They contribute mainly to the overestimation 

of the linewidths. For such upward transitions, the cross-sections must vanish if the 

inelasticity is greater than the available kinetic energy, and as is known, an obvious failure of 

the semi-classical scheme is the prediction of non-zero value for such processes. Moreover, as 

recalled above, the semi-classical formalism neglects any exchange of energy between 

translation and rotation. As expected, such an approximation fails for high inelasticity, leading 

to important deviations in the calculation of the corresponding cross-sections. 

We now consider the sum rule (Eq. (A-9) or (A-12)). In the particular case of isotropic 

Raman spectra and when the collision dynamics do not depend on vibrational motion, this 

rule holds.16 Starting from Table 1, one can easily establish that the semi-classical cross-

sections verify the following sum rule: 

1 1 1 1

1
1 1 1 1 1 1

' '1

(2 ' 1)
( , ; ) ( ' , ; ) ( ' , ; )

(2 1)kin kin SC kin
j j j j

j
j j E j j E j j E

j
  

 


   

   . (10) 

After averaging over Ekin, one obtains: 

1 1

1
1 1 1 1

' 1

(2 ' 1)
( , ; ) ( ' , ; )

(2 1)j j

j
j j T j j T

j
 




 

   (11) 

which must be compared to Eq. (A-12). This result was not unexpected since it is also a 

consequence of the semi-classical approximation (Eq. (8)).  In other words, the semi-classical 

W matrix elements verify the semi-classical approximation of the exact quantum sum rule, 

since instead of Eq. (A-12) one has: 

(2 1)

(2 1) lk

l
kk k

l k k

j
W W

j





  

  . (12) 

This is also a clear indication of one of the weaknesses remaining in our refined formalism, 

even after including line coupling effects. Indeed, our semi-classical formalism still 

overestimates the halfwidths, although by a smaller amount than the former Robert-Bonamy 

formalism. Our results (black squares) are plotted in Fig. 2 and compared with the CC/CS 

results (blue triangles). 

From the present analysis, it appears that part of the remaining differences may be a 

consequence of the semi-classical approximation. Indeed, since the half-width is connected to 

the off-diagonal elements via the sum rule, an overestimation of the amplitude of these off-
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diagonal elements (which are negative) leads automatically to an overestimation of the 

linewidth. 

It will be therefore of interest to try to overcome this limit, i.e. to take into account, at 

least in a simple way, the exchange of energy between translation and rotation during inelastic 

processes. This is the goal of the following sections which present possible directions of 

improvement, following previous works on this topic. 

 

III. HOW TO IMPROVE THE SEMI-CLASSICAL FORMALISM 

In the semi-classical scheme of the RB formalism, the single classical trajectory is 

driven by the isotropic part of the potential, and consequently the kinetic energy is conserved 

(and not the total energy). Therefore, following Billing,20 we will consider that the constant 

kinetic energy U which drives the trajectory is some average kinetic energy and not the initial 

one. We assume that it can be defined in terms of an effective velocity 
'

2eff

v v
v


  equal to 

the arithmetic mean of the relative velocities before (v) and after (v’) the inelastic collision: 

  2 '
1 1

1
' ( )

2kinE E j v E j    (13-a) 

so that: 

    2
2 '

1 1

1 1

2 4eff kin kinU v E E E j E j     . (13-b) 

	is the reduced mass of the colliding pair). Eq. (7) then becomes: 

1 1( ' , ; )kinj j E   2

1 1

,

( , )
' 1 12 ( ) ' | |c

c min

S r U
c j j

cr

db
dr b j e j

dr
 


    (14-a) 

and, in order to work within the Gordon’s convention, one also introduces: 

1
1 1 1 1

1

(2 ' 1)
( ' , ; ) ( ' , ; )

(2 1)kin kin

j
j j E j j E

j
 




 . (14-b) 

As is known,20 this has the advantage of forcing 1 1( ' , ; )kinj j E to zero below the 

threshold of excitation. But it is therefore necessary to re-establish the microscopic 

reversibility (and consequently the detailed balance after averaging over the kinetic energy). 

Following Davis and Boggs21 and McCann and Flannery,22 an additional correction has been 

added, interpreted in Ref. 22 as a “counting of trajectories”. Instead of Eq. (14-a), we use 

therefore: 
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1 1( ' , ; )kinj j E 
     2

1 1

,

'
1 1 ( , )

' 1 1

( )
2 ( ) ' | |c

c min

kin S r U
c j j

kin cr

E E j E j db
dr b j e j

E dr
 




 
   . (15) 

Finally, the T dependent cross - sections are obtained from the average over the 

Boltzmann distribution of kinetic energies. Some results are given in Fig. 3 and compared 

with the CC/CS results of Ref. 16. 

Comparing Fig. 1 and 3, it appears that these new results are, on the average, in better 

agreement with the fully quantum results, particularly for the upward transitions ( '

1 1
j j ) but 

not for the downward ones at low j1 (see for instance j1=4). As a consequence the sum rule, 

when evaluated with the new off-diagonal elements leads to halfwidths which still strongly 

differ both from the (unchanged) semi-classical diagonal elements and from the CC/CS data, 

as seen in Fig. 2 (red dots). If the agreement with the benchmark data is better for high j1, the 

halfwidths are conversely smaller than the CC/CS references at low j1. 

At this stage, it appears that the semi-classical scheme, while leading to a reasonable 

description of the relaxation matrix elements with off diagonal elements verifying the detailed 

balance, still fails to provide, via the sum rule, diagonal elements in good agreement with the 

CC/CS references. It is clear that further work is needed in order to introduce exchange of 

translation and rotation energies and angular momentum in a more accurate way in the 

formalism since the very simple method introduced here, while going into the right direction, 

appears to be too crude. 

In some sense, this situation is similar to that encountered in the application of the ECS 

formalism to the calculation of the relaxation matrix.1,23 In this method, any non-diagonal 

element of W may be expressed in terms of a set of “fundamental” basic cross-sections 

( ,0; )L T  and an adjustable scaling length lc. This set and lc are then obtained from the 

observed line widths by a least square fit based on the sum rule. Of course, with such a 

procedure, residuals subsist between observed and ECS optimized widths (generally around 

15%), which may lead to important errors in the calculation of the spectral line shape in 

regions extremely sensitive to the accuracy of the sum rule (for instance the wings; see Ref. 

23). To overcome this difficulty, Niro et al.23 have proposed a renormalization procedure, 

forcing the off-diagonal elements to reproduce exactly the observed widths via the sum rule, 

while still satisfying the detailed balance. Such a method can be also applied here. 

 

IV. RENORMALIZATION PROCEDURE 
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The reader will find in Ref. 23 a detailed description of the renormalization procedure. 

Here we impose the diagonal elements to be equal to the CC/CS data. Then we renormalize 

results of Sec. III according to the method of Ref. 23. Comparisons between “renormalized” 

and CC/CS off-diagonal elements are illustrated in Fig. 4, showing that, in most cases, 

differences are now small. 

Although empirical, this procedure offers the possibility of applying the improved 

Robert-Bonamy formalism to practical situations encountered in various fields (atmospheric 

physics, combustion diagnostic,..) where one has to calculate a “realistic” relaxation matrix 

for complex molecular systems. By “realistic” we mean here that the W relaxation matrix, as 

calculated by the refined RB method, can be normalized to observed widths as given for 

instance in spectroscopic data bank. 

 

V. CONCLUSION 

This study has demonstrated that the refined RB formalism can provide semi-

quantitative information on the relaxation matrix for complex molecular systems. The 

approach includes rotational levels of the perturber (which we do not assume to be an 

effective atomic perturber), and consequently resonance effects that may modify the intensity 

of the coupling. 

Of course, the refined RB method remains a semi-classical formalism in which energy 

exchange between translation and rotation is neglected. Consequently the relaxation matrix 

elements cannot verify at the same time both detailed balance and the sum rule. Following 

Davis and Boggs,21 we have tried to introduce such exchanges into the formalism in a very 

simple way. However these corrections, while going in the right direction, were too 

approximate to provide linewidths via the sum rule in good agreement with the CC/CS 

references. In our opinion, attention should now focus on the development of techniques for 

taking into account more accurately the exchange of rotational and translational energies and 

angular momentum during the collisions. 

Meanwhile, we have proposed a method to circumvent this difficulty, forcing the off-

diagonal elements of the RB-refined formalism to exactly reproduce a given set of line 

widths. This procedure, when applied to the isotropic Raman spectra of N2, gives good 

results. It may be also applied to more complex molecular systems encountered in various 

fields of applications. Some such systems were discussed in the conclusion of Ref. 14. In a 

forthcoming paper, we will consider another test case: the infrared spectra of C2H2 perturbed 

by N2 for which a new model potential has recently become available.26 One could apply the 
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present method to calculate the relaxation matrix W of this system and to analyze the 

intrabranch (R-R; P-P) as well as interbranch (R-P) coupling. 
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Appendix A 

Comparison between different conventions. 

In Gordon’s convention,4 which is used by Thibault et al.,16 the spectral density is written as: 

, 0

1 1
( ) Im k k l

k l

F d d l k
L iW

 
 


   (A-1) 

where 

(2 1)
(2 1)

i
k

i
E ik

k k k

j
e j

Z
 

    , (A-2) 

with 

1 i
kE

k e
Z

  . (A-3) 

k  is the population of the initial level of the kth transition, while k is the population 

exclusive of the degeneracy factor (for simplicity, we omit here all spin factors). 

Here however we use a different convention derived from Ben Reuven’s one17 writing the 

spectral density in a symmetrized form as: 

, 0

1 1
( ) Im l l k k

k l

F d l k d
L iW

  
 


     . (A-4) 

We recall here how to retrieve quickly the correspondence. 

Property 1: the intensity of an isolated line is constant and does not depend on the convention 

used: 

2 2
k k k kd d    so that  (2 1)k k kd j d  . (A-5) 

Property 2: in the wing, the profile is given by: 

, ,( )( ) ( )( )
lk lk

k l k l k k l
k l k lk l k l

W W
d d d d  

       


    
   . (A-6) 

Identifying term by term and using the previous results, one obtains: 

l
lk lk

k

W W



  . (A-7) 

 

About the detailed balance and the sum rule: 

In Gordon’s convention:  

lk k kl lW W   (A-8) 

and 
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0l lk
l

d W  . (A-9) 

With our convention, Eq. (A-8) becomes 

lk klW W  , (A-10) 

and the sum rule becomes: 

0
lkl l

l

d W   , which can be also written as:    0
kll l

l

d W   . (A-11) 

Eq. (A-11) corresponds, within that convention, to the double sum rule defined by Filippov 

and Tonkov24 or Kouzov.25 

 

Case of isotropic Raman spectra: 

In that case, dk is constant and Eq. (A-11) may be also written as: 

(2 1)

(2 1)lk lk

l l l
kk k

l k l kk k k

j
W W W

j

 
  


    

 
  


. (A-12) 

It should be remembered that 
lk

W means ( )
lk

W T and contains an average over a Boltzmann 

distribution of kinetic energy (cf. Eq. (4)). 

 

 

Appendix B 

How to derive the symmetrized version of the refined Robert-Bonamy formalism. 

The symmetrized formalism may be easily built by following the procedures detailed in Ref. 

14. We first introduce a symmetrized density vector |
b
   in the line space of the bath 

molecule defined by 

2

2 2

2 2 2 2
| | .

b i
i m

i m i m      (B-1) 

In terms of this vector, the average <  > defined in applying the cumulant expansion is now 

defined as: 

ˆ ˆ| | ,
b b

O O        (B-2) 

where Ô is a Liouville operator of interest. It is obvious that the normalization condition 

ˆ 1
b
I    is satisfied. Then, using Eq. (B-2) a matrix element of < Ô > can be explicitly 

written as:  
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2 2 2 2
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2 2 2 2 2 2 2 2
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1
( 1) ( , )

2 1
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J J J b J b
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i i f i f i J
i m i m m

f i f i J f i f i

f i JM O fi JM f i JM O f i JM

C j j J m m M
J

C j j J m m M f m i m i m i m O fm im i m i m

 (B-3) 

where a summary notation (m) means summations over all magnetic quantum numbers 

associated with the absorber molecule and a summation over MJ as well. Then, by following 

the procedures of Ref. 14, one is able to obtain all corresponding formulas in the current 

symmetrized version. For example, expressions for the diagonal and off-diagonal matrix 

elements of S2,middle are given by: 

1

1 2

2 2 1 2 2 2

2 2

,
2,

1
1 1 1

2
2 2 2 2 2

( ) 2 (2 1)(2 1)

{( 1) ( ; ) ( ,000) ( ,000)}

(2 1)(2 1) ( ,000) ( ),

fi fi
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J L
i f i f i i f f

L L

L L i i
i i

S r j j

W j j j j JL C j j L C j j L

i i C i i L H



  

 




  

 

   



  
i i'

 (B-4) 

and 

1

1 2

2 2 1 2 2 2

2 2
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2,

1
1 1 1

2
2 2 2 2 2

( ) 2 ( 1) (2 1)(2 1)(2 1)(2 1)
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L L i i i i
i i

S r j j j j

W j j j j JL C j j L C j j L

i i C i i L H



   



 

 


      

   

    



  
i i'

 (B-5) 

respectively. Recall that Eq. (B-5) is applicable only for Q lines since one has used the 

relation   i i f f  to simplify the expression. 
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TABLE I. Matrix elements 1 1( ' , ; )kinj j E  for Ekin/kB = 377 K (in Å2) and even j’s. 

 

 86.44   -11.05    -4.55   -3.11   -2.41   -1.84   -1.34   -0.92   -0.57   -0.32   -0.15   -0.06   -0.02 

-11.06    71.59  -12.51   -7.38   -5.59   -4.24   -3.09   -2.11   -1.32   -0.74   -0.35   -0.13   -0.04 

 -4.55    -12.51   66.12 -12.05   -8.19   -6.07   -4.39   -3.01   -1.90   -1.07   -0.52   -0.20   -0.06 

 -3.12      -7.38  -12.05  62.91 -12.56   -8.27   -5.85   -3.99   -2.53   -1.44   -0.71   -0.29   -0.09 

 -2.41      -5.59    -8.19 -12.56  61.32 -12.71   -7.95   -5.30   -3.37   -1.95   -0.98   -0.41   -0.13 

 -1.84      -4.24    -6.07   -8.27 -12.71  59.74 -12.67   -7.47   -4.66   -2.72   -1.41   -0.61   -0.21 

 -1.35      -3.09    -4.40   -5.85   -7.95 -12.67  57.78 -12.62   -6.99   -4.02   -2.11   -0.95   -0.34 

 -0.92      -2.11    -3.01   -3.99   -5.30   -7.48 -12.62  55.29 -12.59   -6.50   -3.39   -1.56   -0.58 

 -0.58      -1.32    -1.90   -2.53   -3.37   -4.66   -6.99 -12.59  52.19 -12.56   -5.97   -2.75   -1.07 

 -0.32      -0.74    -1.07   -1.44   -1.95   -2.72   -4.02   -6.50 -12.56  48.46 -12.48   -5.34   -2.12 

 -0.15      -0.35    -0.52   -0.72   -0.99   -1.41   -2.11   -3.39   -5.97 -12.48  44.18 -12.23   -4.59 

 -0.06      -0.14    -0.20   -0.29   -0.41   -0.61   -0.95   -1.56   -2.75   -5.34 -12.23  39.43 -11.75 

 -0.02      -0.04    -0.06   -0.09   -0.13   -0.21   -0.34   -0.58   -1.07   -2.12   -4.59 -11.75  34.37 
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Figure captions 

 

FIG. 1. Comparison of the present semi-classical calculations with the quantum data of Ref. 

16 for selected off-diagonal matrix elements (in 10-3 cm-1 atm-1) at T=298 K; j1=4 (a), 6 (b) 

and 8 (c). (J stands for j1 and J’ stands for '
1j ). 

 

FIG. 2. Comparison between calculated halfwidths (in 10-3 cm-1 atm-1) for N2-N2 at T=298K; 

semi-classical diagonal elements of Table I (black squares), SC diagonal elements making use 

of Eqs. (15) and (A-12) (red disks) and CC/CS results (blue triangles). 

 

FIG. 3. Comparison of room temperature selected off-diagonal elements (in 10-3 cm-1 atm-1) 

corrected from both inelasticity and microscopic reversibility with the quantum data of Ref. 

16;  j1=4 (a), 6 (b) and 8 (c). (J stands for j1 and J’ stands for '
1j ). 

 

FIG. 4. Comparison of room temperature selected renormalized semi-classical off-diagonal 

elements (in 10-3 cm-1 atm-1) with the quantum data of Ref. 16; j1=4 (a), 6 (b) and 8 (c). (J 

stands for j1 and J’ stands for '
1j ). 
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