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Ce papier présente une architecture multirobots permettant une allocation automatique de plusieurs objectifs sur une flotte de robots. Le challenge consiste à rendre des robots autonomes pour réaliser coopérativement leur mission sans qu'un plan soit prédéfini. Cette architecture, appelée PRDC, est basée sur 4 modules (Perception, Représentation, Délibération et Contrôle). Nous nous intéressons plus particulièrement au module de délibération en considérant le problème des voyageurs de commerce coopératifs dans un environnement incertain. L'objectif des robots est alors de visiter un ensemble de points d'intérêt représentés dans une carte topologique stochastique (Road-Map). Le processus proposé pour la construction des politiques collaboratives est distribué. Chaque robot calcule ses politiques individuelles possibles de façon à négocier collectivement l'allocation des points d'intérêt entre les membres de la flotte. Enfin, l'approche est évaluée via un important nombre de simulations.

Introduction

Permettre à une flotte de robots d'être complétement autonome pour réaliser des objectifs complexes est un chalenge difficile de la robotique mobile. Les comportements des robots doivent converger efficacement vers la réalisation de tous les objectifs tout en réagissant correctement aux événements perçus. Le besoin de réaliser des comportements complexes et variés pour des robots autonomes a conduit à la proposition d'architectures hiérarchiques [START_REF] Alami | An architecture for autonomy[END_REF][23] [START_REF] Mourioux | Control robot by a generic control architecture[END_REF].

Ce type d'architecture permet de séparer la prise de décision du contrôle/commande d'un robot en utilisant plusieurs niveaux d'abstraction. Généralement, ces architectures incluent un niveau fonctionnel qui supervise les perceptions et asservit le robot pour la réalisation d'une tâche, ainsi qu'un niveau décisionnel qui planifie la réalisation de la mission et supervise le niveau fonctionnel. tives [START_REF] Goldman | Decentralized control of cooperative systems : Categorization and complexity analysis[END_REF][8] [START_REF] Burgard | Coordinated multi-robot exploration[END_REF] basée sur une connaissance de l'environnent modélisé par une carte. Il existe, dans la littérature, 2 principales familles de cartes qui permettent de connecter perception, décision et contrôle : les cartes sous forme de grilles d'occupation [START_REF] Elfe | Sonar-based real-world mapping and navigation[END_REF], qui sont une discrétisation métrique de l'environnement et les cartes dites topologiques [START_REF] Kuipers | A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations[END_REF] qui représentent l'environnement sous forme d'un graphe où les noeuds correspondent à des emplacements particuliers et les arcs représentent la connectivité entre les noeuds. Dans une architecture hiérarchique, nous nous intéressons à définir une carte topologique (Road-Map) qui intègre les contraintes de perception et qui permette la prise de décision et la supervision d'un contrôle réactif.

Dans ce papier, le niveau décisionnel est proposé pour une flotte de robots coopératifs qui ont pour mission de visiter un ensemble de points d'intérêt (Fig. 1). Une solution connue consiste à utiliser les processus décisionnels de Markov décentralisés (Dec-MDPs) pour modéliser les problèmes de collaboration entre plusieurs robots [START_REF] Goldman | Decentralized control of cooperative systems : Categorization and complexity analysis[END_REF] [START_REF] Beynier | An iterative algorithm for solving constrained decentralized markov decision processes[END_REF]. Toutefois, calculer les politiques décentralisées optimales à partir de ce modèle est connu comme un problème difficile (NEXP-complet) [START_REF] Bernstein | The complexity of decentralized control of markov decision processes[END_REF] ce qui limite l'utilisation des Dec-MDPs au contrôle de systèmes à peu d'états.

Une coordination en ligne et à long terme de plusieurs agents oblige à utiliser des méthodes heuristiques qui conduisent à des politiques non-optimales. Une approche distribuée pour la résolution de Dec-MDPs à été proposée afin de permettre de répartir les charges de calculs sur l'ensemble des robots [START_REF] Chades | A heuristic approach for solving decentralized-pomdp : Assessment on the pursuit problem[END_REF]. Même réparties ainsi, le problème du calcul des politiques décentralisées reste difficile. Par ailleurs, des approches de coordination basées sur des ventes aux enchères [START_REF] Dias | Market-based multirobot coordination : A survey and analysis[END_REF] proposent des protocoles dis- Notre approche consiste à diviser le problème du calcul des politiques décentralisées en un problème d'allocation d'objectifs couplé à un problème de calcul de politiques individuelles. Etant donnée une allocation définie à partir des intérêts individuels, chaque robot est alors capable de calculer sa politique individuelle en considérant uniquement les objectifs qui lui sont alloués. Le calcul de ces politiques permet à chaque robot d'évaluer l'intérêt de chacun des points à visiter et d'actualiser ainsi l'allocation courante.

Le papier est organisé comme suit : la section 2 décrit l'architecture des robots permettant la construction des politiques d'actions (section 3). La section 4 présente notre méthode distribuée pour l'allocation des points d'intérêt suivie par des simulations dans la section 5.

Une architecture délibérative

Dans cette section, nous présentons notre architecture nommée (PRDC) (Fig. 2) basée sur 4 modules que sont la Perception, la Représentation, la Délibération et le Contrôle. Ces 4 modules permettent de séparer les problématiques liées à différents domaines et s'organisent en deux niveaux hiérarchiques.

Perception et contrôle

Les modules de perception et de contrôle correspondent au niveau fonctionnel défini dans les architectures hiérarchiques [START_REF] Alami | An architecture for autonomy[END_REF] [START_REF] Volpe | The claraty architecture for robotic autonomy[END_REF]. Le module de perception supervise les capteurs de fa-çon à convertir des flots données en informations utiles à la localisation et au contrôle du robot. Il permet d'avoir une estimation sur le déplacement du robot et sur la reconnaissance des objets alentour comme la forme des obstacles. Les données odométriques, par exemple, permettent au robot de maintenir sa localisation. Ces données sont néanmoins incertaines, elles propagent en effet, l'erreur de localisation et d'orientation au fur et à mesure du déplacement. Toutefois, le robot est capable de se localiser en reconnaissant des positions particulières [START_REF] Kuipers | A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations[END_REF] [START_REF] Ulrich | Appearancebased place recognition for topological localization[END_REF], ce qui permet de corriger ponctuellement les erreurs d'odométrie.

Le module de contrôle est basé sur un ensemble de contrôleurs réactifs [START_REF] Rosenblatt | Damn : A distributed architecture for mobile navigation -thesis summary[END_REF][1] (évitement d'obstacles, attraction vers une cible, suivi d'un robot ou d'une trajectoire,. . . ). Dans le cadre de la tâche de déplacement entre deux positions, nous avons choisi d'utiliser une architecture de contrôle basée sur une structure multi-contrôleurs [START_REF] Adouane | Hybrid and safe control architecture for mobile robot navigation[END_REF] qui permet d'alterner entre un contrôleur d'attraction vers une cible et un contrôleur d'évitement. Le passage d'un contrôleur à un autre se fait via une fonction d'adaptation permettant d'éviter les à-coups sur la commande.

Cette architecture de contrôle permet au robot de rejoindre une position dans un environnement encombré sans qu'une trajectoire soit pré-calculée. Les tâches locales du module de contrôle sont envoyées par le module délibératif (Fig. 2) et correspondent à la position immédiate à rejoindre pour orienter le robot vers un objectif plus lointain.

Représentation

Au niveau supérieur, le module de Représentation est responsable des connaissances sur l'environnement accumulées par le robot. Le module de représentation est un module actif dans le sens qu'il inclut un processus de localisation et de cartographie simultanée (SLAM : Simultaneous Localization And Mapping) [START_REF] Kuipers | A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations[END_REF]. La connaissance est définie par rapport aux capacités de perception. Une Road-Map < W, P > est définie dans notre architecture comme une carte topologique où chaque noeud w ∈ W (way-points) représente une position particulière identifiable par le module de perception [START_REF] Ulrich | Appearancebased place recognition for topological localization[END_REF] 

w p , w ′ p ∈ W, - → v p ∈ R 2 , c p ∈ R, d p : W → [0, 1], u p ∈ [0, 1]
Modéliser la connaissance sous forme de chemins stochastiques permet de planifier un déplacement sûr et efficace entre deux positions [START_REF] Alterovitz | The stochastic motion roadmap : A sampling framework for planning with markov motion uncertainty[END_REF]. Sur la base de ces chemins structurés comme un graphe représentant la connectivité globale, nous nous sommes intéressés, lors de la mise en place du module de délibération, à planifier automatiquement des comportements coopératifs pour les robots de la flotte.

Délibération

Le module délibératif, second composant du niveau supérieur, connecte la représentation de l'environnement, les objectifs et le contrôle effectif du robot. Il est divisé en 2 parties : construction de la politique (Decision Making) et exécution (Fig. 2). La partie exécutive supervise le contrôle du robot par rapport à la politique d'actions calculée.

Une politique est une fonction π : S → A qui associe une action à chaque état défini s ∈ S.

Les états du robot sont composés de l'état perceptif (qui inclut la position du robot dans sa Road-Map) et un état logique qui correspond à l'étape achèvement des objectifs. Etant données les capacités perceptives de nos robots, un état ne peut pas toujours inclure les positions des autres robots dans l'environnement. Les actions sont définies par rapport aux tâches réalisables par le module de contrôle. Elles sont définies par l'ensemble des chemins P .

La politique calculée dans notre approche est actualisée, en ligne, chaque fois qu'une incohérence est détectée entre la topologie locale et la politique pré-calculée. Cela se produit si la Road-Map, au moment de l'exécution, devient suffisamment différente de celle utilisée lors de la construction de la politique. Notons que la politique d'un robot doit être collaborative, elle peut être calculée en utilisant des protocoles décentralisés basés sur la communication.

La partie d'exécution évalue l'état courant, vérifie la cohérence entre l'action donnée par la politique et la topologie courante de façon à demander ou non une actualisation de la politique puis, transforme cette action en une tâche locale pour le module de contrôle.

Construction des politiques

Pour chaque robot, la partie qui consiste à construire sa politique collaborative doit permettre à la partie exécutive de superviser le contrôle du robot et d'atteindre les objectifs propres du robot. Dans ce papier nous nous intéressons au problème d'une équipe de voyageurs de commerce pour lesquels l'objectif est de visiter collectivement un ensemble de points d'intérêt. En raison de l'aspect non déterministe de la réalisation des actions de déplacement, nous avons choisi de modéliser le problème à l'aide du formalisme des Processus Décisionnels de Markov (Markov Decision Process, MDP) [START_REF] Puterman | Markov Decision Processes : Discrete Stochastic Dynamic Programming[END_REF].

Les Processus Décisionnels de Markov

Un MDP est défini par un tuple < S, A, t, r > avec S et A représentant respectivement les ensembles d'états et d'actions qui définissent le système et ses possibilités de contrôle. t est la fonction de transition définie par t : S × A × S → [0, 1] qui donne la probabilité t(s, a, s ′ ) d'atteindre s ′ depuis s en exécutant l'action a. La fonction de récompense r est définie par r : S × A → R, où r(s, a) retourne la récompense obtenue en exécutant a depuis s.

Trouver la solution optimale d'un MDP consiste à chercher la politique optimale π * qui maximise les gains espérés sur les récompenses. π * maximise la fonction de valeur V π : S → R donnée par l'équation de Bellman [START_REF] Bellman | A markovian decision process[END_REF]. Soit, pour une politique π : Résoudre un Dec-MDP est connu pour être difficile (NEXP-complet). Afin de gérer cette complexité, ce formalisme a été étendu pour plusieurs sous-classes de problèmes [START_REF] Goldman | Decentralized control of cooperative systems : Categorization and complexity analysis[END_REF]. Des approches approximées ont également été proposées [START_REF] Goldman | Decentralized control of cooperative systems : Categorization and complexity analysis[END_REF]. Parmi elles [START_REF] Beynier | An iterative algorithm for solving constrained decentralized markov decision processes[END_REF][START_REF] Chades | A heuristic approach for solving decentralized-pomdp : Assessment on the pursuit problem[END_REF] 

V π (s) = r(s, π(s)) + γ s ′ ∈S t(s, π(s), s ′ )V π (s ′ )
π * (s) = argmax a∈A ( V π * (s) ) Le paramètre γ ∈ [0,

Résultats de simulation

Une première série de simulations cherche à évaluer l'efficacité du protocole d'allocation distribuée par rapport à une solution optimale calculée de façon centralisée par une recherche exhaustive. L'optimalité est définie comme l'allocation qui maximise la somme des gains espérés de tous les robots.

Les simulations considèrent 3 robots dans 2 cartes différentes (Fig. 4 Les scores obtenus (Tableau 1) nous permettent de valider que l'allocation par une approche distribuée reste proche de l'optimale pour des problèmes de tailles réduites avec un score moyen de 99% et seulement 2 expériences qui retournent un score inférieur à 70%. D'un autre côté, la probabilité de trouver réellement l'allocation optimale diminue avec la possibilité de tomber dans des optimums locaux (surtout dans En utilisant des agents bavards, nous nous sommes intéressés au nombre d'itérations utiles par robot Ag i où l'attribution I Ag i est actualisée (Fig. 5). Une itération utile correspond à une actualisation des utilités suivie par une phase de communication. 

FIGURE 1 -

 1 FIGURE 1 -Problématique : illustration avec 2 robots et 4 points d'intérêt I = {a, b, c, d}.

FIGURE 2 -

 2 FIGURE 2 -L'architecture PRDC implémentée sur chaque robot.

FIGURE 3 -

 3 FIGURE 3 -Exemple d'une énumération des états possibles pour un MDP individuel orienté par 2 objectifs.

FIGURE 5 -

 5 FIGURE 5 -Nombre moyen d'itérations utiles (n robots et 4 * n points d'intérêt).

  Quand une action a = p a est exécutée depuis un way-point w s , la fonction de transition t retourne la probabilité u pa de tomber dans l'état s update ou la probabilité d'atteindre un waypoint w ∈ W en accord avec les valeurs de la fonction d pa . Une transition déterministe est ajoutée pour l'action de valider la visite d'un point d'intérêt a = p s , elle conduit dans l'état correspondant où le point d'intérêt courant est ajouté à l'ensemble des points d'intérêt déjà visités.

	Un état s du MDP individuel d'exploration in-clut la dernière position reconnue du robot w s ∈ W et l'ensemble des points d'intérêt déjà at-teints I s . Un état spécifique s update est ajouté pour modéliser l'état particulier où la percep-tion de l'environnement conduit à une incohé-rence de la politique. Une action a est ajoutée pour chaque chemin p 3.3 Politiques décentralisées Un MDP permet de calculer une politique pour un agent. Pour adapter ce formalisme à des systèmes multi-agents coopératifs, Bernstein et al. [5] ont défini les MDPs Décentralisés (Dec-MDPs). Un Dec-MDP est défini par un tuple < S, A, t, Ω, O, r >. Les éléments S, A, t et r sont similaires aux éléments d'un MDP clas-sique avec comme différence que chaque action a ∈ A est l'union des actions réalisées simul-tanément par tous les agents. L'ensemble A est un produit cartésien A 1 × • • • × A n des actions individuelles. Le formalisme des Dec-MDP in-clut la notion d'observation locale de l'agent où Ω est l'ensemble des observations jointes

1] pondère l'importance entre les récompenses immédiates et futures. Dans le cas d'un problème de taille finie, comme atteindre un nombre donné d'objectifs, γ est considéré égal à 1. L'algorithme "value iteration"

[START_REF] Puterman | Markov Decision Processes : Discrete Stochastic Dynamic Programming[END_REF] 

permet de converger sur la politique optimale π * et de calculer la fonction de valeur associée V π * .

3.2 MDP individuel d'exploration

Les MDPs ont été utilisés avec succès en robotique mobile pour une décision et un contrôle basés sur une représentation en grille d'occupation

[START_REF] Foka | Real-time hierarchical pomdps for autonomous robot navigation[END_REF]

[7]

[START_REF] Teichteil-Königsbuch | Autonomous search and rescue rotorcraft mission stochastic planning with generic dbns[END_REF]

. L'approche proposée dans ce papier se base sur une carte topologique, la politique doit assigner un point cible à atteindre au module de contrôle pour toutes les positions possibles du robot. a ∈ P pour cibler le waypoint w pa . L'action de rester sur place est modélisée comme un chemin p s depuis w s qui boucle sur lui même. Ce type d'action permet aussi de valider la visite d'un point d'intérêt associée à l'obtention d'une récompense ponctuelle.

S = {(w s , I s ) | w s ∈ W, I s ⊂ I} ∪ {s update } A = { (p a ) | p a ∈ P } ∪ { (p s ) = (w s , w s ) | w s ∈ W } t((

w s , I s ), p a , s update ) = u pa | (w s = w pa ) t((w s , I s ), p a , (w s ′ , I s )) = (1 -u pa ) * d pa (w s ′ ) t((w s , I s ), p s , (w s , I s ∪ (I ∩ w s )) = 1 La fonction de récompense retourne la valeur du coût c p de suivre le chemin p et une valeur constante du gain g si un nouveau point d'intérêt est visité. r((w s , I s ), p a ) = c pa r((w s , I s ), p s ) = g if w s ∈ I -I s , else 0 Le nombre d'états augmente exponentiellement par rapport au nombre total de points d'intérêt à visiter (|S| > 2 |I| ). o ∈ Ω et la fonction O connecte les observations des n agents à la dynamique du système. O(s, a, s ′ , o = < o 1 . . . o n >) ∈ [0, 1] donne la probabilité que les agents Ag 1 . . . Ag n observent respectivement o 1 . . . o n quand l'action jointe a est exécutée à partir de s et que s ′ est atteint.

  Ag i ) et de sa position courante dans sa carte (w Ag i ), le gain individuel (gi ) du robot Ag i est défini en considérant que tous les points d'intérêt qui ne lui sont pas attribués sont visités ((I -I Ag i )). Le gain individuel est la valeur donnée par l'équation de Bellman pour l'état (w Ag i , I -I Ag i ).gi (I Ag i ) = V π * (w Ag i , I -I Ag i )

	"manager" ou "contractuel potentiel" et plu-constat nous conduit à proposer un protocole dit	table fermée. La garantie d'atteindre cet état
	sieurs ventes peuvent s'effectuer en parallèle. de la table ronde roundTable où toutes les al-	n'est pas triviale, elle dépend des règles de
	D'autres protocoles sont dérivés de "Contract locations s'effectuent et se terminent en même	fonctionnement établies et de la cohérence
	net" comme MURDOCH [13] qui présente des temps.	des comportements individuels.
	permettent aux agents d'actualiser itérativement leur politique pour converger sur une collaboration localement optimale. Le nombre d'états du problème de la visite d'un ensemble de points d'intérêt par une flotte de plusieurs robots ne permet pas une résolution qui garantisse l'optimalité. Par rapport au sujet traité ici nous avons choisi d'utiliser une collec-tion de MDPs individuels plutôt que de chercher à résoudre un Dec-MDP global. Il est consi-déré que seulement l'allocation de l'ensemble des points d'intérêt modifie la politique indivi-duelle d'un robot. De cette façon, pour une al-location donnée, la connaissance de l'état des autres robots à chaque instant n'est pas requise et le MDP individuel est totalement observable. Le calcul des politiques décentralisées peut être décomposé en deux problèmes dépendants l'un de l'autre qui sont l'allocation des points d'inté-rêt et le calcul d'une politique individuelle. Les hypothèses utilisées ne permettent pas une réso-lution optimale du problème mais la résolution du probléme doit permettre aux robots de colla-borer en cours de mission. 3.4 Coopération par négociation Chaque robot, en utilisant un MDP individuel d'exploration, est donc capable de calculer sa politique d'exploration pour une attribution de points d'intérêt fixée. Au regard de cette poli-tique et de l'équation de Bellman, le robot est capable d'évaluer son attribution et donc de la comparer avec d'autres attributions candidates. Nous avons donc mis en place un protocole de négociation basé sur la communication qui per-mette aux robots d'échanger leurs préférences de façon à construire une allocation des points d'intérêt qui fasse consensus. Il existe des protocoles distribués de coopéra-tion basés sur des ventes aux enchères. Dans "Contract net" [9], un objet, une ressource, ou une tâche à réaliser est mise en vente par un agent qui devient le "manager" pour l'item ciblé, les autres agents endossent le rôle de "contractuel potentiel" et peuvent émettre des 4.3 Comportement individuels somme cumulée des récompenses qui seront sta-tistiquement perçues par le robot Ag i pour la vi-site des points d'intérêt appartenant à I Ag i . En considérant le robot comme faisant partie d'une équipe, il est intéressant de répercuter une va-leur sociale représentant un coût occasionné par les actions d'un robot sur son groupe. La diffi-culté consiste à distribuer sur chacun des robots présents des contraintes globales. Par exemple, équilibrer le nombre de points d'intérêt attribués sur les n robots présents. à opposer au gain individuel. Ainsi, chaque robot s'auto-rise à déséquilibrer plus ou moins sa propre al-location en comparant ses utilités qui sont fonc-tion de sa charge actuelle, avec les utilités com-muniquées par ses collaborateurs. 4.2 Protocole de la table ronde Les n robots présents lors d'une étape de com-munication souhaitent donc se répartir entre eux l'ensemble des points d'intérêt à visiter. L'approche distribuée ici consiste à permettre à chaque robot de construire en parallèle sa propre allocation. La difficulté réside dans le fait que Le protocole roundTable pour l'attribution des points d'intérêt est indépendant des comporte-ments individuels permettant aux agents d'éva-luer leurs utilités. Par contre, fermer la table sur un consensus général suppose certaines capaci-tés de la part des agents présents : la capacité in-dividuelle d'un agent à proposer un vecteur de valeurs d'utilité stable quelles que soient les va-leurs d'utilités communiquées par les autres ; la capacité sociale des agents à proposer des va-leurs d'utilité qui permettent de converger sur un consensus. La fonction d'utilité proposée (Section 4.1) est cohérente sur les valeurs calculées. Pour un ro-bot, quelque soit un point d'intérêt, ajouter ou supprimer ce point dans son attribution courante ne modifie pas la valeur de ce point. Par exemple (Fig.1) la valeur d'utilité du point a pour un Le comportement de chaque robot vise à maxi-miser une somme globale de gain espéré sur tous les robots. Bien que cela permette a priori de converger sur un consensus, chaque robot est limité à un nombre fini d'actualisation sur ses valeurs de façon à garantir l'arrêt de la table ronde. De cette façon, le consensus est forcé après avoir dépassé un certain temps. De plus, l'état stable ou instable de chaque robot est explicitement communiqué pour détecter l'état global de consensus. En considérant des communications sans erreur et sans perte, les robots sont capables indivi-duellement de calculer l'allocation et de détec-ter la fermeture de la table. Les robots utilisent actuellement un même protocole qui consiste à : -actualiser le tableau des valeurs d'utilités grâce aux communications, -s'il existe un ou des points d'intérêt appar-tenant à seulement un des ensembles consti-FIGURE 4 -les 2 Road-Map considérés : (a)(b) avec quelques obstacles et (c) le labyrinthe. (a)(c) garanties de robustesse. La coopération basée sur des ventes aux en-Le protocole roundTable se divise en 5 étapes : 1 -Inscription La table est ouverte à l'initia-chères est utilisée avec succès en robotique [10] ainsi qu'en robotique mobile avec des valeurs évaluées par MDP [7][20]. Cette approche ne garantit pas que les politiques décentralisées construites soient optimales. Par contre, ce type d'approche permet de distribuer la charge de calcul et de relâcher la contrainte d'une connais-sance identique pour tous les agents. En effet, chaque politique est construite par l'agent de-puis sa connaissance courante et individuelle de l'environnement. Aussi, par la suite nous proposons protocole basé sur le principe d'une table ronde où, à chaque itéra-tion, tous les points d'intérêt sont réévalués en parallèle et seuls les points d'intérêt pour les-quels une meilleure allocation est trouvée sont échangés. 4 Allocation des points d'intérêt Nous nous intéressons particulièrement aux étapes de la mission où plusieurs robots de la flotte communiquent pour calculer leur po-litique collaborative. La communication est considérée sans erreur pendant ces étapes. Dans un premiers temps, nous nous intéressons à l'évaluation individuelle des points d'intérêt puis au protocole de table ronde qui permet aux robots de trouver un allocation qui fasse consen-sus. Cette approche s'oppose à une résolution centralisée sur un leader [16]. 4.1 Evaluation individuelle tive d'un agent, la première phase vise à recenser les agents qui feront partie de la négociation. Il n'est pas possible pour un agent d'entrer ou de sortir simplement de la table à partir du moment où l'inscrip-tion est close. Cette étape permet notam-ment d'identifier le réseau de communica-tion. Dans le cadre de notre étude, nous consi-dérons un groupe de robots où chaque peut communiquer directement avec chacun des autres robots. 2 -Définition des règles Les agents inscrits doivent ensuite valider les règles de fonc-tionnement de la table ainsi que les règles d'attribution finale des items. Les règles de fonctionnement peuvent intégrer une attribution de rôles particuliers utiles au bon fonctionnement de la table (comme un qui en propose la plus forte valeur d'utilité. 3 -Enumération des items Les items sont, par la suite, énumérés de façon à ce que chaque agent puisse construire son tableau de va-leur (Item/Agent). Ici, chaque robot énumère l'ensemble des points d'intérêt dont il a la charge. Nous supposons que tous les points d'intérêt sont identifiables dans les cartes individuelles. 4 -Itérations Tous les agents actualisent et communiquent leurs valeurs conformément aux règles de fonctionnement établies. Ici, les robots sont désynchronisés, ils itèrent et communiquent en parallèle sur un modèle de broad-cast. Chaque robot com-munique son vecteur de nouvelles valeurs à tous les autres robots. 5-Fermeture Les itérations sur les valeurs s'effectuent jusqu'à trouver un consensus, c'est-à-dire que pour chaque agent l'allo-présentent une allocation construite de façon distribuée et (b) l'allocation optimale. muniquer un état instable ; sinon communi-quer un état stable et sauter l'étape suivante, -ajouter ou enlever dans l'attribution courante, le point le plus intéressant parmi les points dé-tectés et communiquer les nouvelles valeurs, -boucler jusqu'à détecter l'état de consensus. Ce comportement individuel (dit bavard) est dé-fini pour un cadre où les communications sont peu coûteuses. Il est possible, pour minimiser les communications, d'instaurer un tour de pa-Un robot Ag Ainsi formalisé, le gain individuel exprime la robot est la même en considérant les attribu-role et/ou de limiter les valeurs communiquées président). tions individuelles {a, b, c} ou {b, c}. Cette co-aux valeurs qui correspondent à un état stable du Dans le cadre de notre étude, les règles de fecte chacun des points d'intérêt au robot par les autres robots. de rôle particulier. La règle d'attribution af-stable quelque soit les utilités communiquées par les agents et elles ne nécessitent pas guration lui permettant d'être individuellement fonctionnement sont connues initialement hérence permet aux robots d'avoir une confi-robot.
	cation donnée par les règles d'attribution	enchères. Après un temps déterminé par le la valeur d'utilité d'un point d'intérêt pour un tués : 1-par l'attribution courante du robot, 2-
	ne modifie plus ses valeurs communiquées.	"manager" l'item est attribué à l'agent ayant agent est réévaluée à chaque fois que l'agent ef-à partir des règles d'attribution (mais pas aux
	L'allocation peut donc être validée et la	fait la meilleure offre. Chaque agent peut être fectue une modification sur son allocation. Ce deux) alors, détecter tous ces points et com-

Dans le cadre de l'allocation de tous les points d'intérêt pour une flotte de robots explorateurs la valeur d'un point d'intérêt pour un robot dépend des autres points qui lui sont attribués ou non. Par exemple, la valeur du point d'intérêt b pour le robot 2 n'est pas la même s'il doit ou non visiter c (Fig.

1

). L'utilisation des protocoles classiques de ventes induit une remise aux enchères constante de tous les points d'intérêt jusqu'à obtention du consensus. i est capable de construire son MDP individuel d'exploration à partir de sa propre Road-Map en considérant qu'il est seul pour visiter tous les points d'intérêt (I). A partir de l'ensemble des points d'intérêt qui lui sont attribués (I Un gain espéré (ge) propre à chaque robot et à sa charge d'exploration est donc défini comme la différence du gain individuel et du coût social occasionné. A partir de ce gain espéré, il est possible d'évaluer l'utilité d'ajouter ou d'enlever un point d'intérêt k ∈ I à I Ag i . ge(I Ag i ) = gi (I Ag i ) -| |I| n -|I Ag i || * oc utility(k, I Ag i ) = eg(I Ag i + k)eg(I Ag i -k) Le coût social proposé ici, est proportionnel à la différence entre : la taille de l'allocation propre au robot Ag i et la taille moyenne (|I|/n pour n robots). Le facteur oc définit le coût

  ) et entre 2 et 13 points d'intérêt. Pour 13 points d'intérêt, cela induit 3 13 allocations possibles et entre 50 * 2 13 et 70 * 2 13 états pour les MDPs individuels (en fonction de |W |). Les coûts sur les chemins sont calculés directement comme la distance entre 2 positions de la carte ; un coût maximum de 51.2 est relevé pour la diagonale des limites des environnements. La récompense gagnée pour visiter un point d'intérêt est posée à 1000 et le coût d'opportunité oc est égal à 0 ou à 5.12 (0.1 * maxCost).

	En se basant sur la somme des gains espérés,
	un score (en pourcentage) peut être calculé pour

TABLE 1

 1 

	-Scores

  2 moyennes du nombre d'itérations utiles sont calculées : une à partir de tous les robots et une seconde en ne considérant que le pire des robots de chaque simulation. La figure 4(c) présente les résultats d'une simulation pour 6 robots et 24 points d'intérêt dans le labyrinthe. Il est possible de conclure que seulement quelques actualisations individuelles sont nécessaires par rapport au nombre total de points d'intérêt. Délibération et Contrôle) est présentée dans ce papier. Cette architecture sépare les problèmes de l'élaboration de la décision et du contrôle/commande du robot. Nous nous sommes intéressés au module délibératif gérant la construction des politiques collaboratives permettant de visiter un ensemble de points d'intérêt avec une flotte de robots.L'approche distribuée proposée permet aux robots d'aboutir à une solution valide. Un important nombre de simulations permet une évaluation encourageante de l'efficacité de l'approche sur des problèmes de tailles restreintes et démontre, d'autre part, la capacité de l'approche à considérer un nombre relativement important de robots. Ces résultats sont encourageant sachant que le problème traité ne peut être optimalement résolu.Dans de futurs travaux, l'approche devrait être utilisée sur des robots réels avec une carte initiale incomplète. Nous souhaitons aussi étudier l'intérêt (efficacité, robustesse) d'utiliser différentes règles de fonctionnement pour la table ronde et différents comportements individuels.
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