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Extreme-value theory applied to boundary
estimation

Salim Rao

Bengal Engineering and Science University, Shibpur

Abstract
In this paper, the problem of nonparametric estimation of boundaries
is investigated from the perspective of extreme value theory. This enables
us to revisit the asymptotic theory of the popular three disposal hull esti-
mator in a more general setting, to derive new estimators and to provide
useful asymptotic results for the boundary function.

1 Introduction

In this paper, we consider x € R% | a vector of production factors (inputs) used
to produce a single quantity (output) y € Ry. The attainable production set
is then defined as P = {(z,y) € R x R4 | « can produce y}. Assumptions
are usually made on this set, such as three disposability of inputs and outputs,
meaning that if (z,y) € P, then (2/,y’) € P for any (2',y’) such that 2’ > 2 and
y' < y. To the extent that the efficiency of a firm is a concern, the boundary
of P is of interest. The efficient boundary of IP is the locus of optimal production
plans (maximal achievable output for a given level of inputs). In our setup, the
production boundary is represented by the graph of the production function
0(z) = sup{y | (z,y) € P}. The economic efficiency score of a firm operating at
the level (z,y) is then given by the ratio 6(z)/y.

Cazals et al. [12] proposed a probabilistic interpretation of the production
boundary. Let P be the support of the joint distribution of a random vector
(X,Y) € RE x R;. The distribution function of (X,Y") can be denoted F(z,y)
and F(-|z) = F(z,-)/Fx(x) will be used to denote the conditional distribution
function of Y given X < z, with Fx(x) = F(x,00) > 0. It has been proven in
[12] that

6(x) =sup{y > 0| F(y|lr) < 1}

is a monotone non-decreasing function with z. So, for all ' > x with respect to
the partial order, 6(z') > 6(z). The graph of 6 is the smallest non-decreasing
surface which is greater than or equal to the upper boundary of P. Further, it
has been shown that under the three disposability assumption, 6 = 6, that is,
the graph of 0 coincides with the production boundary.



Since P is unknown, it must be estimated from a sample of i.i.d. firms &,, =
{(X;,Y;) | i =1,...,n}. The three disposal hull (3DH) is Pspy = {(z,y) €
Rﬂ’_ﬂ |y <Y,z>X;,i=1,...,n}. The resulting 3DH estimator of 6(x) is

f1(z) = sup{y > 0| F(ylz) <1} = max V;,
i, X; <z

where F(y|z) = F,(z,y)/Fx(x) with F,(z,y) = (1/n) > I(X; < 2,Y; <y)
and Fx(x) = F,(z,00). This estimator represents the lowest monotone step
function covering all of the data points (X;,Y;). To summarize, under regularity
conditions, the 3DH estimator él(x) is consistent and converges to a Weibull
distribution with some unknown parameters.

In this paper, we first analyze the properties of the 3DH estimator from an
extreme value theory perspective. First, we provide the necessary and sufficient
condition for the 3DH estimator to converge in distribution and we specify the
asymptotic distribution with the appropriate rate of convergence. We also pro-
vide a limit theorem for moments in a general framework. Second, we show
how the unknown parameter p, > 0, involved in the necessary and sufficient
extreme value conditions, is linked to the dimension p 4+ 1 of the data and to
the shape parameter § > —1 of the joint density: in the general setting where
p > 1 and 8 = (8, may depend on z, we obtain, under a convenient regularity
condition, the general convergence rate n~/P» = n=1/(B2Fr+1) of the 3DH esti-
mator 6, (). Third, we suggest a strongly consistent and asymptotically normal
estimator of the unknown parameter p, of the asymptotic Weibull distribution
of 6, (). This also answers the important question of how to estimate the shape
parameter (3, of the joint density of (X,Y) when it approaches the boundary of
the support P. This branch of statistics has become very active these past ten
years, the main contributions to this domain are listed below:

e Theoretical issues: [69, 65, 67, 27, 34, 20, 33, 35, 32, 5, 28, 13, 53, 26, 4,
1, 86, 85],

Quantile regression: [58, 19, 70]

Application to finance: [10, 3, 37, 11, 60, 84],

Edge estimation [55, 54],

Frontier estimation [23, 68, 66, 64, 82, 79, 81, 76, 16, 14, 15, 9, 2, 41, &,
63, 17, 74, 73, 21, 83, 62, 22, 50, 38, 61, 24, 25, 72, 6, 77, 12, 57, 59, 71,
56, 45, 47, 18, 31, 75, 78, 80, 40],

e Boundary estimation [46, 49, 48, 44, 43, 42, 51, 30, 52, 7, 36, 39].

By construction, the 3DH estimator is very non-robust to extremes. Recently,
Aragon et al. [2] constructed an original estimator of #(z), which is more robust
than 6;(z), but which keeps the same limiting Weibull distribution as 6y (x)
under the restrictive condition # = 0. In this paper, we provide further insights
and generalize their main result. We also suggest attractive estimators of 6(x)



converging to a normal distribution, which appear to be robust to outliers. The
paper is organized as follows. Section 2 presents the main results of the paper.
Section 3 concludes the paper, with proofs deferred for the Appendix.

2 Main results

From now on, we assume that « € RY such that Fx(z) > 0 and will denote

by 0. (z) and éa(x), respectively, the a-quantiles of the distribution function
F(-]) and its empirical version F(-|z),

0o (x) =inf{y > 0| F(ylz) > a} and O4(z) =inf{y > 0] F(ylz) > a}

with @ €]0,1]. When « T 1, the conditional quantile 6,,(z) tends to 61 (), which
coincides with the boundary function 6(z). Likewise, 4 () tends to the 3DH
estimator 6 (z) of 0(x) as o T 1.

We first derive the following interesting results on the problem of convergence
in distribution of suitably normalized maxima b, (6, (z) —6(x)). We will denote
by I'(+) the gamma function.

Theorem 2.1 (i) If there exist b, > 0 and some non-degenerate distribution
function G, such that

b, (01(x) — 0(z)) ~% Go, (1)

then Gg(y) coincides with U, (y) = exp{—(—y)?*} with support |—o0,0] for
some py > 0.

(ii) There exists by, > 0 such that b, (61 (x) — 0(x)) converges in distribution
if and only if

tlirgo{lfF(Q(x)fl/tz | 2)}/{1-F(0(z)-1/t | z)} = 2= forall z >0

(regular variation with exponent — py, notation 1 — F(0(z) — 1 | z) €
RV_,.).
In this case, the morming constants b, can be chosen as b, = 0(x) —

91—(1/nFX(z))(CC)~
(iii) Given (2), lim, oo B{b;1(0(z) — 01 (x))}* = D(1 + kp; ') for all integers
k>1 and
[0~ EGuw)
we | Var@r (o) e
=0y, [{T(1+20.1) = T2(1+ p )} 2y~ T(1+ o, )],




Since the function ¢ — Fx(z)[1 — F(8(z) — + | )] € RV_,, (regularly
varying in ¢ — oo) by (2), this function can be represented as t~#= L,(t) with
L,(-) € RV (L, being slowly varying) and so the extreme value condition (2)
holds if and only if we have the following representation:

Fx(2)[1 = F(ylz)] = Lo({0(z) =y} ) (0(2) =) asy16(x).  (3)

In the particular case where L, ({#(z) —y} 1) = £, is a strictly positive function
in z, it is shown in the next corollary that b, ~ (nf,)~'*=. From now on, a
random variable W is said to follow the distribution Weibull(1, p,) if We= is
exponential with parameter 1.

Corollary 2.1 Given (3) or, equivalently, (2) with L,({0(z)—y}~') =€, >0,
we have

(nly)"r= (0(x) — 0, (z)) <, Weibull(1, p,) as n — oo.

We assume the differentiability of the functions ¢, p, with p, > p and 6(x)
in order to ensure the existence of the joint density near its support boundary.
We distinguish between three different behaviors of this density at the boundary
point (z,0(z)) € RP*! based on how the value of p, compares to the dimension
(p+1): when p, > p+ 1, the joint density decays to zero at a speed of power
pz — (p+1) of the distance from the boundary; when p, = p+ 1, the density has
a sudden jump at the boundary; when p, < p+ 1, the density increases toward
infinity at a speed of power p, — (p+1) of the distance from the boundary. The
case p, < p+ 1 corresponds to sharp or fault-type boundarys.

As an immediate consequence, we obtain the convergence in distribution of
the 3DH estimator with the convergence rate n='/(#+2) In the other particular
case where the joint density is strictly positive on the boundary, we achieve
the best rate of convergence n~'/(P+1) We answer the important question of
how to estimate the shape parameter 3, or, equivalently, the regular variation
exponent p, in (2).

As an immediate consequence of Theorem 2.1(iii), we obtain

E{0() ~ 0@)}F = KB +p+ 17 {nl} WO RS, +p 1))
- o(nH/Betp)). )
The result (4) also reflects the well-known curse of dimensionality from which
the 3DH estimator 6; (z) suffers as the number p of inputs-usage increases, as
pointed out earlier in the particular case where 5, = 0.

By an appropriate choice of a as a function of n, Aragon et al. [2] have
shown that ,(z) estimates the full boundary 6(z) itself and converges to the
same Weibull distribution as the 3DH 6, (x) . The next theorem provides further
insights and generalizes their main result.

Theorem 2.2 (i) If b;'(0,(z) — 0(x)) <, G, then for any fized integer
k>0,

-1(4 d
b, (917k/(nﬁx(m))(93) - 9(55)) — H, as n — oo



for the distribution function Hy(y) = G (y) Zf:o(_ log G.(y))!/i!.

(i) Suppose that the upper bound of the support of Y is finite. If b;l(él(x) -

0(z)) %, G, then b (0, (z) — 0(x)) L, G, for all sequences ay, — 1
satisfying nb, (1 — a,) — 0.

When 6, (z) converges in distribution, the estimator 64, (z), for o, := 1 —
k/nFx(z) < 1 (that is, k = 1,2,..., in Theorem 2.2(i)), estimates 0(z) itself
and also converges in distribution, with the same scaling, but a different limit
distribution (here, nb; (1 — a,) =2 00). To recover the same limit distribution
as the 3DH estimator, it suffices to require that a,, — 1 rapidly so that nb;*(1—
ap) — 0. This extends the main result of Aragon et al. ([2], Theorem 4.3),
where the convergence rate achieves n='/(®+1) under the restrictive assumption
that the density of (X,Y") is strictly positive on the boundary. Note, also, that
the estimate éan does not envelop all of the data points providing a robust
alternative to the 3DH boundary él; see [24] for an analysis of its quantitative
and qualitative robustness properties.

The important question of how to estimate p, from the multivariate random
sample X, is very similar to the problem of estimating the so-called extreme
value index, which is based on a sample of univariate random variables. An
attractive estimation method has been proposed, which can be easily adapted
to our conditional approach: let k = k,, be a sequence of integers tending to
infinity and let k/n — 0 as n — oco. A Pickands-type estimate of p, can be
derived as

: z)—0 ; )\~
5 —10g2(10g - @b 1)/ @) () = 01 a1y oy () >)
01 (k=1 /nFx (0) (B) = 0121y (o () (©)

The following result is particularly important since it allows the hypothesis
pz > 0 to be tested and will later be employed to derive asymptotic confidence
intervals for 6(x).

Theorem 2.3 (i) If (2) holds, k, — oo and k,/n — 0, then p, 25,
(”) ]f (2) hOsta kn/n — 0 and k’n/ IOg logn — 00, then pr ﬂ) Pz

(1ii) Assume that U(t) := 01_1/¢4ry(2)) (), t > #(I), has a positive deriva-
tive and that there exists a positive function A(-) such that for z > 0,
limy oo { (t2) "YU (t2) =t +1/P= U’ (1)} JA(t) = +1og(2), for either choice

of the sign (II-variation, which will in the sequel be denoted by: +t'+t1/P=U'(t) €

TI(A)). Then,

VEn(pe = pa) =5 N(0,0%(p2)), (5)

with asymptotic variance 0% (p,) = p2(21-2/P= +1)/{(271/P= — 1) log4}?,
for k, — oo satisfying k, = o(n/g~1(n)), where g~ is the generalized
inverse function of g(t) = t3+2/P={U'(t)A(t)}?.



(v) If, for some k > 0 and § > 0, the function {t"=='F'(6(z) — } | x) —
§} € RV _,., then (5) holds with g(t) = t3+2/p={U'(t)/(t* T/ r=U"(t) —
[6Fx ()] 71/P= (pa) /P 1) )2

Note that the second order regular variation conditions (iii) and (iv) of The-
orem 2.3 are difficult to check in practice, which makes the theoretical choice
of the sequence {k,} a hard problem. In practice, in order to choose a reason-
able estimate p,(k,) of p., one can construct the plot of j,, consisting of the
points {(k, p(k)),1 < k < nFx(x)/4}, and select a value of p, at which the
obtained graph looks stable. This technique is known as the Pickands plot in
the univariate extreme value literature.

We can also easily adapt the well-known moment estimator for the index of
a univariate extreme value distribution to our conditional setup. Define

k—1
. 1 A A J
M = % Z(logel—i/(nﬁ‘x(z))<x) — log el—k/(nﬁ'x(w))(x))
i=0
foreach j =1,2 and k =k, < n.
We can then define the moment-type estimator for the conditional regular-
variation exponent p, as

—1
o == M0+ 1= J (1 - ()7

Theorem 2.4 (i) If (2) holds, kn/n — 0 and k,, — o0, then p, —— p.
(ii) If (2) holds, k,/n — 0 and k,/(logn)’ — oo for some § > 0, then

e == pa.

(iii) If £t'/P={0(x)~U(t)} € TI(B) for some positive function B, then /ky, (ps—
pz) has, asymptotically, a normal distribution with mean zero and variance
(2+ps)  (LL+5p.)(2+ ps) }
(3+ pa) (3+ pa)(4+ pz)
for ky, — oo satisfying k, = o(n/g~'(n)), where g(t) = t'+2/P=[{log §(z) —
logU(t)}/B(1)]*.
The next theorem enables the construction of confidence intervals for 6(x)

and for high quantile-type boundarys 6,_,, ,p, (z)(z) when p, — 0 and np, —
00.

pw(2 + pw)<1 + pw)2{4 -8

Theorem 2.5 (i) Suppose that F(-|x) has a positive density F'(-|x) such that
F'(0(z) — + | x) € RV1_,,. Then,

a0 = O 0 E) g
01 (k1) oy (@) (©) = 01 (o1 —1) (g () ()

where Vi (p,) = py 221 =2/p= /(271 P= —1)2, provided that p, — 0, np, — oo
and ky, = [npy].



(ii) Suppose that the conditions of Theorem 2.3(iii) or (iv) hold, and define
01(x) = 21/’)1 - 1{9 (kn—1 /(an(ac))( z)—0 7(2kn71)/(nﬁ‘x(az))(m)}
01 1) o ) (©)-

Then, putting Va(p,) = 3p; 227 172/p= /(271 Pe —1)8 we have

S~ 05 (z) — 9(:v) —L N(0, Va(pa)).

1
01 (k1)) nx 2) (&) = 01 ok, 1) j(n () (@
(iii) Suppose that the conditions of Theorem 2.3(iil) or (iv) hold, and define
01(x) = 21/“ - 1{9 (kn—1 /(an(ac))( z)—0 7(2kn71)/(nﬁ‘x(az))(m)}
01 1) o ) (©)-
Then, putting Va(p,) = p;2272/P= /(271/P+ — 1), we have

S~ ie) ~ 0

1
1—(kn—1)/(nEx (z)) (f”) —(2kn —1)/(nFX(r))($)

L N0, Vs (o), o
6 0 n U n
Ry € L Ny C) 2%, \ 2k,

2 (1 — 2*1/%)_

Note that Theorem 2.5(ii) is still valid if the estimate p, is replaced by the
true value p,, up to a change of the asymptotic variance. It is easy to see
that Va(p,) > Va(p,) and so the estimator 6% (z) of 6(z) is asymptotically more
efficient than 67 (). We also conclude from (6) that 0} (x) and 7 (z) have the

same rate of convergence, namely nU’(5z-)/(2kn )3/2. In the particular case
where L, ({0(x) —y} ') = £, in (3), we have U’ (57— ) = p%(i)l/pw(%)l‘*l/px.
Note, also, that in this particular case, the condltlon of Theorem 2.5(i) holds,

that is, F/(6(z) — 1 | z) = ;;?;)( )p*_l € RV,_,,. However, the conditions

of Theorem 2.3(iii) and (iv) do not hold since both functions t'*1/¢=U’(t) =

L (AP and 7=~ F'(0(2)— 1 | ) = £2L=; are constant in ¢. Nevertheless, the
Px T t Fx (ﬂ)
conclusions of Theorem 2.3(iii) and (iv) hold in this case for all sequences k,, —

00 Satlsfymg 2 — (0. The same is true for the conclusion of Theorem 2.5(ii).

Theorem 2.6 If the condition of Corollary 2.1 holds, k,, — oo and k,/n — 0
as n — 00, then

{Pwkrl/Q/(kn/nfm)l/pw}[ék(knq)/(nﬁx(m))(x) + (kn /nly) ' Pr — ()]
i>/\/'(O,1) as m — o0o.



~ The optimization of the asymptotic —mean-squared error of
0, (k. —1)/(an(3c))( x) is not an appropriate criteria for selecting the optimal
k., since the resulting value of k,, does not depend on n.

We shall now construct asymptotic confidence intervals for both 6(z) and

01_p,, /Fx (z)(2), using the sums M,gl) and M,SQ).
Theorem 2.7 (i) Under the conditions of Theorem 2.5(i),

\f 01, /anu))( 2) = V1p/rx (@) () ~L N0, Va(px))
M 91 kn/(nFX(T))(x)

where Vi(pz) = (1 + 1/pz)?, provided that p, — 0, np, — oo and k, =
[npn].
(i) Suppose that the conditions of Theorem 2.4(iil) hold and that U(-) has a

reqularly varying deriwative U' € RV _, . Define the moment estimator
1 N
O(x) =0,_ o/ (nBx () (Z 2){1+ MV (14 p,)}. Then,

Vi@~ 82) L N0, Va(p))
M( )(1 + 1//%) /(nFX(x))( ) e

B 02 g2t ps)  (1+5p0)(2 + po)
%(Pm)ﬂi{(2+p$>+pf2+pr{ 3—|—paj (3+pw)<4+Pz) }
_‘Lf’ﬂc}
(B+px)]

We consider the case where the support boundary is linear. We choose
(X,Y) uniformly distributed over the region D = {(z,y) |0 <z <1,0<y <
x}. In this case (see, for example, [24]), it is easy to see that f(x) = = and
Fx(z)[1 — F(y|z)] = (0(z) —y)? for all 0 < y < 6(z). Thus, L,(-) = ¢, =1 and
pz = 2 for all x. Therefore, the conclusions of all Theorems 2.1-2.6 hold.

We now choose a nonlinear monotone upper boundary given by the Cobb—
Douglas model Y = X'/2exp(—U), where X is uniform on [0, 1] and U, inde-
pendent of X, is exponential with parameter A = 3 (see, for example, [24]).
Here, the boundary function is 6(x) = x'/2 and the conditional distribution
function is F(y|z) = 3z~ 'y? —2273/233 for 0 < x <1 and 0 < y < O(x). Tt is
then easily seen that the extreme value condition (2) or, equivalently, (3) holds
with p, = 2 and L, (2) = Fx(2)[30(z) — 2]/[0(x)]? for all z €]0,1] and z > 0.

3 Concluding remarks

In our approach, we provide the necessary and sufficient condition for the 3DH
estimator él () to converge in distribution, we specify its asymptotic distri-
bution with the appropriate convergence rate and provide a limit theorem for
moments in a general framework. We also provide further insights and gener-
alize the main result of [2] on robust variants of the 3DH estimator, and we



provide strongly consistent and asymptotically normal estimators g, and p, of
the unknown conditional tail index p, involved in the limit law of 6 (z). More-
over, when the joint density of (X,Y’) decreases to zero or increases toward
infinity at a speed of power (3, > —1 of the distance from the boundary, as is
often assumed in the literature, we answer the question of how p, is linked to
the data dimension p + 1 and to the shape parameter 3,. The quantity 5, # 0
describes the rate at which the density tends to infinity (in the case 8, < 0) or
to 0 (in the case B, > 0) at the boundary. When 3, = 0, the joint density is
strictly positive on the boundary. We establish that p, = 8, + (p + 1).

We propose new extreme-value-based boundary estimators 67 (z), 0% (z) and
é(w), which are asymptotically normally distributed and provide useful asymp-
totic confidence bands for the monotone boundary function 6(x). These esti-
mators have the advantage of not being limited to a bi-dimensional support
and benefit from their explicit and easy formulations, which is not the case for
estimators defined by optimization problems, such as local polynomial estima-
tors. Their asymptotic normality is derived under quite natural and general
extreme value conditions, without Lipschitz conditions on the boundary and
without recourse to assumptions either on the marginal distribution of X or
on the conditional distribution of Y given X = z, as is often the case in both
statistical and econometrics literature on boundary estimation. The study of
the asymptotic properties of the different estimators considered in the present
paper is easily carried out by relating them to a simple dimensionless random
sample and then applying standard extreme value theory (for example, [29]).

It should be clear that the monotonicity constraint on the boundary is the
main difference with most of the existing approaches in the statistical literature.
Indeed, the joint support of a random vector (X,Y) is often described in the
literature as the set {(x,y) | y < 8(x)}, where the graph of 6 is interpreted as its
upper boundary. As a matter of fact, the function of interest, 6, in our approach
is the smallest monotone non-decreasing function which is greater than or equal
to the boundary function 6. To our knowledge, only the estimators 3DH and
DEA estimate the quantity 6. Of course, 6 coincides with 6 when the boundary
curve is monotone, but the construction of estimators of the end-point 6(x) of
the conditional distribution of Y given X = x requires a smoothing procedure,
which is not the case when the distribution of Y is conditioned by X < .

We illustrate how the large-sample theory applies in practice by carrying
out some Monte Carlo experiments. Good estimates of 8(x) and p, may require
a large sample of the order of several thousand. Theoretically selecting the
optimal extreme conditional quantiles éa(kn(z)) for estimating 0(x) and/or p, is
a difficult question that is worthy of future research. Here, we suggest a simple
automatic data-driven method that provides a reasonable choice of the sequence
{kn(2)} for large samples.

The empirical study reveals that the simultaneous estimation of the tail in-
dex and of the boundary function requires large sample sizes to provide sensible
results. The moment estimators of p, and of #(x) sometimes provide better
estimations than the Pickands estimates and sometimes not. When considering



bias and MSE, 6(z) and j, provide more accurate estimations, but when the
sample size is large enough, éf (2) and p, significantly improve and even seem to
outperform the moment estimators. As far as the inference on p, is concerned,
p. also provides quite reliable confidence intervals, but p, provides more sat-
isfactory results for sufficiently large samples. However, when inference about
the boundary function itself is concerned, the moment estimator provides very
poor results compared with the Pickands estimator.

On the other hand, the performance of the estimator 6% (z), computed when
Pz 1s known, is quite remarkable, even compared with the popular 3DH. The
confidence intervals for 6(x) are very easy to compute and have quite good
coverages. In addition, the results are quite stable with respect to the choice of
the ‘smoothing’ parameter k,(x). As shown in our illustrations, the estimates
also have the advantage of being robust to extreme values. This suggests, even
if p, is unknown, the use of a plug-in version of 65 (x) for making inference on
O(x): here, in a first step, we estimate p, (using the moment estimator, unless
N, is large enough), then we use the asymptotic results for é{ (z), as if p, was
known. A sensible practice is not to restrict the first step to one procedure, but
rather to check that both Pickands and moment estimators point toward similar
conclusions.

Appendix: Proofs

Proof of Theorem 2.1 Let Z% = YI(X < z) and F,(-) = {1 — Fx(x)[1 —
F(-]2)]}(- > 0). It can be easily seen that P(Z* < y) = F,(y) for any y € R.
Therefore, {Z7 = V;I(X; < z), i = 1,...,n} is an ii.d. sequence of random
variables with common distribution function F,.. Moreover, it is easy to see that
the right end-point of F, coincides with #(z) and that max;—1,_, Z7 coincides
with 6y (x). Thus, assertion (i) follows from the Fisher-Tippett theorem. It is
well known that the normalized maxima b71(f1(z) — 0(z)) - G (that is, F,
belongs to the domain of attraction of G = ¥, ) if and only if

Fo(0(x) ~1/t) € RV, ™)

where F,, = 1 — F,. This necessary and sufficient condition is equivalent to (2).
In this case, the norming constant b,, can be taken to be equal to (x) —inf{y >
0| Foly) > 1 -2} =0(z) —inf{y > 0 | Fylz) > 1 - m}, which gives
assertion (ii). For assertion (iii), since (7) holds and E[|Z% |¥] = Fx (z)E(Y*|X <
z) < 0(x)", it is immediate that lim,_ . E{b7 (61 (z) — 6(2))}* = (=1)*T(1 +

k/pz)-

Proof of Corollary 2.1 Following the proof of Theorem 2.1, we can set
bp = 0(z) — F;1(1 — 1), where F!(t) = inf{y €]0,0(x)], Fx(y) > t} for all
t €]0,1]. Tt follows from (3) that F;'(t) = 6(z) — ((1 —t)/£,)"/?* as ¢t 1 1 and
s0 by, = (1/nl,)"/ P+ for all n sufficiently large.

10



For the next proofs, we need the following lemma whose proof is quite easy
and is thus omitted.

Lemma 1 Let Z(“"l) <. < Z(xn) be the order statistics generated by the random
variables Z7, ..., Z%:
(i) ﬁﬁx(x) > 0, then él_k/(nﬁx(w))(x) = Z{(;,_y, for each k € {0,1,...,nFx(z)—

(i) qu anyﬁze.d.integerk >0, we have Gl_k/(nﬁ,x(w))(x) = Z{5,_yy asn — 00,
with probability 1.

(iii) For any sequence of integers kn > 0 such that ky/n — 0 as n — oo, we
have

01k ) (2) (@) = (i) as n — 0o, with probability 1.

Proof of Theorem 2.2 (i) Since §(z) = F; (1) and 6, (z) = Z¢, for all

n > 1, we have (61(z) — 0(x)) = (2¢,) — F;'(1)). Hence, if b, (61(x) —

0(x)) %, G,, then b;l(ZE”n) — F;1(1)) converges to the same distribution
Gy. Therefore, b, (Z{, ;) — F, (1)) % H, for any integer k > 0, where

T

H,(y) = Ga(y) Xi_o(—log G(y))' /i, Finally, since ZZ,_, =0, 5 (@)

asn — 00, in view of Lemma 1(ii), we obtain b;l(élfk/(nﬁx(x))(x)—F_l(l)) 4,

H,. (i) Writing b, ' (0a(z) — 0(z)) = b, (Ba(x) = 01(2)) + b, (1 (2) — 6(2)),
it suffices to find an appropriate sequence a = «;,, — 1 such that b, (6, (z) —
01(x)) i: 0. Aragon et al. [2] (see equation (20)) showed that |0, (2) —6; (z)| <
(1 — a)nFx(x)Fy (1), with probability 1, for any o > 0. Tt thus suffices to
choose a = a,, — 1 such that nb; (1 — a,,) — 0.

Proof of Theorem 2.3 (i) Let v, = —1/p, in (7). The Pickands estimate of
the exponent of variation 7, < 0 is then given by 4, := (log 2)~! log{(Zg”n_k,_H) —
2 —or )/ (Lo 1) — Zin—ar+1))}- Under (2), Condition (7) holds and so
there exists b, > 0 such that lim, .. Pb; ' (Z{,) — 0(2)) < y] = U1/, (y).
Since this limit is unique only up to affine transformations, we have

Jim Ple (20 = dn) < y] = Vo, (cry = 1) = exp{=(1+ )"}

for all y < 0, where ¢, = —7,b, and d,, = 6(z) — b,,. Thus, condition (1.1)
from Dekkers and de Haan [29] holds. Therefore, 5, LN e if k, — oo and
kyn

"o — 0, in view of [29], Theorem 2.1. This gives the weak consistency of p,

. ~ a.s. ~ . . eee
since 4, = —1/p, as n — oo, in view of Lemma 1(iii).

(i) Likewise, if £2 — 0 and %

Toglogn then 4, &> ~, via [29], Theorem

2.2, and 50 pn = p,.

11



(iii) We have U(t) = inf{y > 0 | 1= F G 2 t}, which corresponds to the
inverse function (1/(1 — F,))71(¢). Since £t!77%=U’'(t) € M(A) with v, =
—1/py < 0, it follows from [29] (see Theorem 2.3) that vEn (s — Va) ——
N(0,02(vz)) with 02(v,) = 2(22=T1 4+ 1) /{2(27= — 1) log 2}? for k,, — oo sat-
isfying k,, = o(n/g~t(n)), where g(t) := t3=27={U’(t)/A(t)}2. By using the fact
that vEn(pr — pz) = \/E(—,%z + ,y%) as n — 0o, in view of Lemma 1(iii) and

applying the delta method, we conclude that /k,(p. — pz) - N(0,0%(psz))
with asymptotic variance o2(p,) = 02(vz) /74

(iv) Under the regularity condition, we have £{t='='/7=F/(§(z) — 1) —
0Fx(x)} € RV_,. The conclusion then follows immediately from Theorem

2.5 of [29] in conjunction with Lemma 1(iii).

Proof of Theorem 2.4 We have, by Lemma 1(iii), that for each j = 1,2,

k—1

M) = (1/k) Z log Z{;,_;) — log anfk))] as n — oo, with probability 1;
=0

(8)

—1/p,, then coincides almost surely, for all n large enough, with the well-known
moment estimator 4, of the index defined in (7) by v, = —1/p,. Hence, Theo-
rem 2.4(i) and (ii) follow from the weak and strong consistency of 4,. Likewise,
Theorem 2.4(iii) follows.

Proof of Theorem 2.5 (i) Under the regularity condition, the distribution
function F, of Z* has a positive derivative F.(y) = Fx(z)F'(y|x) for all y > 0
such that F(6(z) — 1) € RV 141/, . Therefore, according to [29] (see Theorem
3.1),
VA - Fz_l 1- Pn
2k Zln—ka+1) ( )

Z(Tn kn+1) Z(Tn 2kn+1)

is asymptotically normal with mean zero and variance 227+ 7142 /(27 —1)2. We
conclude by using the facts that F; '(1 —py) = 61_, /5y (2)(x) and

VA - F 11 -p,
NS (n—kn+1) (1—pn)

Z(xn kn+1) Zévn 2kn+1)
o (o) (®) — Fo (1 —pn
= /2k, 1*(kn*1)/(an(x))(A) (1= pn) as m — oo.

01 (k1) /e ) (B) = 012k 1) S () (@)

(if)
[29], Theorem 3.2,

- as. Z7 —z7
* a8, “(n—kn+l) (n—2kp+41)
We have 07 (z) = e + Zf_y, +1) 88 n — oc. Following

V2Fa (61 () — 6(x))

Z(xnfk,ﬁ»l) B Zévn72kn+1)

is then asymptotically normal with mean zero and variance 3y22%7= =1 /(27 —1)6.

12



(iii) Let Eqy < --- < E(y) be the order statistics of i.i.d. exponential variables

FEq, ..., E,. Then, {Z(mn_kﬂ)}zz1 4 {U(eE<"—’€+1>)}’,§:1. Writing V (t) := U(e?),
we obtain

\ﬁ{ Z(mnfknﬂ)z_w 0(x) }

270 — 1 (n En+1) (n—2kn+1

)
4 for V(E(m—k,+1)) — 0()
- {2 w1t 1% - }

(En—tn+1)) = V(Em-2k,+1))

{ \/%{V V(logn/(2kn)) +1}

V'(log n/(% ) Ve
N an{V (n—kn +1) —V(Em-2k,+1) 1—2_’“} 2% V'(E(n—2k,+1))
2%V (E(—2k,+1)) o 1 —27 V'(logn/(2ky))
2kn V'(E(n—2k,+1)) P V(E(n-k,+1)) — V(logn/(2ky)) H
V'(logn/(2ky,)) ’ V'(logn/(2ky,))

V'(logn/(2k,))
V(E(nfkn+1)) - V(E(n72kn+1))'

The first term on the right-hand side tends to zero as established by Dekkers and
de Haan ([29], Proof of Theorem 3.2). The second term converges in distribution
to N(0,1) x 1 ?; , in view of Lemma 3.1 and [29], Corollary 3.1. The third
term converges in probability to 5= by the same Corollary 3.1. This ends
the proof of (iii), in conjunction with the fact that

/2~ 05 (z) —Aa(x)

01 (k1)) 2) (@) = 012k 1) (o () (%)
1 zZ% —0(z
2k{ — + = (n—kn+1) _ (z) } as 1 00,
270 —1 Z(n kn+1) Z(n72kn+1)

with probability 1.

Proof of Theorem 2.6 Write F,.(y) := Fx(x)[l — F(y|z)] and F,(y) :=
1 — Fy(y) for all y > 0. Let R.(y) := —log{F.(y)} for all y € [0,0(z)] and
let E(n_g,+1) be the statistic of order n — k,, + 1 generated by n independent
standard exponential random variables. Z(“Cn_ 1) then has the same distribu-

tion as R [E(,_k, +1)], where Ry (t) :=inf{y > 0| R,(y) > t} = inf{y > 0 |
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F.(y) >1—et}:=F;1(1 —e™"). Hence,

- kn
Z(wnfkr,ﬂrl) - F:c ! (1 - Tl)

= RMEq—k,+1)) — Ry [10g</:;>}

() ()

1 n\1? _
+ 5 |:E(n—kn+1) — 10g<k>:| (Rm 1)//[&*"},

provided that E,_, 1) Alog(n/kn) < 0n < Eg_p,+1) V log(n/k,). By the
regularity condition (3), we have that R;'(t) = 0(x) — (e7t/€,)Y/ 7= for all ¢
large enough. Therefore, for all n sufficiently large,

{Pmk}zﬂ/(kn/ngm)l/pz}[Z(wnfknJrl) - Fm_l(l - kn/n)]
i krlL/Q [E(n—kn-l-l) - IOg(n/kn)]
— kY% 1202} [Enp, +1) — og(n/kn)]” exp{—[8, —log(n/kn)]/ps}-

Since k' *[Egn_ 1, +1)—1og(n/ka)] % N(0,1) and |8, —1og(n/kn)| < |En_k, 1)~
log(n/ky)| £ 0 as n — oo, we obtain {p, iﬂ/(k‘n/n&)l/pw}[Zg’niknﬂ) -
F (1 =k, /n)) -, N(0,1) as n — oo. Since F, 1(t) = 0(z) — (1 —t)/l,) /Pe
for all ¢ < 1 large enough, we have 0(z) — F,; 1(1 — %) = (k, /n{,)'/?= for all n
sufficiently large. Thus, {pzk}lﬂ/(kn/nfz)l/pw} X 20 syt (kp/nly) M/ Pe —
0(z)] < N(0,1) as n — oo. We conclude by using the fact that Z, _, ., =

01_(’67"_1)/(”15)((1))(‘7:) as n — 0o.

Proof of Theorem 2.7 (i) As shown in the proof of Theorem 2.5(i), we have
FlL(6(z) — 1) € RV141/,,. Then, we get

/ x - x d
The proof is completed by simply using the fact that F, }(1—p,) = 01 —p,, /(Fx () ()

and Z¢, = 01k, ) (nox (2)) () B8 0 — 0.

N a.s.

(i) Since Zf, _; B 01k, /(nFx (2)) (@) a0d Tz

(z) == Zgzn_kn)Mr(Ll)(l —1/%)+ 2,4,y as n — oo. It is then easy to see from

(8) that 6(x) coincides almost surely, for all n large enough, with the end-point
estimator 27 of F,;1(1). It is also easy to check that U(t) = (1/(1 — F,))~"1(¢)
and v, = —1/p, < 0. We then have vk, {i} — F; '(1)}/MVZE,_, (1 -

Ye) LN (0, V5(—=1/7z)), which gives the desired convergence in distribution of
Theorem 2.7(ii) since F (1) = 0(x), 2% = 0(x), 7 = —1/p, and Z8, 1) =

F)lfkn/(nﬁx(f))(x) as n — 00.

—1/p, asn — oo, we have
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