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Abstract. In this paper, an approach is presented to automatically allocate a set

of exploration tasks between a fleet of mobile robots. The approach combines a

Road-Map technique and Markovian Decision Processes (MDPs). The addressed

problem consists of exploring an area where a set of points of interest characterizes

the main positions to be visited by the robots. This problem induces a long term

horizon motion planning with a combinatorial explosion. The Road-Map allows the

robots to represent their spatial knowledge as a graph of way-points connected by

paths. It can be modified during the exploration mission requiring the robots to use

on-line computations. By decomposing the Road-Map into regions, an MDP allows

the current group leader to evaluate the interest of each robot in every single region.

Using those values, the leader can assign the exploration tasks to the robots.

Keywords. Multi-Robot Cooperation, Exploration Task, Graph Partitioning and

Markovian Decision Process

Introduction

The problem of exploring an environment with a fleet of robots is a persistent topic in

mobile robotics [10]. It is a challenging problematic to obtain an on-line and accurate

decision process embedded on each robot of the fleet. In fact, it is difficult to consider

a problematic in a long term horizon to produce a complete strategy of navigation in-

volving all the exploration tasks. Traditional approaches do not separate decision mak-

ing from the robot control loop (perception, process and control) and has to produce

several responses per second. They propose heuristic strategy as, for example, reaching

the closest position in the frontier of exploration for mapping missions [10] or in the set

of unvisited positions for search missions [24]. In multi-robot exploration, the proposed

approaches [23][10][19] are increased to taking into account the other robots position

and/or wished. Due to the frequency of map actualization and the limited time of the

control loop, fast selection processes decides only in short term horizons.

Hierarchical control architecture [1][26] could permit to save resources for decision

process by splitting the robot control into a functional and a deliberative levels with dif-

ferent execution times. This way, the notion of Road-Map (a topological map increased

by metric informations [18]) appears as an interesting tool to connect between reactive
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Figure 1. An exploration problem with 4 points of interest {a, b, c, d} (left) and its attached Road-

-Map(right). This example involves 2 robots which are close enough to communicate.

control and decision making [3]. Supervising a reactive control while lacking knowledge

impose the concern about uncertainty in the action achievement. The approach given in

this paper proposes to use a Road-Map with on-line stochastic decision making while

considering a long-term horizon.

Our research is employed in a project named R-Discover1 that aims at exploring an

external area using a fleet of mobile robots. An Unmanned Aerial Vehicle (UAV) takes

several pictures of an area and then a fleet of ground robots are set to refine knowledge

about this area. Indeed, the pictures allow us to build a first map regarding the environ-

ment. Next, a human operator defines key positions which must be visited to increase the

map definition as a set of points of interest in the map (Fig. 1). The UAV’s autonomy and

communication constraints in addition to the need of pictures refinement do not permit

constant collaboration between the UAV and the ground robots.

The main issue addressed in this paper is linked to the robots’ capacities to cooper-

ate in order to calculate and adapt exploration strategies along the mission. Robots are

equipped with communication devices efficient only in a given radius. A hierarchy is

defined with between the robots; robots with higher capacity to lead the fleet are given

a higher identifier (ID). The robot with the higher ID in sub-groups of robots is defined

as the leader. This way, several times during the mission, two or more robots can com-

municate, and the current leader robot between them, needs to dispatch mission parts in

few seconds. Here the mission is defined by the local set of points of interest to visit

I = {a, b, c, . . .} shared by the communicating robots (Fig. 1). Otherwise, the robots

evolute alone and actualize on-line their decision making regarding their allocated points

of interest while the Road-Map is modified.

Allocating the set of points of interest is computed in a way that maximizes the

sum of individual expected gains. The complexity of evaluating the interest of a robot

in visiting a sub-set of points of interest does not permit an optimal computation of

a solution for problems where |I| > 20 (Section 1.2). The idea of environment map

partitioning permits to obtain fast path planning [4]. To increase the number of points

of interest considered in on-line computing, the Road-Map is quickly partitioned. That

allows the robots to plan and reason over regions instead of all the set of points of interest.

The following of this article is organized as following: Section 1 presents the used ar-

chitecture for the robot decision making. Section 2 details a greedy map partitioning and

the hierarchical computation of multi-robot strategy in order to perform an exploration

mission. Before ending with a discussion regarding the related work and a conclusion,

the work is evaluated in Section 3.

1Supported by the National Research Agency of France (ANR).



1. The Context

During the mission, when a group of robots are close enough to efficiently communicate

between them a communication phase starts to lead the re-allocation of the points of in-

terest. In the following, the term robots will involve the communicating robots which are

a sub-group of the fleet of robots. The leader robot (which has the higher level identifier

in a predefined hierarchy) allocates the points of interest to the robots, then, in execution

phases, each robot executes alone its allocated part of the mission. The mission is initial-

ized by a communication phase involving all the robots and all the points of interest given

by the operator with the map. The proposed architecture (Fig. 2) allows us to separate the

robot locomotion problem from the deliberative aspect. This way, more focus is assigned

on the problem of allocating the points of interest to optimize the robots movements.

1.1. The Robot’s Control Architecture

Each robot control architecture is composed of two modules in the manner of the hier-

archical architectures [1][26]. The first module is reactive and permits the robot to move

between two positions while avoiding obstacles. The second module is deliberative and

aims at organizing the tasks before submitting the current task to perform to the reactive

module (Fig. 2). The reactive module controls movements according to the events of low

importance which does not necessitate map modification. A hybrid multi-controller ar-

chitecture [2] is used for the navigation of the mobile robot in cluttered environments.

This architecture is based on a flexible switching between different atomic controllers as

attraction to a target or obstacle avoidance.

Developing the reactive module is out of the paper scope. In fact, we are interested

in describing the deliberative module. The interaction between the deliberative and the

reactive modules (Fig. 2) is define in an single way through elementary tasks to achieve.

A task consists in reaching a target position while avoiding obstacles.

A Probabilistic Road-Map [17] is defined as a graph < W,P > where W is the

set of way-points (nodes) and P is the set of paths (edges). The way-points set W is

composed of the points of interest I in addition to the environment way-points (points

around the known obstacles) (Fig. 1). The Road-Map is assumed to be fully connected.

Road-Map = {W,P}, where: W = {w1, ..., wk}
P = {(w1, w2,

−→v , c, u) | w1, w2 ∈W, −→v ∈ R2, c ∈ R, u ∈ [0, 1]}
(1)

Each path p is defined by the current w1 and the targeted w2 way-point. A vector −→v
gives the relative position of w2 from w1. The attribute c is the associated cost; it depends
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Figure 2. The Robot Architecture Schema.



on the distance and the quality of the path (obstruction, slope, kind of the ground). The

attribute u is the probability to reach a target position without map actualization resulting

from detecting an unknown passage or obstruction (obstacles up to a given dimension).

Structuring knowledge of collision-free connectivity in a Road-Map allows the de-

liberative module to use graph algorithms like A* to plan the movements of an agent or

a fleet of agents [5]. Graph theory does not directly fit to the stochastic aspect to decide

a robot action in uncertain environments. However, it is possible to combine the Road-

Map with Markovian Decision Processes [21]. It was used to improve path finding by

minimizing the movement cost and considering collision safe paths [3].

1.2. The Markovian Decision Processes

An MDP is defined as a tuple < S,A, t, r > with S and A respectively, the state and the

action sets that define the system and its control possibilities. t is the transition function

defined as t : S × A × S → [0, 1] that gives the probability t(s, a, s′) to reach the state

s′ from s by doing action a ∈ A. The reward function r is defined as r : S × A → R,

r(s, a) gives the reward obtained by executing a from s.

A policy function π : S → A assigns an action to each system state. Optimally

solving an MDP consists in searching an optimal policy π∗ that maximizes the expected

gain. π∗ maximizes the value function of Bellman equation [6] defined on each state:

V π(s) = r(s, a) + γ
∑

s′∈S

t(s, a, s′)V π(s′), a = π(s) (2)

π∗(s) = argmax
a∈A

( r(s, a) + γ
∑

s′∈S

t(s, a, s′)V π∗

(s′) ) (3)

The parameter γ ∈ [0, 1] balances the importance between future and immediate

rewards. In case of finite problems, as visiting a set of points, γ is set to 1.

Several studies [15][24] use MDPs in mobile robotics. From the proposed architec-

ture, a policy is a precomputed task response to each robot state. To visit a set of points,

each robot state needs to includes the current robot position in the Road-Map and the

exploration step (the set of already visited points of interest I ′). The number of states

increases exponentially regarding the total number of points of interest (|S| = |W |.2|I|)
that prevent on-line solving for problems involving too mush points of interest. With

regard to experiment (Section 3), we consider a threshold of 20 points of interest.

1.3. MDPs Decomposition

The decomposition of an MDP permits to decrease the complexity of the policy compu-

tation by building a hierarchy between local problems and a global solution. It is partic-

ularly efficient in spatial problems as it is based on the topological aspect of transitions.

The idea of Decomposed MDPs is to aggregate strongly connected states together in sub-

MDPs to compute the policy in a distributed way [9][12]. Several policies are computed

for each sub-MDP depending on the current policy of the neighboring sub-MDPs.

The presented approach aims to partition an MDP built for all the Road-Map and

all the points of interest in order to solve the problem region by region. The problem of

computing an optimal graph partition is known to be NP-Complete [8][16]. In case of



Decomposed MDPs, the optimal partition on S is the partition that allows us to compute

the policy as quickly as possible. Decomposing an MDP into sub-MDPs allows us to re-

duce the computation complexity of the overall MDP policy. This is true if the sub-MDPs

are enough independent between them. In fact, solving the overall policy necessitates to

compute at least one policy per sub-MDP. In case of dependencies, several computations

per sub-MDP are needed in order to adjust the local policies together.

Generally, decompose an MDP consist in build partition of the state set as balanced

as possible by minimizing connections between sub-MDPs [22][20] ; that means min-

imizing the cuts on the transitions set. A greedy decomposition (Section 2.2) permits

the robots to instantaneously build regions in the Road-Map in order to abstract a global

and smaller MDP based on the regions set. This MDP allows the robots to evaluate their

interest of exploring or not each of the regions regarding their current exploration step.

2. The Deliberative Module

The Deliberative Module (Fig. 2) consists of a coordination sub-module and a deci-

sion making sub-module. From a partitioned Road-Map, the coordination sub-module is

available only in communication phases where the leader computes a new allocation of

the regions sharing non-visited points of interest. The allocation aims to minimize the

sum of the expected movement costs of all the robots waiting for their mission part. In

execution phases, the decision making sub-module computes an exploration policy and

supervises its execution.

2.1. The Road-Map Partition

The aim of partitioning the Road-Map is to compute local policies in regions rather

than an overall policy. The idea is to reduce the number of possible states from |W |.2|I|

to |W |.2|I|/k with k regions and speed up the decision making. A partition Φk =
{R1 . . . Rk}, defined on k regions, covers the way-points set with no intersection be-

tween two regions (Equation 4).

Limiting the sum of local policies computations times induces to control the number

of points of interest |IRi
| inside each region Ri (minimizing

∑

| n∗
i − |IRi

| |, n∗
i the op-

timal number of points of interest per region. Similarly to the MDP decomposition prob-

lem [22], the partition must also maximize the ratio between the number of paths con-

tained in each region (|Input(Φk)|) over the number of paths which connect two regions

(|Output(Φk)|). Finally, the optimal partition Φ∗
k maximizes the criterion C(Φk):

⋃

Ri=Φk
Ri = W, ∀Ri, Rj ∈ Φk, ( Ri 6= Rj )⇒ ( Ri ∩Rj = ∅ ) (4)

C(Φk) = α |Input(Φk)|
|Output(Φk)|

+ (1− α)

(

1 +
∑

Ri∈Φk

| n∗
i − |IRi

| |

)−1

(5)

IRi
= I ∩Ri, Input(Φk) = {p(w1, w2,

−→v , c, u) | ∃Ri ∈ Φk, (w1, w2) ∈ Ri ×Ri}
Output(Φk) = {p(w1, w2,

−→v , c, u) | ∃Ri, Rj ∈ Φk, Ri 6= Rj , (w1, w2) ∈ Ri ×Rj}

The α ∈ [0, 1] parameter balances the importance between the 2 parts of the criterion,

minimizing the transition cuts and balancing the number of points of interest inside each



region. This way, the final number of regions k could depend of the shape of obstacles

more than an expected initial number of regions k∗ = |I|/n∗
i . In indoor environments, it

could be expected to have a region by room whatever the points of interest arrangement.

Many algorithms are proposed for graph partitioning [8]. A majority of the ap-

proaches are based on an iterative decomposition or a multilevel partitioning. The second

method consists in aggregating strong connected nodes from a level to another before

partitioning and refine the partition by level. The need of a solution computed in a fi-

nite time during the mission induces to look at greedy heuristics. The proposed heuristic

build regions incrementally by adding the way-points which maximize a local criterion

for a current constructed region.

2.2. The Sequential Greedy Heuristic

Similarly to Input(Φk) and Output(Φk), during the construction of the partition Φk

Input(Ri, w) and Output(Φk, Ri, w) define the sets of paths that connect a region Ri

to a way-point w and that connect w to way-points not contained yet in the current Φk.

Starting with a given way-point w0, Algorithm 1 builds the region Ri by selecting the

way-points which maximize a local criterion defined from
|Input(Ri,w)|

|Output(Φk,Ri,w)| . In case of

no way-point w has a criterion value up to a bound b (fixed to 1 in this study), a new

region begins with the closest free way-point to w0.

Algorithm 1 Greedy Partitioning

Require: Road-Map M = {W,P}, w0 ∈W, b ∈ R+, Φk ← ∅, k = 0
while

⋃

Ri∈Φk

Ri 6= W do

R′ ← ∅
choose w′ ∈W −

⋃

Ri∈Φk

Ri, w
′ the closest way-point to w0

repeat

R′.add(w′)
choose w′ ∈W −

⋃

Ri∈Φk

Ri, w
′ maximizes M.criterion(Φk, R

′, w′)

until M.criterion(Φk, R
′, w′) > b

Φk.add(R
′), (k ← k + 1)

end while

return Φk

The expected size of regions is controlled by reducing or increasing the importance

of Output(Φk, Ri, w) in the criterion. It is done with a parameter e(Ri) which corre-

sponds to the supposed number of future paths inside Ri. The criterion is defined as:

criterion(Φk, Ri, w) =
|Input(Ri,w)|

|Output(Φk,Ri,w)|−e(Ri)+ǫ

e(Ri) = min
(

|Output(Φk, Ri, w)|,
n∗
i −|IRi

|

n∗
i

. |P |
|W |

)

, n∗
i ∈ N+

(6)

At each step, e(Ri) is defined inversely proportional to the number of points of

interest added to the region and it is bounded by the number of Output(Φk, Ri, w).



This way, if the region Ri includes less points of interest than the optimal number n∗
i ,

the |Output(Φk, Ri, w)| number of paths is reduced and the region could be expanded.

While point of interest is added, the influence of e(Ri) is reduced and the criterion is

more selective. Negative values of e(Ri) force the selection to close the region by artifi-

cially increasing the number of cut paths. Furthermore, k∗ denotes the expected number

of regions (k∗ = |I|/n∗
i ). In fact, the greedy partitioning does not guarantee that k = k∗.

2.3. The Global MDP

After partitioning, the leader robot has to evaluate the interest of each robot in each region

to visit and each robot need to orient its local policies regarding the neighbor regions.

This way, the MDPs formalism is used to model a global exploration problem from the

greedy region set. The global MDP < Sg, Ag, tg, rg > (Fig. 3) returns a policy based on

the abstract actions: "move from a region to another" or "explore the current region".

From a partition Φk = {R1 . . . Rk}, a Road-Map and a set of points of interest to

allocate I , a set of regions of interest J ⊂ Φk is defined as the set of all regions with at

least one point of interest. A state s = (Rs, Js) of the global MDP includes the region Rs

where the robot is positioned and Js ⊂ J the set of already explored regions. A specific

state called block is added to represent the situation where an unknown obstacle prevents

the robot from reaching a way-point. Falling in the block state means that the robot needs

to recalculate the global computed policy. This situation comes with important updates

of the Road-Map that modifies the region configuration. In this model, when a robot is

in a state (Rs, Js), its possible actions are moving to an adjacent region R′
s or exploring

the current region Rs.

Sg = {(Rs, Js) | Rs ∈ Φk, Js ⊆ J} ∪ {block}
Ag = {gotoRs

| Rs ∈ Φk} ∪ {exploRs
| Rs ∈ J}

(7)

For robot 1 in region 1 with nothing visited yet, its state is (1, ∅) (10 in Fig 3). Its

possible actions are to explore region 1 (visit the point of interest (d)) or move to region 2
or 3. The exploration step Js is increased while a new region is explored. Robot 1 could

end in states (2, ∅) or (3, ∅) when choosing a moving action, in (1, {1}) when choosing

the exploration action or in block if obstacles prevent the robot to reach its action.

The transition function t(s, a, s′) gives the probability to reach the targeted region

with the expected exploration step or to get blocked . Transitions and rewards for moving

a

b

c

d1

2

1

2

3

Figure 3. A partitioned Road-Map in 3 regions and the attached global MDP. For example, a state 2
13 means

that the robot is in the region 2 and the regions 1 and 3 are explored



from a state to another in the global MDP depend on the robot position in the start region

and the position to reach in the targeted region. Optimally evaluating transitions and

rewards induces to average all possible policies for all regions. Due to time computation

constraint, the transition and the reward functions are approximated from averages on

the set of paths attributes. The approximation is done proportionally to the values of

uncertainty u and the cost c defined on the set of paths PRiRj
from the region Ri to Rj

and the number of included points of interest |IRi
| = |Ri ∩ I| of the explored region Ri.

tg(sg, ag, s
′
g) : tg( (Rs, Js), gotoRs′

, block ) = 1
|PRsR

s′
|

∑

p∈PRsR
s′

up

tg( (Rs, Js), gotoRs′
, (R′

s, Js) ) = 1− tg( (Rs, Js), gotoRs′
, block )

tg( (Rs, Js), exploRs
, block ) = tg( (Rs, Js), gotoRs

, block ).|IRs
|

tg( (Rs, Js), exploRs
, (Rs′ , Js ∪Rs) ) = 1− tg( (Rs, Js), exploRs′

, block )

(8)

rg(sg, ag) : rg( (Rs, Js), gotoRs′
) = 1

|PRsR
s′

|

∑

p∈PRsR
s′

cp

rg( (ws, Is), exploRs
) = |IRs

I|.rg( (Rs, Js), gotoRs
)

+( |IRs
|.g if Rs ∈ J − Js | 0 else )

(9)

This approximation is meaningful with homogeneous cost and uncertainty values

linked to the paths set and an important density of points of interest. Using more accurate

approximations induces a cost in term of computation. In the approach, the computed

global policy is not directly used in the exploration. In next sections, the global policy is

used to approximate an allocation and to orient the local explorations.

2.4. Regions Allocation by the Leader

Several times during the mission two or more robots efficiently communicate. In demand,

the current leader robot re-allocate the points of interest shared by the communicating

robots. A demand is set out if one of the robots have modified its global MDP by report

to the last allocation. To speed up the coordination process, the leader allocate the points

of interest region by region. The aim is to find the best allocation J∗nr
= {J0, . . . , Jnr

}
where each Ji ∈ Jnr

matches the set of regions allocated to the robot Agi. The opti-

mal allocation maximizes the sum of the nr robots expected gains in the n
|J|
r possible

allocation.

Using the ValueIteration algorithm [21] on the global MDP allows a robot to com-

pute the optimal abstract policy as moving between regions and exploring them. From

this policy, the value function of bellman V π∗

(s) (Equation 2) returns the expected ac-

cumulation of future gains from the robot state s. Knowing the set RAgi of the current

regions of the robot Agi, the computed global policy π∗
Agi

and the value function of

bellman V π(s), The current leader robot search:

argmax

J∗nr
∈{J0nr

, ..., J
n
|J|
r

nr }

(

nr
∑

i=0

V π∗
Agi (RAgi , J − Ji)

)

(10)

By considering up to 3 robots and 12 regions (nr ≤ 3 and k∗ ≤ 12) it is possible to

test all the set of nr-allocations. The leader, for each possible allocation Jjnr
, computes



the sum of expected gain for each robot Agi (V π∗
Agi (RAgi , J

j
i )) and holds J∗nr

with the

maximum cumulated expected gains. The using of a Road-Map with multi-level MDPs

permits the leader to consider more than 3 robots for on-line computations. In fact, the

approach needs a single Global MDP by class of homogeneous robots (robots sharing

a same Road-Map) and the policies computation necessitates nr Value Iteration in the

worst case. The calculation of J∗ by an exhaustive way limits the considered number of

robots to only few robots.

2.5. Exploration Strategy in Region

After a communication phase or after all map modifications each robot has to compute

a local policy concerning its movements in the region where the robot is located. The

global policy is used by robots to orient the local policy computation in region. It is

expected that a region exploration ends close to the next region to explore (Fig. 4).

Inside the region, the robot Agi builds a local MDP < SR, AR, tR, rR > in a similar

way to the global MDP by considering only the points of interest inside the region IR =
R ∩ IAgi . The actions are to move between way-points and the transition and reward

functions are given by the paths set included in the considered region R.

SR = {(ws, Is) | ws ∈W, Is ⊆ IAgi} ∪ {block}, AR = {gotows
| ws ∈W} (11)

tR((ws, Is), gotows′
, block) = up if ∃p ∈ P, wp = ws ∈ R,w′

p = ws′ | 1 else

tR((ws, Is), gotows′
, (ws′ , Is ∪ (w′

s ∩ Is))) = 1− tR((ws, Is), gotows′
, block)

(12)

rR( (ws, Is), gotows′
) = cp + ( (1− up).g if ws′ ∈ IR − Is | 0 else ) (13)

Specific rewards are added when the region is totally explored (IR ⊂ Is). All the

external way-points connected to the current region R define the possible outdoors. The

value of taking an outdoor w is given by the expected gain of the neighbor region R′ in

the global MDP (V π∗

G (R′, Js), Js the current exploration step on the region set including

R). The region R′ is the region of the Partition Φk where ws′ is located:

rR( (ws, Is), gotows′
) = cp + (1− up)V

π∗

G (R′, Js) if IR ∈ Is, ws′ ∈ R′ 6= R (14)

1 2

3

Figure 4. The 3 likely trajectories following the computed policy (nr = 3, |I| = 80 and n∗

i
= 10).



(a)                                        (b)                                          (c)

Figure 5. Examples of partitions built from differently structured environments (Road-Maps)

3. Experimental results

A visual representation of the built partitions (Fig. 5) shows that when the environment

is more structured with a coherent expected region size (Fig. 5c), the algorithm builds a

partition closer to the expected one. Otherwise, intersected regions are observed in free

space environments(Fig. 5a). It is due to the non-consideration of the path cost in the

used criteria (Eq. 6). This phenomenon is reduced in cluttered environment(Fig. 5b).

By separating between decision and control in the robot architecture, the goal is to

decrease the decision process frequency in order to optimize the policies calculations.

The proposed solution decomposes the problem into regions to approximate a global

policy. This process does not guarantee the optimality of the solution. In a first series

of experiments, a statistic score is measured regarding the optimal solution for small

problems (12 points of interest and 3 homogeneous robots).

If the control architecture allows the robot to save computing resources for decision

processes, these resources still have to be controlled. A second series of experiments

evaluates the capability to bound computing times while considering maps with tens of

points of interest. The approach is experimented with a standard computer (Intel Core2

Quad CPU Q9650 at 3.00GHz).

3.1. Qualitative Evaluation

The first series of experiments compares the value of the allocation built after a greedy

partitioning of the Road-Map with the values of the best and the worst allocations com-

puted without partitioning. The value of an allocation is calculated by summing the Bell-

man value of the individual optimal policy considering each attribution IAgi regarding

the current robot position wAgi :

value(IAg1 , IAg2 . . . IAgnr
) =

nr
∑

i=1

V π∗

(wAgi , I − IAgi) (15)

The Bellman value V π∗

(s) depends on the path cost and the gain for visiting a point

of interest. The path cost is computed directly from the distance between the 2 way-points

with a maximum cost of 51.2 for the diagonal limit of the environment. The reward gain

for visiting a point of interest is set to 1000 and the greedy partitioning are defined to

include 3 points of interest by region (cp ∈ [0,−51.2], g = 1000 and n∗
i = 3).

The experiments are done for the map represented in Figure 4 and they are classified

regarding the considered number of points of interest |I|. This number is bounded to



|I|
4 5 6 7 8 9 10 11 12

0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

normalized score from the worst 0.0
to the best 1.0 allocations

4%

3%

12%

14%

24.5%

13%

5.5%

24%

1%

0%

2%

10%

26.5%

34%

10%

16.5%

0%

1%

1.5%

6%

12.5%

47%

27%

5%

0%

0.5%

4%

3%

9.5%

35.5%

41.5%

6%

0%

0.5%

2%

5%

10.5%

23%

52%

7%

0%

0.5%

0.5%

6.5%

15%

21.5%

50%

6%

0.5%

0%

1.5%

7.5%

16%

22%

45.5%

7%

0%

1%

1.5%

7.5%

16.5%

29%

35%

9.5%

0%

0.5%

1.5%

6%

16.5%

24.5%

40.5%

10.5%

average for: computed allocation random allocation

Figure 6. Population of obtained normalized scores by the allocation after partitioning. The population is

presented for each considered number of points of interest |I|

12 because of the complexity of computing the best and the worst allocation using an

exhaustive way. For each experiment, a normalized score is calculated for the computed

allocation and a random allocation regarding the possible best and worst allocations. For

example, an experiment in the class |I| = 11 gave values of 10913.8 (best); 10822.9
(worst); 10872.9 (random); 10884.5 (after partitioning) with a linked normalized score of

0.677. The first series of experiments is composed of 200 random generations of points

of interest positions for each class of experiments in order to statistically evaluate the

allocations (Fig. 6).

The obtained scores (Fig. 6) show the difficulty of finding the optimal allocation.

The average score is around 77% between 6 and 12 points of interest that induce between

2 and 4 regions. It is an interesting average considering that the computation is instan-

taneous. Furthermore, the averages are affected badly by a few numbers of bad experi-

ments induced by unsuitable partitions; The score and the number of these experiments

are inversely proportional with the number of points of interest which induces partitions

with more regions.

3.2. Computation Duration Control

The approach is designed to consider on-line a large number of points of interest. The

second series of experiments evaluates the capability to control the needed time to com-

pute the global policy and to allocate the regions of interest. The considered problem in-

volved up to 120 points of interest, 3 robots and a desired number of 10 points of interest

by region (|I| ≤ 120, nr = 3 and n∗
i = 10). Our experiments generate points of interest

randomly (Fig. 4) (500 random generations for different numbers of points of interest |I|
growing by 5).

Table 1 and Figure 7 present some experiment results that validate the control of the

expected number of regions, the numbers of points of interest in a region and the asso-

ciated computation time. MDP sizes and computation time grow exponentially with the

number of regions k or, with the number of points of interest in a region (in local MDPs).



|I| average number average bound size time (s) commonest

of regions (k) of regions allocation

5 1.13 4.38− 4.97 0.059 1− 0− 0

20 3.41 3.43− 8.13 0.047 2− 1− 0

40 5.6 4.12− 10.14 0.053 3− 2− 1

60 7.71 4.29− 11.44 0.116 4− 2− 1

80 9.43 4.73− 12.74 0.339 5− 3− 1

100 10.63 4.36− 14.19 0.897 6− 3− 1

120 12.42 3.74− 14.81 4.95 6− 4− 2

Table 1. A presentation of average measures to characterize the built solutions: the average number of regions,

the average bounds of regions sizes, the needed time to compute them and the most common allocation. This

table represents a relevant part of experiments regarding a selection of class of problems (|I|).
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Figure 7. Classification of the experiments regarding the difference between the built k and the expected k∗

number of regions and the size of the worst region in term of number of contained points of interest.

We notice that the allocations are unbalanced, it is normal in regard to the placement and

shapes of obstacles. Indeed, the intention was to minimize the sum of robots movement

cost, the criteria (Eq. 6) does not does not especially balancing the allocation.

Experiments with few points of interest in regard to the number and the structure of

obstacles lead to a partition with more regions than expected (k > k∗) and worst regions

which have a lower size than desired size d (Fig. 7). This results denotes the capacity of

using the shapes of existing obstacles to built different regions.

4. Related Work

The approach proposed in this paper focuses on task allocation for multi-robot explo-

ration problem based on a topological representation of the environment. In the litera-

ture, the majority of deliberative robot’s architectures are based on a grid map represen-

tations [23][11][10][15][19] which permit a discretization of the environment accord-

ing to the space and time. Using grid map permits efficient simultaneous localization

and mapping protocols (SLAM) [14][25] but induces a high frequency of map modi-

fications. Time rate limits the computation resources and heuristics are used to decide

the exploration strategy. Generally robot reaches the closer frontier position of explo-

ration [14][25].

In the same way, deliberative methods for multi-robot exploration are focused on

high frequency algorithms. Market-based multi-robot coordination [13] assigns task to



the robots with the highest bids. Generally the bids are calculated regarding the current

robots location. In [23], the bid for a client position is computed regarding its distance

from the robot and the frontier size that will be push away. In [10], the bids are actual-

ized between two allocations in order to take into account all the zone in a given radius

(sensor range) that will be explored by robots with an assigned task. In [19], task assign-

ment is made in a distributed way via a set of individual MDPs. Each robot incorporates

knowledge about the other robots positions in its distributed value function.

The proposed solutions provide a unique assignment of tasks at a time depending

on the current robot position, they are dependent to communication or to the possibility

of observing other robots. In case of a break in communication, the robots can store

latest assignments and/or other robots positions [10] that are available only for a short

duration. These solutions are efficient when robots evolute together, we aims to give

more autonomy in mission execution part in order to automatically dispatch robots in the

exploration area.

Using a topological representation of the environment during the topological

SLAM [18] allows us to reduce the rate of the map modifications and to reduce the input

data size of the deliberative process. More resources can be allocated to compute robots

joint policies for a long term horizon. Multi-agent planning in stochastic domains could

be defined by the Decentralized MDP formalism [7] (Dec-MDP). The Dec-MDP applied

to mobile robotics could not be optimally solved for real size problems. Splitting the

Dec-MDP into a set of MDP by the agents permits to compute sub-optimal solutions.

This approach was used on the Pursuit Problem [11] by iterating on the built policies

until a consensus is found between all agents. This solution is used before the mission

execution, the joint policies of the collaborative agents can not be modified.

5. Conclusion and Future Work

This paper presents a decision making architecture for a fleet of mobile robots sharing

an exploration mission. The aim is to improve the exploration strategy by considering all

the tasks to achieve in the communication and the execution phases. It is difficult for a

leader to evaluate the allocations of many tasks between robots. The study is based on

knowledge organized in a Road-Map and a solver based on MDPs to model individual

exploration of the environment.

Decomposing the input data is an appropriate idea to deal with the size problem

and the constraint of on-line computation. From a greedy decomposition of the map,

the robots are able to allocate the regions to visit and compute coherent local policies

with regard to their global exploration. The approach is based on several heuristics as

the partitioning, the abstract MDP generation or the allocation criterion. They may be

correctly parametrized to produce expected results. With coherent parameters, the exper-

iments show that the built allocations is statistically close to the optimal one for a given

criterion. It was also demonstrated that the approach permit the robots to deal with tens

of tasks during the mission, by controlling the number of tasks in each region and the

number of regions.

In future work, the partitioning quality will be improved by using algorithms based

on finding minimal cuts. The idea is to converge to a local optimum from the first greedy

decomposition and assume other characteristics as disjunction between regions. Further-



more, adding cooperation in the local MDPs solving will permit several robots to explore

a region together and increase the allocations quality.
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