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We study the spreading of the wave function of a Bose-Einstein condensate accelerated by a
constant force both in the absence and in the presence of atom-atom interactions. We show that,
despite the initial velocity dispersion, the local velocity dispersion defined at a given position down-
ward can reach ultralow values and be used to probe very narrow energetic structures. We explain
how one can define quantum mechanically and without ambiguities the different velocity moments
at a given position by extension of their classical counterparts. We provide a common theoretical
framework for interacting and non-interacting regimes based on the Wigner transform of the initial
wave function that encapsulates the dynamics in a scaling parameter. In the absence of interaction,
our approach is exact. Using a numerical simulation of the 1D Gross-Pitaevskii equation, we provide
the range of validity of our scaling approach and find a very good agreement in the Thomas-Fermi
regime. We apply this approach to the study of the scattering of a matter wave packet on a double
barrier potential. We show that a Fabry-Perot resonance in such a cavity with an energy width
below the pK range can be probed in this manner. We show that our approach can be readily
transposed to a large class of many-body quantum systems that exhibit self-similar dynamics.

I. INTRODUCTION

Narrowing down the velocity spread of a packet of
particles or a beam is important in many techniques
and experiments: to induce, control or measure energy-
dependent phenomena, such as sharp resonances or en-
ergy thresholds; to probe, by scattering, surfaces or inter-
action potentials with high energy resolution; or to im-
prove interferometers, spectroscopic studies, and metro-
logical devices such as atomic clocks. A recent applica-
tion example is the study of very low-energy molecular
collisions thanks to an accurate velocity control of merged
supersonic molecular beams [1].

Frequently the particles are produced at a prepara-
tion chamber and interact with a material target or field
elsewhere after a free or guided flight. This means that
the velocity spread of interest is the one of the particles
as they arrive at the interaction region. The standard
(global) velocity spread of the ensemble of particles, irre-
spective of their location, is only relevant inasmuch as it
affects the local velocity spread, which, as we shall see,
may differ substantially from the global one.

In this paper we propose and characterize a method
to achieve a narrow local velocity distribution for one di-
mensional motion. Our main motivation is to set high
resolution collision experiments between ultracold atoms
and a well localized obstacle, but the principles involved
are applicable beyond that goal. Local velocities and
their statistics may be defined in classical mechanics since
trajectories carry simultaneous position and velocity in-
formation, but in quantum mechanics position and mo-
mentum do not commute. This does not mean though
that a quantum local velocity is a meaningless concept

[2]. A detailed analysis of specific detectors to perform a
local velocity measurement would be necessary in order
to determine the exact operators (i.e. the specific quan-
tization among the many possible) and/or Positive Op-
erator Valued Measures (POVMs) involved. This opera-
tional approach is out of the scope of this paper. Instead
we shall adopt a simple phase-space Wigner-function de-
scription of the dynamics and the corresponding Weyl
rule of quantization to specify the local quantum ob-
servables starting from classical expressions, so that we
shall treat formally quantum and classical systems alike
in phase-space. In any case we shall assume conditions in
which the differences among different quantization rules
are negligible.

A well-known narrowing of the local velocity distribu-
tion occurs for free motion. If a cloud of classical (non-
interacting) particles with an initial phase-space density
without position-momentum correlations and zero aver-
age position and velocity is let to expand freely, faster
particles will advance beyond the slow ones, so that at
a distant observation point the particles that arrive at a

specific instant of time have well defined velocities. Thus
this type of free-motion induced velocity narrowing only
applies to the instantaneous local velocity distribution.
The initial spread for all particles irrespective of their lo-
cation is actually constant in time, and implies that the
dominant, instantaneous (mean) velocity at the observa-
tion point changes with time. In other words, the instan-
taneous local velocity spread is small, but the spread in
time of the instantaneous local mean velocities may be
large. This limits severely the applicability and useful-
ness of free-motion narrowing. If we are interested in a
specific velocity range, many, even most of the particles,
i.e., those that do not arrive at the “right” time interval
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to match our requirements, should be discarded. Instead,
we propose a mechanism so that the velocities of all par-
ticles irrespective of their arrival time is sharply defined.
It only requires a constant force, which for neutral cold
atoms may be implemented by using gravity or a mag-
netic field gradient on magnetically polarized atoms.
We shall study the experimental situation depicted in

Fig. 1. In Secs. II and III, the general formalism to char-
acterize the velocity distribution at the obstacle location
x is worked out. In Sec. IV, we will apply it to noninter-
acting particles, and in Sec. V to interacting particles in
the Thomas-Fermi regime. In Sec. VI, a full numerical
study of the scattering on a double well potential from a
carefully outcoupled matterwave is carried out. It shows
the possibility to investigate matter wave Fabry-Perot
cavities.

II. GENERAL FORMALISM

The statistical analysis we perform is based on a double
average, over velocity and time, at the observation loca-
tion. To that end we follow, interchanging the roles of
time and position, the double averaging performed in [2]
over position and momentum at fixed time. The defini-
tion of the local instantaneous averages over the arriving
velocities could in principle be carried out in several ways
with different physical implications. For a phase-space
distribution W (q, p; t) normalized to one at any time t
when integrating over positions q and momenta p, a lo-
cal, instantaneous average at q = x and time t may be
defined as

vx(t) =

∫

dp vW (x, p; t)
∫

dpW (x, p; t)
, (1)

where v = p/m and m is the mass of the particle. This
average is known in hydrodynamical formulations as the
“velocity field”, see e.g. [3, 4], and it becomes opera-
tionally meaningful if the velocities of the particles be-
tween x and x + dx are probed instantaneously. The
normalization factor in the denominator is just the par-
ticle density divided by the total number of atoms N .
For many experiments and detectors the particles arrive
according to a certain time-dependent flux and the rel-
evant quantity is not the number of particles present in
dx with a specific velocity, but rather the number of par-
ticles arriving (crossing x) with velocities between v and
v + dv in dt. This is given by NvW (x, p, t)dvdt so that
the local instantaneous mean velocity (and similarly for
higher moments) is defined as

v̄x(t) =

∫

dp v2W (x, p; t)
∫

dp vW (x, p; t)
, (2)

where the denominator is now the current density Jx(t)
or flux (per particle) instead of the density. This is in par-
ticular the average applicable for scattering experiments
[5–8]. A basic assumption is that all particles arrive from

the left (all velocities are positive at x) so Jx(t) ≥ 0 and
∫

dtJx(t) = 1.

x0 q

FIG. 1: A wave packet initially located at q = 0 and subjected
to a constant force evolves towards an interacting region lo-
cated at q = x.

Let us first assume a packet of classical non-interacting
atoms described by a phase-space-density distribution
W (q, p; t) normalized to one. This can be translated
into quantum mechanics by means of phase-space quasi-
distribution functions. For the problem at hand (a linear-
in-q potential) the Wigner function is a natural choice,
since its propagator for non-interacting particles is iden-
tical in classical and quantum mechanics [2].

The fraction of the number of atoms d2N
(v)
x (t) with

a velocity between v and v + dv that crosses the plane
q = x between t and t+ dt is

d2N (v)
x (t) = W (x, p; t)vdpdt ≡ Px(v, t)dvdt. (3)

The probability distribution Px(v, t) represents the prob-
ability density of particles in velocity space per unit time
that crosses the plane x at t. We assume that all particles
have a positive velocity when crossing x, so

∫∫

Px(v, t)dvdt =

∫

Jx(t)dt = 1. (4)

The quantity Jx(t) corresponds to the local atomic flux
divided by N ,

Jx(t) =
dNx(t)

dt
=

∫

d2N
(v)
x (t)

dt
=

∫

W (x, p; t)vdp, (5)

where Nx is the probability to find a particle at q > x.
In order to define local instantaneous averages it is con-
venient to introduce the conditional probability density
Px(v|t): Px(v|t)dv represents the probability to find the
velocity between v and v+dv for the particles that cross
x between t and t+ dt. It is normalized to one,

∫

Px(v|t)dv = 1. (6)

According to Bayes law, the simple relation

Px(v, t) = Px(v|t)Jx(t) (7)
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holds. The instantaneous mean local velocity at position
x and time t is given by

v̄x(t) =

∫

vPx(v|t)dv. (8)

Similarly, the instantaneous local mean square velocity
reads

v2x(t) =

∫

v2Px(v|t)dv. (9)

The mean local velocity is defined as an average over time
of the instantaneous mean local velocity,

〈v〉x =

∫∫

vPx(v, t)dvdt =

∫∫

v2W (x, p; t)dpdt

=

∫

v̄x(t)Jx(t)dt. (10)

Similarly, the local variance of the velocity reads

(∆vx)
2≡〈(v−〈v〉x)2〉x=

∫∫

(v−〈v〉x)2Px(v, t)dvdt

=

∫∫

(v − v̄x + v̄x − 〈v〉x)2Px(v, t)dvdt

=

∫∫

[

(v − v̄x)
2 + (v̄x − 〈v〉x)2

]

Px(v, t)dvdt

=

∫
[
∫

(v−v̄x)
2Px(v|t)dv+(v̄x−〈v〉x)2

]

Jx(t)dt

=

∫

[

σ2
v|x(t) +D2

v|x(t)
]

Jx(t)dt, (11)

where

σ2
v|x(t) ≡ 1

Jx(t)

∫

(v − v̄x)
2Px(v, t)dv,

D2
v|x(t) ≡ (v̄x − 〈v〉x)2, (12)

are, respectively, the instantaneous local velocity vari-
ance and the squared deviation of the instantaneous local
mean velocities with respect to the local average veloc-
ity. According to Eq. (11), the variance of the velocity
at x is the sum of two terms: the time average of the
instantaneous local variance and the variance of the in-
stantaneous mean velocities.

Introducing the velocity moments

Vn = Vn(x, t) ≡
∫

vnW (x, p; t)dp, (13)

we may rewrite the above quantities as

Jx(t) = V1(x, t),

v̄x(t) =
1

Jx(t)

∫

v2W (x, p, t)dp =
V2

V1
,

v2x(t) =
1

Jx(t)

∫

v3W (x, p; t)dp =
V3

V1
,

σ2
v|x(t) =

V3

V1
−
(

V2

V1

)2

,

〈v〉x =

∫∫

v2W (x, p, t)dpdt =

∫

dtV2(x, t),

D2
v|x(t) =

(

V2(x, t)

V1(x, t)
−
∫

V2(x, t
′)dt′

)2

,

so computing the first three moments is enough to cal-
culate the local variance of the velocity (11). The global
velocity dispersion irrespective of the particle location is
given by

∆v(t) =

√

∫

V2(x, t)dx −
(
∫

V1(x, t)dx

)2

. (14)

III. THE TIME-DEPENDENT WIGNER

FUNCTION AND ITS VELOCITY MOMENTS

In the following, we study the dynamics of the ground
state wave function of a 1D harmonic trap of angular fre-
quency ω0 after its sudden release on a linear potential.
The scaling formalism developed hereafter is applied to
a Bose-Einstein condensate (BEC) in the Thomas-Fermi
regime [10–12] and to the Gaussian wave function for the
non-interacting case. However, it is worth noticing that
it can be applied to the class of many-body quantum
systems that exhibit a self-similar dynamics [13, 38] as
justified in Appendix A. In the presence of a constant
acceleration field, γ, the time-dependent Wigner func-
tion, W (x, p, t), can be obtained from the initial Wigner
function, W0, through a proper scaling substitution (see
Appendix A),

W (x, p, t) = W0(X,P ), (15)

where we have used the following linear transformation
(

X
P

)

=

(

1/α 0
−mα̇ α

)(

x− η
p−mη̇

)

, (16)

with α and η two time-dependent functions. The matrix
of this transformation generates both a squeezing in mo-
mentum space correlated to a shearing in position space.
η accounts for the center of the packet motion and obeys
the Newton equation η̈ = γ. The scaling factor α obeys
a second order differential equation that depends on the
system (see Appendix A):

α̈ =
ω2
0

αp
, (17)
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with p = 3 for a Gaussian wave function without inter-
actions or a Tonks-Girardeau gas [14–16], and p = 2 for
the wave function of a Bose-Einstein condensate in the
Thomas-Fermi regime. The X and P variables are useful
to derive the velocity moments in terms of their initial

value V
(0)
n (x):

Vn(x, t) =

∫
[

P

mα
+ u(X, t)

]n

W0 (X,P )
dP

α
, (18)

with u(X, t) = η̇ + α̇X . We find

V0(x, t) = V
(0)
0 (X)/α, (19)

V1(x, t) = uV
(0)
0 (X)/α, (20)

V2(x, t) = V
(0)
2 (X)/α3 + u2V

(0)
0 (X)/α, (21)

V3(x, t) = 3uV
(0)
2 (X)/α3 + u3V

(0)
0 (X)/α. (22)

To obtain this result, we have explicitly used the symme-
try property of the initial Wigner function: W0(x, p) =
W0(x,−p). The first three moments are therefore di-
rectly deduced from two moments of the initial distribu-
tion. Interestingly, the first two global velocity moments
are readily obtained in a form that depends explicitly on
the initial condition and the scaling parameters. We find
〈v〉(t) = η̇ and the velocity dispersion

∆v2(t) =
∆v2(0)

α2
+

2ω2
0

p− 1

(

1− α1−p
)

∆x2(0), (23)

using Eq. (17). With p = 3, we recover the fact that
the velocity dispersion remains constant and equal to
its initial value in the case of an interaction-free Gaus-
sian wave packet. With p = 2 we obtain the explicit
expression for the velocity dispersion at any time for a
Bose-Einstein condensate in the Thomas-Fermi regime.
In particular, its limit for long time is equal to ∆v(t →
∞) =

√
2ω0∆x(0) in agreement with the Virial theorem

[17, 18].

IV. APPLICATION TO A NONINTERACTING

GAS

Let us set the initial phase-space distribution as an
uncorrelated product of Gaussians,

W0(x, p) =
1

2π

1

∆x0∆p0
e−x2/2∆x2

0e−p2/2∆p2
0 , (24)

obeying ∆x0∆p0 = ~/2. For a classical ensemble ~ could
be an arbitrary constant whereas in quantum mechanics
this is Planck’s constant/2π. Using σ ≡ ∆x0 we find

V
(0)
0 (x) =

1√
2πσ

e−x2/2σ2

,

V
(0)
2 (x) =

(

~

2mσ

)2

V
(0)
0 (x),

α(t) =
√

1 + ω2
0t

2,

u(x, t) = γt+ (x− γt2/2)ω2
0t/(1 + ω2

0t
2), (25)

with ω0 = ~/(2mσ2).

The quantities v̄x(t), v2x(t) and σ2
v|x(t) involve ratios

of the form Vn>1(x, t)/V1(x, t). Using Eqs. (20), (21)
and (22), one realizes that these ratios depend only on

V
(0)
2 (X)/V

(0)
0 (X), which is a constant for a Gaussian

Wigner function. In this way, we find

v̄x(t) =
u2 + (u2t2 + σ2)ω2

0

u(1 + ω2
0t

2)
, (26)

v2x(t) = uv̄x(t) +
2σ2ω2

0

1 + ω2
0t

2 . (27)

The first two global velocity moments are

〈v〉(t) =
∫

V1(x, t)dx=γt, (28)

〈v2〉(t) =
∫

V2(x, t)dx=
~
2

4m2σ2
+γ2t2. (29)

To have a negligible fraction of negative velocities we
simply assume an observation point at x≫σ and t > 0
hereafter, in particular in all integrals. We now calculate
the first velocity moments. They can be written in the
form

Vj(x, t) := e−Φfj, (30)

where the fj are given in Appendix B and

Φ =
m2σ2(γt2 − 2x)2

8m2σ4 + 2~2t2
= − x2(1− γt2/2x)2

2σ2(1 + ~2t2/4m2σ4)
(31)

is the phase that governs the behavior of the moments.
In particular Φ = Φ′ = 0 (the primes denote time deriva-

tives) at tc =
√

2x/γ, which is the time that a classical
particle takes to reach x if it is initially at rest at the ori-
gin. The second derivative with respect to time at that
instant is

Φ′′(tc) =
16gm2σ2x

8m2σ4 + 4~2x/γ
(32)

which, keeping x/γ constant, i.e., for a fixed tc, grows
with x. In other words, the moments become narrower
functions of t.
We may now calculate the local variance as

(∆vx)
2 =

∫ ∞

0

dtV3 −
[
∫ ∞

0

dtV2

]2

. (33)

Laplace’s (or steepest descent) approximation gives for

the integrals
∫

e−Φfdt ∼ e−Φ(tc)f(tc)
√

2π/Φ′′(tc) and
(∆vx)

2 ∼ 0 in sharp contrast with the fixed-time (and
time independent) global velocity variance 〈v2〉(t) −
(〈v〉(t))2 = ~

2/(4m2σ2) calculated with the Wigner func-
tion, see Eqs. (28) and (29). In Fig. 2 we show the
two components that, when integrated, make (∆vx)

2, see
Eq. (11): In our configuration the local velocity variance
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FIG. 2: (Color online) Components of the integrand for the
local variance ∆v2

x
: S = σ2

v|x(t)Jx(t) (dashed red line), and

S = D2
v|x(t)Jx(t) (solid blue line). Parameters: γ = 0.6 m/s2,

x = 201 µm, mass of rubidium-87. The initial state is the
ground state of a harmonic trap with angular frequency ω0 =
2π×150 Hz. The passage of a classical particle released from
the origin at t = 0 is at tc = 0.026 s.

is dominated by the squared deviation of the local instan-
taneous mean. The parameters are chosen as specified
in the caption for realistic conditions on initial velocity
width, acceleration, and observation distance. For these
parameters the local variance (∆vx)

2(0.5mm)= 8.22 ×
10−10 (m/s)2, is already more than two orders of magni-
tude smaller than the global variance (∆v)2 = 3.4×10−7

(m/s)2.
The two variances (global and local) are quite different

because of their distinct physical content. (∆v)2 is inde-
pendent of x, γ or t and corresponds to measuring the
velocities of all the particles of the statistical ensemble,
wherever they are, at a given instant. Since all particles
are equally accelerated their initial velocity differences
remain the same at any time. (∆v)2x results instead from
local velocity measurements weighted by Px(v, t). This
distribution can be narrowly peaked when the velocities
at x are predominantly due to the common effect of gx
rather than to the effect of the initial spread of the ini-
tial conditions. Specifically we have that, at position x,
the velocity of a particle that at time 0 was at x0 with
velocity v0, is

vx =
√

γ(x− x0) + v20 , (34)

i.e., any difference due to the the initial conditions is
washed out for a large xγ, which leads to velocity uni-
formity. The conditions x≫σ and xγ≫σ2

v , where σ2
v is

the initial variance of the velocity, guarantee the dom-
inance of the first term and lead to a local velocity
spread suppression. Note that, when σ and σv are re-
lated by the minimum uncertainty product relation, i.e.,
σv = ~/(2mσ), very small or very big σ values require a
distant x to wash out the differences in the arriving veloc-
ities. Indeed, all previous results can be translated for-
mally into quantum mechanics by interpreting W as the
Wigner function and the dynamical variables according
to Weyl’s quantization rule. In the Weyl-Wigner frame-
work the dynamical variable δ(x−q)v corresponds to the

flux operator Ĵx = (1/2)(v̂δ(x− q̂)+δ(x− q̂)v̂) and, more
generally, vnδ(x− q) to hermitian operators with matrix
elements

〈p|O(n)|p′〉 =
(

p+ p′

2m

)n

〈p|x〉〈x|p′〉 (35)

in momentum space. As other quantization rules are pos-
sible, the above results, which are based on one of them,
may be questioned because of their non-uniqueness.
However, actual measurements typically imply an aver-
aging that tends to smooth the differences among the
different rules. Moreover the conditions of the experi-
ment discussed are such that at each instant the local
quantum field is essentially monochromatic. This again
washes out differences among quantization rules: as in-
terferences do not play any major role for our setting and
the effects of the non-commutativity of position and mo-
mentum are negligible, a classical-like interpretation of
the results is justified. This is in fact the usual approach
for most time-of-flight experiments.

V. APPLICATION TO A BOSE-EINSTEIN

CONDENSATE IN THE THOMAS-FERMI

REGIME

Unlike the Gaussian case, the Wigner function of the
wave function associated with a Bose-Einstein conden-
sate in the Thomas-Fermi regime cannot be worked out
analytically. In this section, we compare numerics with
the scaling approach to obtain the different velocity mo-
ments accurately. The parabolic profile of the condensate
in the Thomas-Fermi regime has been used to deduce
Eqs. (15) and (17)(see Appendix A) that gives the time
evolution of the scaling parameter. However, a numer-
ical study is necessary to validate the determination of
the velocity moments with the scaling approach since the
parabolic profile does not encapsulate the smooth edge
of the wavefunction [19]. We show in the following that
the knowledge of the initial Wigner function computed
numerically is sufficient to obtain all required informa-
tion on the dynamics and in particular on the different
velocity moments with a high accuracy.
The initial wave function is found by evolving the 1D

time-dependent Gross-Pitaevskii (GP) equation in imag-
inary time using a split-step Fourier method [20]. In
practice, we use an initial Gaussian trial wavefunction
with a mean quadratic size evaluated from the expected
parabola shape and we iterate until the final wavefunc-
tion is stationary with respect to real-time evolution. The
mean-field wave function corresponds to that of a Bose-
Einstein condensate with N rubidium-87 atoms (scat-
tering length asc = 5 nm) held in a harmonic trap of
angular frequency ω0 = 2π × 150 Hz. The Thomas-
Fermi regime is reached when χ = Nasc/a0 ≫ 1 where
a0 = (~/mω0)

1/2 is the length scale associated with the
harmonic confinement (χ = 1 corresponds to N ≈ 176
atoms).
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In the following, we consider the time evolution of the
wave function resulting from an abrupt release of the con-
densate on the slope (V (x) = mγx, γ = 0.6 m/s2), the
case of a progressive outcoupling is addressed in Sec. VI.
We compare the results obtained by a full integration of
the Gross-Pitaevskii equation with those resulting from
the scaling approach (Eqs. (23) and (17)). In the course
of the propagation, the interaction energy is converted
into kinetic energy as illustrated in Fig. 3, and more pre-
cisely it is responsible for the increase of velocity disper-
sion. After 5 ms of propagation for a BEC initially in the
Thomas-Fermi regime, already 80 % of the interaction
energy has been transferred. Figure 4 shows the evolu-
tion of the velocity dispersion depending on the number
of atoms. The impressive agreement demonstrates the
efficiency of the scaling approach.

E
k
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/E

to
t,

E
p
o
t/

E
to

t,
E

in
t/

E
to

t

543210

Time [ms]

1.5

1

0.5

0

−0.5
Epot/Etot

Eint/Etot

Ekin/Etot

FIG. 3: Evolution of the kinetic (Ekin, dotted line), potential
(Epot, dashed line) and interaction energy (Eint, solid line)
of a Bose-Einstein condensate as a function of time during
its propagation over the slope (energies are normalized to the
total energy Etot = Ekin + Epot + Eint) . Parameters: the
initial wave function corresponds to that of a Bose-Einstein
condensate of rubidium-87 in the Thomas-Fermi regime with
N = 17600 atoms initially at equilibrium in an harmonic po-
tential of angular frequency ω0 = 2π×150 Hz. At time t = 0,
the trapping potential is suddenly removed and the packet
experiences the acceleration (γ = 0.6 m/s2) due to the linear
potential.

The numerical integration of the GP equation with
split-Fourier method is quite efficient even though the
time step should be smaller for large-size wavefunction
(largeN). However, the computation of the Wigner func-
tion turns out to be rapidly cumbersome since the re-
quired grid in phase-space has a size that should increase
with time to guarantee a good accuracy. We now com-
pare the first two non-zero velocity moments V0(x, t) and
V2(x, t) obtained after 5 ms of time evolution on the slope
from the full numerical procedure of the dynamics (inte-
gration of the Gross-Pitaevskii equation + calculation of
the Wigner function at time t = 5 ms) with the result
of the scaling approach for which we use only the com-
puting of the initial Wigner function combined with the

time evolution of the scaling parameter (Eqs. (16) and
(17)). Results are summarized in Fig. 5 for N = 35200
atoms.

∆
v
(t

)/
∆

v
(0

)

20151050

N = 8800

N = 17600

N = 35200

Time [ms]

25

20

15

10

5

FIG. 4: Time evolution of the global velocity dispersion
∆v(t)/∆v(0) of a Bose-Einstein condensate for three differ-
ent values of the atom number N = 8800, 17600, 35200.
Solid lines: theoretical prediction using the scaling approach
(see Eq. 23), dotted lines numerical integration of the Gross-
Pitaevskii equation, dashed line: theoretical asymptote at
long time.

To compare quantitatively the velocity moments, we
define the relative error after 5 ms of propagation:

ε(N) =

∣

∣

∣

∣

1− ∆2v(t = 5 ms)

∆1v(t = 5 ms)

∣

∣

∣

∣

(36)

in which ∆1v is the velocity dispersion extracted by the
full numerical approach, and ∆2v is the one resulting
from the rescaled initial Wigner function. Results are
summarized in the following table:

N 176 880 1760 8800 17600 35200

ε 0.278 0.0741 0.0397 0.0132 0.0104 0.009
Table 1: Numerical values of ε(N).

The larger the interaction parameter χ (∝ N), the
better the agreement. We conclude that our scaling ap-
proach gives a good account of the evolution of the wave
function of a Bose-Einstein condensate in the Thomas-
Fermi regime. As the validity of our approach is now well
demonstrated, we can extend its use for much larger time.
We introduce in the following the quantity Mx which
characterized the improvement of the local monochro-
maticity as a function of the distance from the original
trap:

Mx =
∆vx
〈v〉x

=

√

∫∞

0 V3(x, t)dt−
(∫∞

0 V2(x, t)dt
)2

∫∞

0
V2(x, t)dt

.

(37)
To calculate the moments involved in the local monochro-
maticity quantity, Mx, we use the scaling laws provided
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FIG. 5: Velocity moments V0(x, t = 5 ms) (density profile)
and V2(x, t = 5 ms) for N = 35200 atoms, where the positions
are expressed in the center-of-mass coordinates x′ = x − η:
full numerical procedure including the time evolution (solid
line), result of the scaling approach based only on the initial
Wigner function (dotted line).

by Eqs. (21) and (22). The evolution of this quantity as
a function of the distance is plotted in Fig. 6. We re-
cover here quantitatively the main result of this section,
the local monochromaticity increases with the distance
even for a many-body wave function with large repulsive
interaction. This is to be contrasted with the global ve-
locity dispersion which increases as shown in Fig. 4. An
interacting BEC evolving in the presence of a constant
force can therefore be used as a local probe in a scat-
tering experiment. In the following section, we give a
concrete example in which the outcoupling of the wave
function from its original trap is performed progressively
to amplify the local monochromaticity including in the
case of a Bose-Einstein condensate in the Thomas-Fermi
regime.

VI. GAIN OBTAINED FROM A PROGRESSIVE

OUTCOUPLING

In this section, we compare the matter wave probing
of a very thin Fabry-Perot resonance associated with a
repulsive double barrier [21, 22] using two different pro-
tocols: first we consider a wave packet at a constant ve-

120100806040200
x [µm]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
x

FIG. 6: Local monochromaticity as a function of the distance
x at which it is measured. This data has been obtained for a
Bose-Einstein condensate in the Thomas-Fermi regime with
N = 35200 atoms, other parameters are identical to those of
Fig. 3.

locity with a well-defined velocity dispersion and in the
absence of other extra external potential (see Fig. 7.a);
second we consider a situation in which the matter wave
is accelerated by a linear potential towards the double
barrier (see Fig. 8.b) and for which atoms can also be
progressively outcoupled from their original trap [23–27].
The double barrier potential is modeled by a sinusoidal

potential located at x = d:

Udb(x) = 2sER (1− cos(2π(x− d)/dR))

× Θ(x− d+ dR)Θ(d+ dR − x), (38)

where ER = h2/(2md2R) = mv2R/2, Θ is the Heaviside
step function (Θ(x < 0) = 0 and Θ(x ≥ 0) = 1). The
numerical simulations presented hereafter are performed
with the realistic values d = 201 µm, dR = 0.48 µm,
vR = h/(mdR) = 9.565 mm/s [7, 28]. The Fabry-Perot
resonance that is probed has an energy E0 = mv20/2
with v0 = 1.62vR = 15.53 mm/s for a barrier height
of 16.08ER = 6.13E0. The width of this resonance is
E0/1000 (i.e. 0.36 pK in temperature units!) that cor-
responds to a velocity dispersion 8.3 µm/s. For compar-
ison, let us recall that the typical order of magnitude of
the velocity dispersion achievable with a rubidium BEC
is 2 mm/s [7].
To scan the resonance we vary the height of the double

barrier by adjusting the parameter s for a fixed incoming
velocity. The result obtained by considering an incident
plane wave of wave vector k0 = mv0/~ is plotted as a
reference by a solid line in Figs. 7(b) and 8(b). The
resonance appears at s = 4.02. Interestingly, the width
in energy of the reflection probability as a function of s
is significantly larger than that of the resonance. Indeed,
from a Gaussian fit of the reflection probability, we find
a variance in s equal to ∆s = 0.008. This means that
experimentally if the double barrier is realized by optical
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means, the intensity should be stabilized at a level better
than one per thousand, and not much better than the
resonance width E0/1000. This feature facilitates the
detection of the resonance.
Figure 7(b) contains also the reflection probability

about the resonance for an incident wave packet of mean
velocity v0 and with a velocity dispersion ∆v = 600 µm/s
(dashed line) and 20 µm/s (dotted line). The probability
reflection of an incident packet with a velocity disper-
sion already more than three times smaller than that of
a BEC remains very close to one. This is to be contrasted
with the case of a packet that have a velocity dispersion
100 times smaller than that of a BEC (i.e. on the order
of the width of the resonance). In this latter case, the
presence of the resonance can be clearly seen as expected
since about 38 % of the atoms are reflected.
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FIG. 7: Matter wave probing of a Fabry-Perot resonance. The
reflection probability is plotted as a function of the double
barrier height: for an incoming plane wave (solid line) with
the velocity v0 that coincides with the resonance (s = 4.02),
for an incident wave packet with a velocity dispersion of 600
µm/s (dashed line) and 20 µm/s (dotted line).

We now consider the probing of the same resonance by
a wave packet that is accelerated by a constant force from
its original trap located at x = 0. The potential energy
experienced by the atoms now reads (see Fig. 8(a))

U(x, t) = mγ(x− d)− U0e
−t/τe−2x2/w2

0 + Udb(x). (39)

The Gaussian term accounts for the trap potential which
accommodates the initial wave function. The exponential
form for the time dependence of the trap depth was used
in Ref. [29] to outcouple progressively atoms from a Bose-
Einstein condensate into a guide. The slope has been

chosen so that a particle launched with a zero velocity
at x = 0 arrives at x = d with a velocity v0 i.e. γ =
v20/(2d) = 0.6 m/s2 i.e. an energy that coincides with
that of the Fabry-Perot resonance.

The analytical formalism developed in the previous
sections is the appropriate one for τ → 0, i.e. for an
instantaneous release of the wave function from its orig-
inating trap and a subsequent propagation on the slope.
We have already shown that the position-velocity cor-
relation that builds up during such an evolution gen-
erates a small local velocity dispersion downward. As
demonstrated below on a specific example, an even bet-
ter strategy consists in releasing the atoms from the trap
progressively as done for the generation of guided atom
lasers [28–32]. In such a protocol, the initial conditions
of each atom is nearly the same i.e. atoms are released
nearly at the same position with a velocity very close to
zero. This favors a very thin local velocity dispersion
after propagation.
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FIG. 8: Matter wave probing of a Fabry-Perot resonance
placed on a slope. The reflection probability is plotted as
a function of the double barrier height: for an incoming plane
wave (solid line) with the velocity v0 that coincides with the
resonance (s = 4.02), for an incident wave packet with a ve-
locity dispersion of 600 µm/s outcoupled in 80 ms (dashed
line) and for a Bose-Einstein condensate in the Thomas-Fermi
of velocity dispersion 2 mm/s outcoupled in 100 ms (dotted
line).

We illustrate this idea with the dashed curve of Fig. 8.b
that corresponds to the reflection probability of a wave
packet (without atom-atom interactions) with an initial
velocity dispersion equal to 600 µm/s and that has been
outcoupled in τ = 80 ms. About 40 % of the atoms are
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reflected when the height of the double barrier is varied.
In contrast with the scattering on the double barrier, in
the absence of slope, of a packet having the same velocity
dispersion, the thin Fabry resonance can here be probed
with accuracy. This illustrates clearly the importance of
both a progressive outcoupling and the building up of
position-velocity correlation in the course of the propa-
gation on the slope.

We have also performed the progressive outcoupling
(over 100 ms) of an interacting BEC with a velocity dis-
persion even larger on the order of 2 mm/s [18]. Note
that the long outcoupling times are also optimal to re-
duce the contamination of the transverse excited states
in real systems [18, 28, 29, 31]. The result is plotted as
a dotted line in Fig. 8(b). The reflection probability is
about 30 %. Once again the initial source is very far
from an ideal one and has a “very” large instantaneous
velocity width. The situation may appear as even worse
since the interaction energy is converted into kinetic en-
ergy in the course of the propagation as already discussed
in Sec. V. However, the benefit of the building up of the
position-velocity correlation is dominant. An instanta-
neous outcoupling of the BEC yields a 10 % reflection
probability, a value that would correspond in the absence
of a slope to that of a wave packet having a dispersion
velocity on the order of 50 µm/s, that is 40 times smaller
than that of the BEC. An extra gain of a factor three on
the reflection probability is here obtained from the pro-
gressive outcoupling. Interestingly, this technique avoids
completely any limitation in energy dictated by the chem-
ical potential. The shape of the reflection probability as
a function of the height of the double barrier is radically
different in the case of an interacting BEC compared to
that obtained in the absence of atom-atom interactions
(compare dotted and dashed lines in Fig. 8.b). This re-
sults from the sharp border of the inverse parabolic shape
of the BEC assumed in the Thomas-Fermi regime and its
conversion in position-velocity correlation in the course
of the propagation.

In conclusion, we have shown how it is possible to de-
crease the velocity dispersion at a given position using
a linear potential. This method works efficiently also
in the presence of repulsive interaction. It provides a
method to circumvent the limitations that may appear
in outcoupling processes [22, 34] and to improve the lo-
cal monochromaticity of a matter wave source.

In Ref. [33], the author proposed to investigate an
atom-blockade effect with a Fabry-Perot cavity in close
analogy with the Coulomb blockade effect of electronic
transport. An incident atom laser with a very thin ve-
locity dispersion would be reflected or not from a Fabry-
Perot cavity depending on the presence or not of an atom
in the cavity. Such an experiment appeared as out of
reach for a long time because of the very small velocity
dispersion (< 50 µm/s) required for its demonstration.
Exploiting the position-velocity correlation that builds
up in the propagation over a slope we have shown that
this level of accuracy can now be achieved with the cur-

rent state of the art. This work therefore paves the way
for ultrahigh resolution in matter wave probing, the ob-
servation of nonlinear atom optical effects and of the in-
terplay between atom tunneling and atom-atom interac-
tions [35, 36].
We are grateful to B. Georgeot, A. del Campo and

J. Billy for useful comments. This work was supported
by Programme Investissements d’Avenir under the pro-
gram ANR-11-IDEX-0002-02, reference ANR-10-LABX-
0037-NEXT, the Institut Universitaire de France, the
Basque Government (Grant IT472-10), MINECO (Grant
FIS2012-36673-C03-01), and the program UFI 11/55 of
UPV/EHU.

Appendix A: Scaling Wigner solution

This appendix justifies the scaling form of the Wigner
function of Eq. (15) for both a one-body wave function
and a Bose-Einstein condensate in the Thomas-Fermi
regime.
We consider a cloud of atoms in a harmonic trap.

At time t = 0, the confinement is suddenly removed
and the packet experiences a uniform accelerating force.
For a non-interacting gas, the initial Wigner function,
W0(x, p), obeys the stationary Liouville equation

p∂xW0 −m2ω2
0x∂pW0 = 0, (A1)

Multiplying this by p/N , where N is the total number of
particles, and integrating over p yields

∂x

(
∫

p2W0dp

)

+m2ω2
0xn0(x) = 0, (A2)

where n0(x) is the linear density defined by

n0(x) = N

∫

W0(x, p)dp with

∫

n0(x)dx = N. (A3)

Multiplying Eq. (A2) by x/N and integrating over x pro-
vides the usual momentum relation associated to the har-
monic oscillator 〈p2〉0 = m2ω2

0〈x2〉0.
For t > 0, the packet is released on a slope i.e. on a lin-

ear potential U(x) = −mγx. The equation of evolution
of the time-dependent Wigner function now reads

∂tW + (p/m)∂xW +mγ∂pW = 0. (A4)

We look for the solution of this time-dependent equation
using a scaling ansatz : W (x, p, t) = W0(X,P ) with X =
[x − η]/α and P = α(p − mη̇) − mα̇(x − η) [10], where
α and η are time-dependent functions to be determined
with boundary conditions

η(0) = 0, η̇(0) = 0, α(0) = 1, α̇(0) = 0, (A5)

so that P (t = 0) = p and X(t = 0) = x. Let’s calculate
the derivative of X and P variables with respect to x, p
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and t:

∂tX = −(α̇X + η̇)/α

∂xX = 1/α

∂tP = mα̇η̇ −mαη̈ +mX(α̇2 − αα̈) + α̇P/α

∂xP = −mα̇

∂pP = α. (A6)

We deduce the following derivative of the phase-space
distribution :

∂tW = ∂tX∂XW0 + ∂tP∂PW0,

∂xW = ∂xX∂XW0 + ∂xP∂PW0,

∂pW = ∂pP∂PW0. (A7)

Combining Eqs. (A7) and (A4), we get

ΛX∂XW0 + ΛP∂PW0 = 0 (A8)

with

ΛX = (∂tX + (p/m)∂xX) = P/(mα2),

ΛP = (∂tP + (p/m)∂xP +mγ∂pP )

= −mα(η̈ − γ)−mXαα̈. (A9)

The integration of Eq. (A8) overX and P yields the equa-
tion for the packet center η̈ = γ. Multiplying Eq. (A8) by
XP and integrating over X and P provides the equation
fulfilled by the α scaling parameter:

α̈ =
〈P 2〉0

m2〈X2〉0
1

α3
≡ ω2

0

α3
, (A10)

whose solution is α(t) = (1 + ω2
0t

2)1/2. For the ground
state we find ω0 = ~/(2mσ2) where σ = ∆x0.
Let us now consider a Bose-Einstein condensate in

the Thomas-Fermi regime. Initially the BEC is trapped
in an harmonic trap of angular frequency ω0 and its
wave function normalized to the number of atoms reads
Ψ(x, 0) = n

1/2
0 (x), where n0 is the atomic density:

n0(x) = (µ−mω2
0x

2/2)/g, (A11)

where g accounts for the strength of the interactions. At
time t > 0, we propose to describe the dynamics using
the ansatz

Ψ(x, t) =
1

α1/2
n
1/2
0

(

x− η

α

)

eiS(x,t). (A12)

To obtain the expression of the scaling parameter α and
of the phase S(x, t) we shall use the hydrodynamic equa-
tions. The continuity equation for the density n(x, t) =
|Ψ(x, t)|2 yields the expression for the velocity field [11],

∂tn+ ∂x(nvx) = 0 =⇒ vx = η̇ + α̇
x− η

α
. (A13)

The phase S can be directly infered from the velocity
field through the relation vx = ~∂xS/m:

S(x, t) =
m

~

(

η̇(x− η) + α̇
(x− η)2

2α

)

. (A14)

The Euler equation for the velocity field in the Thomas
Fermi regime reads

m∂tvx = ∂x

(

−1

2
mv2 − Vext(x) − gn(x, t)

)

. (A15)

Combining Eqs. (A11), (A12) and (A15), we find the
equations fulfilled by the center position of the packet η
and the one for scaling parameter α,

η̈ = γ and α̈ =
ω2
0

α2
. (A16)

Instead of the α3 denominator that we found for the
noninteracting gas in Eq. (A10), we have now α2, so
the solution cannot be written explicitly. However, as
α̇ = ω0[2(1 − α−n+1)/(n − 1)]1/2, the long time asymp-
totics, as t ≫ 1/ω0, is quite simple: α̇ ∼ ω0 for the non-

interacting gas (n = 3) and α̇ ∼
√
2ω0 for the TF regime

(n = 2). Once the mean field energy is released, the
cloud expansion proceeds as a free expansion with a rate
of change corresponding to an effective initial frequency√
2ω0, a fingerprint of the interactions that, remarkably,

does not depend on g.
The time-dependent Wigner function associated with

Ψ(x, t) can be recast in terms of the initial Wigner func-
tion:

W (x, p, t) =
1

Nπ~

∫

Ψ∗(x+ y, t)Ψ(x− y, t)e2ipy/~dy

=
1

Nπ~α

∫
[

n0

(

x+ y − η

α

)

n0

(

x− y − η

α

)]1/2

×e2ipy/~+iS(x−y,t)−iS(x+y,t)dy

= W0 (X,P ) . (A17)

Interestingly enough, this result coincides with the one of
the collisionless Vlasov equation [37]. This may appear
surprising at first sight since Vlasov equation is a semi-
classical equation in the presence of a mean-field term.
However, the quadratic form of the density profile that
enters the mean field potential term enables to conserve
the equivalence between the equation of evolution for the
Wigner function and the Vlasov equation. In this sense,
this is a direct consequence of the initial harmonic con-
finement assumption.
The expression used above for the Wigner is the one

associated with a pure state. This is valid in the absence
of interactions and also for the mean field description
of a Bose-Einstein condensate but it cannot be applied
directly to a many-body wave function. In this latter
case, the Wigner function is defined through the one-
body reduced density matrix, g1(x, y; t) [9]:

W (x, p, t) =
1

π~

∫

g1(x+ y, x− y, t)e2ipy/~dy. (A18)

A large class of many-body quantum systems exhibit self-
similar dynamics [13, 38]. This includes the Calogero-
Sutherland model [39], the Tonks Girardeau gas [40, 41],
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certain Lieb-Liniger states [42], Bose-Einstein condensate
[43, 44] even in the presence of dipolar interactions [45],
strongly interacting gas mixtures [46], ... The self-similar
dynamics can be written in our context as

g1(x, y; t) =
1

α
g1(

x − η

α
,
y − η

α
; 0)ei(S(x,t)−S(y,t)) (A19)

yielding once again W (x, p, t) = W0 (X,P ).

Appendix B: f functions

We may calculate the fj functions in Eq. (30) making
use of Eqs. (20-25). An alternative route is to write down
the Wigner function explicitly making use of the known
phase-space propagator,

W (x, p; t) =

∫ ∫

dx0dp0W (x0, p0; 0)

× δ

(

x− x0 − v0t−
γt2

2

)

δ(v − v0 − γt)

=
1

π~
e−

(p−mγt)22σ2

~2 e−
(x−pt/m+γt2/2)2

2σ2 , (B1)

for W (x0, p0, 0) = 1
π~e

−
p202σ2

~2 e−
x2
0

2σ2 . The end result is
W (x, p, t) = W (x0, p0, 0) for phase-space points con-
nected by classical trajectories (Liouville’s theorem).
Note that, in general, x0 6= X and p0 6= P . An explicit
calculation, however, shows the equality of this Wigner
function with W0(X,P ).

f1 =
mσt(8γm2σ4 + γ~2t2 + 2~2x)√

2π(4m2σ4 + ~2t2)3/2
, (B2)

f2 =
mσ

{

64γ2m4σ8t2 + 16~2m2σ4[σ2 + γt2(γt2 + 2x)] + ~
4t2[4σ2 + (γt2 + 2x)2]

}

2
√
2π(4m2σ4 + ~2t2)5/2

, (B3)

f3 =
mσt(8γm2σ4 + γ~2t2 + 2~2x)

4
√
2π(4m2σ4 + ~2t2)7/2

×
{

64γ2m4σ8t2 + 16~2m2σ4[3σ2 + γt2(γt2 + 2x)] + ~
4t2[12σ2 + (γt2 + 2x)2]

}

. (B4)
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